Bioactive Lipophilic Antioxidants (Carotenoids, Tocols, Retinol, and Coenzyme Q10) in Human and Animal Tissues: Development and Validation of a Rapid Extraction and Chromatographic Method for Nutrition and Health Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Standards
2.2. Samples and Experimental Design
2.3. Extraction of Lipophilic Antioxidants
2.4. RRLC Analysis
2.5. Method Validation
2.5.1. Calibration Curves, Linearity and LOD and LOQ
2.5.2. Accuracy and Precision of the Method
3. Results and Discussion
3.1. Determination of Conditions
3.1.1. Sample Preparation and Homogenisation
3.1.2. Addition of Antioxidants
3.1.3. Extraction Solvents
3.1.4. Saponification Conditions
3.2. Linearity and Limits of Detection and Quantification
3.3. Accuracy
3.4. Precision
3.5. Analysis of Carotenoids, Tocopherols and Coenzyme Q10 in Different Tissues
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Co-Q10 | Coenzyme Q10 |
| RRLC | Rapid Resolution Liquid Chromatography |
| DAD | Diode Array Detector |
| FLD | Fluorescence Detector |
| LOD | Limit of Detection |
| LOQ | Limit of Quantification |
| BHT | Butylated Hydroxytoluene |
| RSD | Relative Standard Deviation |
References
- Meléndez-Martínez, A.J.; Böhm, V.; Borge, G.I.; Cano, M.P.; Fikselová, M.; Gruskiene, R.; Lavelli, V.; Loizzo, M.R.; Mandić, A.; Mapelli-Brahm, P.; et al. Carotenoids: Considerations for Their Use in Functional Foods, Nutraceuticals, Nutricosmetics, Supplements, Botanicals and Novel Foods in the Context of Sustainability, Circular Economy and Climate Change. Annu. Rev. Food Sci. Technol. 2021, 12, 433–460. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Martínez, A.J. An Overview of Carotenoids, Apocarotenoids, and Vitamin A in Agro-Food, Nutrition, Health, and Disease. Mol. Nutr. Food Res. 2019, 63, 1801045. [Google Scholar] [CrossRef] [PubMed]
- Kong, R.; Cui, Y.; Fisher, G.J.; Wang, X.; Chen, Y.; Schneider, L.M.; Majmudar, G. A Comparative Study of the Effects of Retinol and Retinoic Acid on Histological, Molecular, and Clinical Properties of Human Skin. J. Cosmet. Dermatol. 2016, 15, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Beer, K.; Singh, A.; Ravi, S.C.; Gupta, A.K.; Kumar, A.; Sharma, M.M. A Comprehensive Review on the Role of Vitamin A on Human Health and Nutrition. J. Environ. Biol. 2024, 45, 645–653. [Google Scholar] [CrossRef]
- D’Ambrosio, D.N.; Clugston, R.D.; Blaner, W.S. Vitamin A Metabolism: An Update. Nutrients 2011, 3, 63–103. [Google Scholar] [CrossRef]
- Nesaretnam, K. Multitargeted Therapy of Cancer by Tocotrienols. Cancer Lett. 2008, 269, 388–395. [Google Scholar] [CrossRef]
- Latib, F.; Zafendi, M.A.I.; Mohd Lazaldin, M.A. The Use of Vitamin E in Ocular Health: Bridging Omics Approaches with Tocopherol and Tocotrienol in the Management of Glaucoma. Food Chem. Mol. Sci. 2024, 9, 100224. [Google Scholar] [CrossRef]
- Traber, M.G.; Atkinson, J. Vitamin E, Antioxidant and Nothing More. Free Radic. Biol. Med. 2007, 43, 4–15. [Google Scholar] [CrossRef]
- Wagner, K.H.; Kamal-Eldin, A.; Elmadfa, I. Gamma-Tocopherol—An Underestimated Vitamin? Ann. Nutr. Metab. 2004, 48, 169–188. [Google Scholar] [CrossRef]
- Hernández-Camacho, J.D.; Bernier, M.; López-Lluch, G.; Navas, P. Coenzyme Q10 Supplementation in Aging and Disease. Front. Physiol. 2018, 9, 44. [Google Scholar] [CrossRef]
- Gutierrez-Mariscal, F.M.; Yubero-Serrano, E.M.; Villalba, J.M.; Lopez-Miranda, J. Coenzyme Q10: From Bench to Clinic in Aging Diseases, a Translational Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 2240–2257. [Google Scholar] [CrossRef]
- Engelmann, N.J.; Clinton, S.K.; Erdman, J.W. Nutritional Aspects of Phytoene and Phytofluene, Carotenoid Precursors to Lycopene. Adv. Nutr. 2011, 2, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Martínez, A.J.; Vicario, I.M.; Heredia, F.J. Estabilidad de Los Pigmentos Carotenoides En Los Alimentos. Arch. Latinoam. Nutr. 2015, 54, 209–215. [Google Scholar]
- Khachik, F.; Carvalho, L.; Bernstein, P.S.; Muir, G.J.; Zhao, D.Y.; Katz, N.B. Chemistry, Distribution, and Metabolism of Tomato Carotenoids and Their Impact on Human Health. Exp. Biol. Med. 2002, 227, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, H.H.; Poor, C.L.; Wellman, R.B.; Erdman, J.W. Concentrations of Selected Carotenoids and Vitamin A in Human Liver, Kidney and Lung Tissue. J. Nutr. 1991, 121, 1613–1621. [Google Scholar] [CrossRef]
- Stahl, W.; Schwarz, W.; Sundquist, A.R.; Sies, H. Cis-Trans Isomers of Lycopene and Β-Carotene in Human Serum and Tissues. Arch. Biochem. Biophys. 1992, 294, 173–177. [Google Scholar] [CrossRef]
- Peng, Y.M.; Peng, Y.S.; Lin, Y. A Nonsaponification Method for the Determination of Carotenoids, Retinoids, and Tocopherols in Solid Human Tissues. Cancer Epidemiol. Biomark. Prev. 1993, 2, 139–144. [Google Scholar]
- Clinton, K.; Emenhiser, C.; Schwartz, J.; Bostwick, G.; Williams, W.; Moore, B.J.; Erdman, J.W. Lycopene in the and Retinol. Cancer Epidemiol. Biomark. Prev. 1996, 5, 823–834. [Google Scholar]
- Gamboa-Pinto, A.J.; Rock, C.L.; Ferruzzi, M.G.; Schowinsky, A.B.; Schwartz, S.J. Cervical Tissue and Plasma Concentrations of α-Carotene and β-Carotene in Women Are Correlated. J. Nutr. 1998, 128, 1933–1936. [Google Scholar] [CrossRef]
- Yeum, K.J.; Ahn, S.H.; De Paiva, S.A.R.; Lee-Kirn, Y.C.; Krinsky, N.I.; Russell, R.M. Correlation between Carotenoid Concentrations in Serum and Normal Breast Adipose Tissue of Women with Benign Breast Tumor or Breast Cancer. J. Nutr. 1998, 128, 1920–1926. [Google Scholar] [CrossRef]
- El-Sohemy, A.; Baylin, A.; Kabagambe, E.; Ascherio, A.; Spiegelman, D.; Campos, H. Individual Carotenoid Concentrations in Adipose Tissue and Plasma as Biomarkers of Dietary Intake. Am. J. Clin. Nutr. 2002, 76, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Craft, N.E.; Haitema, T.B.; Garnett, K.M.; Fitch, K.A. Carotenoid, Tocopherol, and Retinol Concentrations in Elderly Human Brain. J. Nutr. Health Aging 2004, 8, 156–162. [Google Scholar] [PubMed]
- Qin, J.; Yeum, K.J.; Johnson, E.J.; Krinsky, N.I.; Russell, R.M.; Tang, G. Determination of 9-Cis β-Carotene and ζ-Carotene in Biological Samples. J. Nutr. Biochem. 2008, 19, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.Y.; Ferreira, A.L.A.; Epstein, S.; Paiva, S.A.R.; Castaneda-Sceppa, C.; Johnson, E.J. Site-Specific Concentrations of Carotenoids in Adipose Tissue: Relations with Dietary and Serum Carotenoid Concentrations in Healthy Adults. Am. J. Clin. Nutr. 2009, 90, 533–539. [Google Scholar] [CrossRef]
- Vishwanathan, R.; Neuringer, M.; Snodderly, D.M.; Schalch, W.; Johnson, E.J. Macular lutein and zeaxanthin are related to brain lutein and zeaxanthin in primates. Nutr. Neurosci. 2013, 16, 21–29. [Google Scholar] [CrossRef]
- Zhong, G.; Kirkwood, J.; Won, K.J.; Tjota, N.; Jeong, H.; Isoherranen, N. Characterization of Vitamin A Metabolome in Human Livers with and without Nonalcoholic Fatty Liver Disease. J. Pharmacol. Exp. Ther. 2019, 370, 92–103. [Google Scholar] [CrossRef]
- Harari, A.; Coster, A.C.F.; Jenkins, A.; Xu, A.; Greenfield, J.R.; Harats, D.; Shaish, A.; Samocha-Bonet, D. Obesity and Insulin Resistance Are Inversely Associated with Serum and Adipose Tissue Carotenoid Concentrations in Adults. J. Nutr. 2020, 150, 38–46. [Google Scholar] [CrossRef]
- Montero, R.; Sánchez-Alcázar, J.A.; Briones, P.; Hernández, Á.R.; Cordero, M.D.; Trevisson, E.; Salviati, L.; Pineda, M.; García-Cazorla, A.; Navas, P.; et al. Analysis of Coenzyme Q10 in Muscle and Fibroblasts for the Diagnosis of CoQ10 Deficiency Syndromes. Clin. Biochem. 2008, 41, 697–700. [Google Scholar] [CrossRef]
- Kane, M.A.; Folias, A.E.; Napoli, J.L. HPLC/UV Quantitation of Retinal, Retinol, and Retinyl Esters in Serum and Tissues. Anal. Biochem. 2009, 378, 71–79. [Google Scholar] [CrossRef]
- Uner, B.; Celik, A.; Ergin, A.D.; Altay Benetti, A.; Benetti, C. Enhancement of In-Vivo Cellular Uptake of Coenzyme Q10 Using Saponin Derivatives in RTALAP Transgenic Mice Model. J. Drug Deliv. Sci. Technol. 2024, 96, 105636. [Google Scholar] [CrossRef]
- Arnold, S.L.M.; Amory, J.K.; Walsh, T.J.; Isoherranen, N. A Sensitive and Specific Method for Measurement of Multiple Retinoids in Human Serum with UHPLC-MS/MS. J. Lipid Res. 2012, 53, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Jiménez, J.; Priego-Capote, F.; Mata-Granados, J.M.; Quesada, J.M.; Luque de Castro, M.D. Determination of the Ubiquinol-10 and Ubiquinone-10 (Coenzyme Q10) in Human Serum by Liquid Chromatography Tandem Mass Spectrometry to Evaluate the Oxidative Stress. J. Chromatogr. A 2007, 1175, 242–248. [Google Scholar] [CrossRef]
- Stinco, C.M.; Benítez-González, A.M.; Meléndez-Martínez, A.J.; Hernanz, D.; Vicario, I.M. Simultaneous Determination of Dietary Isoprenoids (Carotenoids, Chlorophylls and Tocopherols) in Human Faeces by Rapid Resolution Liquid Chromatography. J. Chromatogr. A 2019, 1583, 63–72. [Google Scholar] [CrossRef]
- Gleize, B.; Steib, M.; André, M.; Reboul, E. Simple and Fast HPLC Method for Simultaneous Determination of Retinol, Tocopherols, Coenzyme Q10 and Carotenoids in Complex Samples. Food Chem. 2012, 134, 2560–2564. [Google Scholar] [CrossRef]
- Melendez-Martinez, A.J.; Stinco, C.M.; Liu, C.; Wang, X.D. A Simple HPLC Method for the Comprehensive Analysis of Cis/Trans (Z/E) Geometrical Isomers of Carotenoids for Nutritional Studies. Food Chem. 2013, 138, 1341–1350. [Google Scholar] [CrossRef]
- Honda, M. Carotenoid Isomers: A Systematic Review of the Analysis, Biological Activity, Physicochemical Property, and Methods for Isomerization, 1st ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2021; Volume 68, ISBN 9780128194850. [Google Scholar]
- UNE 82009-2:1999; Exactitud (Veracidad y Precisión) de Resultados y Métodos de Medición. Parte 2: Método Básico Para La Determinación de La Repetibilidad y La Reproducibilidad de Un Método de Medición Normalizado. Normalización Española: Madrid, Spain, 1999.
- Miller, J.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry; Pearson Education Limited: London, UK, 2010; ISBN 978-0-273-73042-2. [Google Scholar]
- Britton, G.; Liaaen-Jensen, S.; Pfander, H. Carotenoids, Volume 1B: Spectroscopy; Carotenoids; Birkhäuser: Basel, Switzerland, 1994; ISBN 9783764329099. [Google Scholar]
- Stinco, C.M.; Benítez-González, A.M.; Hernanz, D.; Vicario, I.M.; Meléndez-Martínez, A.J. Development and Validation of a Rapid Resolution Liquid Chromatography Method for the Screening of Dietary Plant Isoprenoids: Carotenoids, Tocopherols and Chlorophylls. J. Chromatogr. A 2014, 1370, 162–170. [Google Scholar] [CrossRef]
- Turkowicz, M.J.; Karpińska, J. Analytical Problems with the Determination of Coenzyme Q10 in Biological Samples. BioFactors 2013, 39, 176–185. [Google Scholar] [CrossRef]
- Mosca, F.; Fattorini, D.; Bompadre, S.; Littarru, G.P. Assay of Coenzyme Q10 in Plasma by a Single Dilution Step. Anal. Biochem. 2002, 305, 49–54. [Google Scholar] [CrossRef]
- Abdul-Rasheed, O.F.; Farid, Y.Y. Development of a New High Performance Liquid Chromatography Method for Measurement of Coenzyme Q10 in Healthy Blood Plasma. Saudi Med. J. 2009, 30, 1138–1143. [Google Scholar]
- Boulet, L.; Alex, B.; Clavey, N.; Martinez, J.; Ducros, V. Simultaneous Analysis of Retinol, Six Carotenoids, Two Tocopherols, and Coenzyme Q10 from Human Plasma by HPLC. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1151, 122158. [Google Scholar] [CrossRef]
- Antwi, S.O.; Steck, S.E.; Su, L.J.; Hebert, J.R.; Zhang, H.; Craft, N.E.; Fontham, E.T.H.; Smith, G.J.; Bensen, J.T.; Mohler, J.L.; et al. Carotenoid Intake and Adipose Tissue Carotenoid Levels in Relation to Prostate Cancer Aggressiveness among African-American and European-American Men in the North Carolina–Louisiana Prostate Cancer Project (PCaP). Prostate 2016, 76, 1053–1066. [Google Scholar] [CrossRef] [PubMed]
- Bhagavan, H.N.; Chopra, R.K. Coenzyme Q10: Absorption, Tissue Uptake, Metabolism and Pharmacokinetics. Free Radic. Res. 2006, 40, 445–453. [Google Scholar] [CrossRef] [PubMed]
| Matrix | Homogenisation/Pre-TREATMENT | Saponification/Digestion | Extraction Solvent | Analysis System | Compounds | Reference |
|---|---|---|---|---|---|---|
| Liver, kidney, lung | Homogenised in ethanol:water (50:50) w/1% BHT (45–90 s) | 10% NaOH in ethanol, 60 °C, 30 min | Hexane (3 × 10 mL) | HPLC | α-carotene, β-carotene, cryptoxanthin, lutein, lycopene | [15] |
| Liver, kidney, adrenals, fat, testes, ovary, brainstem | Ground under liquid N2; Homogenised in buffer (pH 7.2) + SDS | None (SDS treatment) | 2-Propanol (1 mL) + n-Hexane/Dichloromethane (5:1, 6 mL) | HPLC | all-E-lycopene, 9Z, 13Z, and 15Z-lycopene, 13Z and 15Z-β-carotene, all-E-β-carotene | [16] |
| Facial skin, cervical, ovarian | Enzymatic digestion: Collagenase (37 °C, 1 h) + Protease (37 °C, 30 min) | Enzymatic only (no alkaline saponification) | SDS-ethanol solution + Hexane (2 × 500 µL) | HPLC | Lutein, zeaxanthin, β-cryptoxanthin, lycopene, α-carotene, all-E-β-carotene, Z-β-carotene, retinol, α-tocopherol and β-tocopherol | [17] |
| Prostate | Minced and homogenised in ethanol w/0.1% BHT | Saturated KOH, 70 °C, 30 min | Hexane (3 × equal volumes) | HPLC | all-E-Lycopene,9Z-, 13Z-, 15Z-lycopene, all-E-β-carotene, 9Z-β-carotene, α-carotene, lutein, α-cryptoxanthin, zeaxanthin and β-cryptoxanthin | [18] |
| Cervical tissue | Enzymatic digestion: Collagenase + Ascorbic acid (37 °C, 1 h); Mechanical (<60 s) | Enzymatic only | Hexane w/BHT (3 × 2 mL) | HPLC | α-carotene and β-carotene | [19] |
| Breast adipose | Incubation w/12% pyrogallol in ethanol | 30% KOH, 37 °C, 2 h | Ether/Hexane (2:1) (2 × 3 mL) | HPLC | Lutein, zeaxanthin, α- and β-cryptoxanthin, α-carotene, all-E-β-carotene, 13Z-β-carotene and lycopene. Retinol, all-E and 13Z retinoic acids, and α- and γ- tocopherol | [20] |
| Adipose tissue | Homogenised in 20% ascorbic acid solution | KOH, 50 °C, 15 min | Hexane | HPLC | α-carotene, β-carotene, β-cryptoxanthin, lycopene and lutein + zeaxanthin | [21] |
| Brain | Ground in mortar with Na2SO4 | None | Hexane:Ethyl acetate (90:10) | HPLC | lutein, zeaxanthin, anhydrolutein, α-cryptoxanthin, ß-cryptoxanthin, α-carotene, Z- and (all-E)-ß- | [22] |
| Breast adipose | Incubation w/12% pyrogallol in ethanol | 30% KOH, 37 °C, 2 h | Ether/Hexane (2:1) (3 mL + 2 mL) | HPLC | carotene, and Z- and all-E-lycopene and α-,γ-, δ-tocopherols | [23] |
| Adipose tissue | Lyophilised tissue | Incubation w/pyrogallol, 37 °C, 2 h | Ether/Hexane (2:1) (2 extractions) | HPLC | 9Z-β-carotene, total β-carotene, ζ-carotene 1, ζ-carotene 2, total lycopene | [24] |
| Brain | Homogenised in saline/ethanol (0.3/0.5 mL) | 5% NaOH + 25% Na-Ascorbate, 60 °C, 20 min | Hexane (2 × 5 mL) | HPLC | α-carotene, β-carotene (all-E, 15Z, 13Z, 9Z), lutein + zeaxanthin, lycopene (all-E, 15Z, 13Z, 9Z, 5Z,), β-cryptoxanthin | [25] |
| Liver | Mill homogeniser with ceramic beads in methanol-dry ice | None (Protein precipitation) | Acetonitrile (1 mL) | LC-MS/MS | Lutein and zeaxanthin | [26] |
| Adipose tissue | Extracted with ethanol w/BHT (10 μM) | 12% KOH in ethanol, 50 °C, 30 min | Ethanol (2 mL) + Hexane (2 mL) | HPLC | α-carotene, β-carotene,ζ-carotene, lutein, lycopene, phytoene, phytofluene | [27] |
| Skeletal muscle | Mix with 1-propanol | None | n-hexane | HPLC-ECD | coenzyme Q10 (Total Co-Q10) | [28] |
| Compounds | Wavelength | Equations | Correlation Coefficient | LOD | LOQ | Linear Range (µg) | ||||
|---|---|---|---|---|---|---|---|---|---|---|
| (nm) | R2 | SDRES | 3xsD(A)/B | 10xsD(A)/B | Min | Max | ||||
| Carotenoids | α-carotene | DAD | 450 | y = 13,249.27x − 8.22 | 0.9999 | 7.19 | 0.001 | 0.003 | 0.008 | 0.165 |
| astaxanthin | DAD | 472 | y = 10,240.90x + 2.84 | 0.9999 | 7.92 | 0.001 | 0.003 | 0.001 | 0.169 | |
| β-cryptoxanthin | DAD | 450 | y = 9174.29x + 5.14 | 1.0000 | 5.96 | 0.001 | 0.003 | 0.002 | 0.254 | |
| β-carotene | DAD | 450 | y = 12,610.04x + 2.16 | 1.0000 | 3.93 | 0.0004 | 0.001 | 0.003 | 0.283 | |
| capsanthin | DAD | 450 | y = 6131.24x − 15.19 | 0.9990 | 23.02 | 0.004 | 0.014 | 0.004 | 0.353 | |
| lycopene | DAD | 472 | y = 15,598.81x − 36,74 | 0.9996 | 24.49 | 0.002 | 0.007 | 0.005 | 0.167 | |
| lutein | DAD | 450 | y = 11,984.83x − 5.01 | 0.9999 | 10.37 | 0.001 | 0.003 | 0.002 | 0.179 | |
| neoxanthin | DAD | 450 | y = 10,627.51x −26.18 | 0.9972 | 64.83 | 0.007 | 0.022 | 0.005 | 0.305 | |
| phytoene | DAD | 285 | y = 6663.10x + 9.18 | 0.9991 | 35.85 | 0.007 | 0.022 | 0.003 | 0.424 | |
| phytofluene | DAD | 350 | y = 4323.63x + 3.57 | 0.9990 | 24.47 | 0.007 | 0.022 | 0.004 | 0.521 | |
| violaxanthin | DAD | 450 | y = 5815.38x − 8.11 | 0.9993 | 17.07 | 0.003 | 0.011 | 0.005 | 0.298 | |
| zeaxanthin | DAD | 450 | y = 8550.86x − 0.01 | 0.9999 | 6.60 | 0.001 | 0.002 | 0.006 | 0.294 | |
| zeinoxanthin | DAD | 450 | y = 4693.59x − 88.46 | 0.9957 | 91.29 | 0.023 | 0.077 | 0.021 | 0.727 | |
| ζ-carotene | DAD | 410 | y = 8713.13x + 1.68 | 0.9990 | 34.71 | 0.004 | 0.015 | 0.004 | 0.322 | |
| echinenone | DAD | 450 | y = 10,628.83x + 4.15 | 0.9994 | 24.45 | 0.003 | 0.011 | 0.002 | 0.251 | |
| Retinol | Retinol | DAD | 325 | y = 4578.93x + 18.24 | 0.9992 | 17.12 | 0.005 | 0.016 | 0.001 | 0.289 |
| Co-Q10 | coenzyme Q10 | DAD | 285 | y = 16,547.06x + 0.27 | 1.0000 | 0.63 | 0.00004 | 0.0001 | 0.001 | 0.066 |
| Tocols | α-tocopherol | DAD | 285 | y = 931.78x + 0.27 | 1.0000 | 2.03 | 0.003 | 0.010 | 0.012 | 2.343 |
| β-tocopherol | DAD | 285 | y = 1245.35x + 4.11 | 1.0000 | 3.64 | 0.005 | 0.016 | 0.008 | 2.190 | |
| δ-tocopherol | DAD | 285 | y = 1323.25x −2.23 | 1.0000 | 6.35 | 0.008 | 0.026 | 0.012 | 2.748 | |
| γ-tocopherol | DAD | 285 | y = 1273.25x + 1.85 | 1.0000 | 2.90 | 0.004 | 0.012 | 0.012 | 2.352 | |
| α-tocopherol | FLD | * | y = 4706.47x + 2.88 | 0.999 | 1.20 | 0.001 | 0.002 | 0.001 | 0.017 | |
| β-tocopherol | FLD | * | y = 12,027.37x + 0.29 | 1.000 | 1.29 | 0.0002 | 0.001 | 0.001 | 0.017 | |
| δ-tocopherol | FLD | * | y = 13,331.08x + 2.19 | 1.000 | 0.95 | 0.0001 | 0.0004 | 0.000 | 0.014 | |
| γ-tocopherol | FLD | * | y = 13,424.93x + 2.72 | 1.000 | 0.72 | 0.0001 | 0.0003 | 0.001 | 0.018 | |
| α-tocotrienol | DAD | 285 | y = 325.28x − 0.01 | 0.9993 | 15.44 | 0.054 | 0.181 | 0.026 | 6.901 | |
| β-tocotrienol | DAD | 285 | y = 302.61x − 3.80 | 0.9996 | 10.61 | 0.040 | 0.133 | 0.036 | 4.738 | |
| δ-tocotrienol | DAD | 285 | y = 288.33x − 4.97 | 0.9996 | 5.74 | 0.025 | 0.084 | 0.038 | 2.430 | |
| γ-tocotrienol | DAD | 285 | y = 333.40x − 2.05 | 0.9999 | 2.81 | 0.011 | 0.036 | 0.032 | 2.459 | |
| α-tocotrienol | FLD | * | y = 1686.96x − 0.57 | 0.997 | 1.72 | 0.001 | 0.005 | 0.003 | 0.057 | |
| β-tocotrienol | FLD | * | y = 2108.66x + 0.99 | 0.998 | 0.88 | 0.001 | 0.003 | 0.002 | 0.024 | |
| δ-tocotrienol | FLD | * | y = 2460.70x − 0.38 | 0.999 | 0.77 | 0.001 | 0.002 | 0.003 | 0.024 | |
| γ-tocotrienol | FLD | * | y = 2858.81x + 0.14 | 0.999 | 0.86 | 0.001 | 0.002 | 0.002 | 0.025 | |
| Compounds | Detector | Concentration | Quantity Added (μg) | Recorded Amount (μg) | Recovery (%) ** | SD (%) ** |
|---|---|---|---|---|---|---|
| α-tocopherol | DAD (285 nm) | High | 8.035 ± 0.136 | 7.297 ± 0.208 | 90.8 | 2.6 |
| DAD (285 nm) | Medium | 0.160 ± 0.001 | 0.145 ± 0.005 | 90.5 | 3.1 | |
| FLD (*) | Low | 0.047 ± 0.001 | 0.043 ± 0.002 | 91.5 | 2.9 | |
| Coenzyme Q10 | DAD (285 nm) | High | 0.619 ± 0.007 | 0.240 ± 0.005 | 38.8 | 0.8 |
| DAD (285 nm) | Low | 0.014 ± 0.001 | 0.005 ± 0.001 | 38.4 | 2.0 | |
| Retinol | DAD (325 nm) | High | 41.136 ± 0.136 | 37.337 ± 0.344 | 90.7 | 0.8 |
| DAD (325 nm) | Low | 2.947 ± 0.020 | 2.775 ± 0.067 | 94.2 | 2.3 | |
| Echinenone | DAD (450 nm) | High | 3.132 ± 0.174 | 2.777 ± 0.070 | 88.7 | 2.2 |
| DAD (450 nm) | Low | 0.011 ± 0.001 | 0.009 ± 0.001 | 84.6 | 2.3 |
| Compounds | Wavelength | Analyte | Concentration | Repeatability | Reproducibility |
|---|---|---|---|---|---|
| Mean ± SD | RSD% | RSD% | |||
| (nm) | (μg/g FW) | (n = 3) | (n = 9) | ||
| Carotenoids | 285 | phytoene Z isomer 1 | 0.102 ± 0.004 | 2.87 | 4.34 |
| phytoene Z isomer 2 | 0.021 ± 0.002 | 6.49 | 9.15 | ||
| phytoene Z isomer 3 | 0.020 ± 0.002 | 3.78 | 9.97 | ||
| 15Z-phytoene | 0.206 ± 0.016 | 5.16 | 7.67 | ||
| all-E-phytoene | 0.039 ± 0.002 | 4.78 | 4.49 | ||
| Σphytoene | 0.387 ± 0.025 | 4.47 | 6.51 | ||
| 350 | phytofluene isomer 1 | 0.055 ± 0.005 | 3.43 | 8.24 | |
| phytofluene isomer 2 | 0.095 ± 0.007 | 7.19 | 7.81 | ||
| phytofluene isomer 3 | 0.223 ± 0.013 | 3.49 | 6.03 | ||
| phytofluene isomer 4 | 0.093 ± 0.005 | 4.74 | 5.43 | ||
| Σphytofluene | 0.466 ± 0.030 | 4.36 | 6.41 | ||
| 410 | ζ-carotene isomer 1 | 0.013 ± 0.001 | 6.59 | 9.73 | |
| ζ-carotene isomer 2 | 0.005 ± 0.0001 | 4.80 | 4.54 | ||
| ζ-carotene isomer 3 | 0.025 ± 0.002 | 5.61 | 7.36 | ||
| ζ-carotene isomer 4 | 0.046 ± 0.003 | 4.94 | 6.54 | ||
| ζ-carotene isomer 5 | 0.030 ± 0.001 | 2.08 | 3.79 | ||
| Σζ-carotene | 0.134 ± 0.010 | 4.45 | 6.15 | ||
| 450 | all-E-lutein | 0.088 ± 0.006 | 10.19 | 7.23 | |
| all-E-zeaxanthin | 0.025 ± 0.002 | 8.82 | 7.67 | ||
| all-E-capsanthin | 0.043 ± 0.003 | 5.75 | 7.84 | ||
| all-E-zeinoxanthin | 0.037 ± 0.001 | 2.24 | 4.07 | ||
| all-E-β-cryptoxanthin | 0.013 ± 0.001 | 6.52 | 9.53 | ||
| all-E-α-carotene | 0.012 ± 0.001 | 6.84 | 9.13 | ||
| 9Z-α-carotene | 0.009 ± 0.0001 | 2.63 | 4.83 | ||
| all-E-β-carotene | 0.030 ± 0.002 | 4.51 | 5.86 | ||
| 9Z-β-carotene | 0.039 ± 0.001 | 4.47 | 3.81 | ||
| 472 | lycopene Z isomer | 0.012 ± 0.001 | 3.88 | 7.13 | |
| all-E-lycopene | 0.021 ± 0.002 | 4.62 | 7.94 | ||
| Σlycopene | 0.032 ± 0.002 | 4.33 | 7.62 | ||
| Total carotenoids | 1.135 ± 0.079 | 4.87 | 6.04 | ||
| Tocopherols | 285 | α-tocopherol | 1.268 ± 0.121 | 9.33 | 9.51 |
| β-tocopherol | 0.106 ± 0.007 | 6.28 | 6.64 | ||
| Σ tocopherols | 1.374 ± 0.127 | 9.08 | 9.25 | ||
| Coenzyme Q10 | 285 | Co-Q10 | 0.115 ± 0.020 | 10.21 | 17.54 |
| Co-Q10-D * | 0.087 ± 0.014 | 6.19 | 16.73 | ||
| Σ coenzyme Q10 | 0.202 ± 0.034 | 8.25 | 16.86 | ||
| Retinol | 325 | retinol | 6.862 ± 0.563 | 6.83 | 8.20 |
| Tissue | Duodenum | Intestine | Pancreas | Spleen | Liver | Adipose Tissue + Muscle | Intestine + Muscle | Liver | Liver | |
|---|---|---|---|---|---|---|---|---|---|---|
| Matrix | Human | Human | Human | Human | Human | Human | Human | Cow | Chicken | |
| Tocopherols | α-tocopherol | 0.065 | 3.908 | 0.483 | 0.458 | 0.470 | 1.384 | 0.413 | 4.121 | 3.991 |
| Coenzyme Q10 | Co-Q10 | 0.003 | 0.023 | 0.006 | nd | 0.112 | 0.004 | 0.052 | nd | 0.291 |
| Co-Q10 | 0.002 | 0.011 | 0.003 | nd | 0.011 | 0.002 | 0.029 | nd | 0.023 | |
| Carotenoids | phytoene Z isomer 1 | nd | 0.005 | 0.001 | nd | nd | 0.005 | 0.008 | 0.045 | 0.033 |
| phytoene Z isomer 3 | nd | nd | nd | nd | nd | nd | 0.004 | nd | nd | |
| 15Z-phytoene | nd | 0.003 | nd | nd | 0.089 | nd | 0.025 | nd | nd | |
| all-E-phytoene | nd | nd | nd | nd | nd | nd | 0.011 | nd | nd | |
| phytofluene isomer 1 | nd | nd | nd | 0.009 | nd | nd | 0.011 | nd | nd | |
| phytofluene isomer 2 | nd | 0.004 | nd | 0.009 | 0.072 | nd | 0.023 | nd | nd | |
| phytofluene isomer 3 | nd | 0.003 | nd | 0.002 | nd | nd | 0.019 | nd | nd | |
| phytofluene isomer 4 | 0.003 | 0.004 | nd | 0.028 | 0.113 | 0.002 | 0.169 | nd | nd | |
| ζ-carotene isomer1 | 0.001 | 0.003 | nd | 0.007 | 0.037 | 0.001 | 0.010 | nd | nd | |
| ζ-carotene isomer 2 | 0.004 | 0.007 | nd | 0.015 | 0.069 | 0.002 | 0.029 | nd | nd | |
| ζ-carotene isomer 3 | 0.002 | 0.006 | nd | 0.007 | 0.040 | 0.001 | 0.020 | nd | nd | |
| 13Z-lutein | 0.004 | nd | nd | 0.001 | nd | 0.001 | 0.004 | 0.028 | 0.018 | |
| di-Z-zeaxanthin | 0.002 | nd | nd | nd | nd | nd | nd | 0.046 | 0.043 | |
| all-E-lutein | 0.055 | 0.005 | 0.001 | 0.047 | 0.031 | 0.008 | 0.037 | 0.387 | 0.296 | |
| all-E-zeaxanthin | 0.010 | nd | nd | 0.018 | 0.044 | 0.006 | 0.026 | 0.088 | 0.074 | |
| all-E-capsanthin | 0.002 | 0.026 | 0.004 | nd | 0.021 | 0.029 | 0.027 | nd | nd | |
| all-E-zeinoxanthin | nd | 0.005 | nd | 0.033 | 0.063 | 0.005 | 0.046 | 0.076 | 0.049 | |
| 9Z-zeaxanthin | nd | nd | nd | nd | nd | nd | nd | 0.008 | 0.006 | |
| all-E-β-cryptoxanthin | 0.003 | 0.007 | 0.001 | 0.055 | 0.096 | 0.009 | 0.095 | nd | nd | |
| 15Z-β-carotene | nd | nd | nd | nd | 0.006 | nd | 0.001 | nd | nd | |
| 13Z-β-carotene | 0.001 | nd | 0.001 | 0.011 | 0.070 | 0.001 | 0.017 | nd | nd | |
| all-E-α-carotene | 0.002 | 0.003 | nd | 0.015 | 0.053 | 0.003 | 0.011 | 0.004 | 0.008 | |
| 9Z-α-carotene | nd | 0.001 | nd | 0.004 | 0.012 | nd | 0.002 | nd | 0.003 | |
| All-E-β-carotene | 0.006 | 0.009 | 0.003 | 0.033 | 0.342 | 0.006 | 0.092 | 0.004 | 0.004 | |
| 9Z-β-carotene | 0.002 | 0.002 | 0.001 | 0.006 | 0.123 | 0.001 | 0.017 | nd | 0.002 | |
| 15Z-lycopene | nd | nd | nd | 0.003 | 0.031 | nd | 0.008 | nd | nd | |
| 13Z-lycopene | 0.002 | 0.003 | 0.001 | 0.011 | 0.170 | 0.001 | 0.056 | nd | nd | |
| lycopene Z isomer 1 | 0.002 | 0.003 | 0.001 | 0.008 | 0.116 | 0.002 | 0.029 | nd | nd | |
| lycopene Z isomer 2 | 0.002 | 0.003 | 0.001 | 0.012 | 0.065 | 0.004 | 0.024 | nd | nd | |
| all-E-lycopene | 0.017 | 0.014 | 0.010 | 0.084 | 2.307 | 0.027 | 0.296 | nd | nd | |
| 5Z-lycopene | 0.005 | 0.003 | 0.004 | 0.044 | 0.083 | 0.008 | 0.034 | nd | nd | |
| Retinol | Retinol | nd | nd | 0.014 | 0.094 | 1.521 | 0.020 | 0.054 | 86.166 | 79.218 |
| Retinol-D 1 | nd | nd | nd | nd | 0.214 | nd | nd | 0.135 | 0.211 | |
| Retinol-D 2 | nd | nd | nd | nd | 4.332 | nd | nd | 0.315 | 0.453 | |
| Retinol-D 3 | nd | 0.007 | nd | nd | 0.135 | nd | nd | 0.094 | 0.203 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Benítez-González, A.M.; Stinco, C.M.; Brnčić, M.; Barba, F.J.; Meléndez-Martínez, A.J. Bioactive Lipophilic Antioxidants (Carotenoids, Tocols, Retinol, and Coenzyme Q10) in Human and Animal Tissues: Development and Validation of a Rapid Extraction and Chromatographic Method for Nutrition and Health Studies. Antioxidants 2026, 15, 43. https://doi.org/10.3390/antiox15010043
Benítez-González AM, Stinco CM, Brnčić M, Barba FJ, Meléndez-Martínez AJ. Bioactive Lipophilic Antioxidants (Carotenoids, Tocols, Retinol, and Coenzyme Q10) in Human and Animal Tissues: Development and Validation of a Rapid Extraction and Chromatographic Method for Nutrition and Health Studies. Antioxidants. 2026; 15(1):43. https://doi.org/10.3390/antiox15010043
Chicago/Turabian StyleBenítez-González, Ana M., Carla M. Stinco, Mladen Brnčić, Francisco J. Barba, and Antonio J. Meléndez-Martínez. 2026. "Bioactive Lipophilic Antioxidants (Carotenoids, Tocols, Retinol, and Coenzyme Q10) in Human and Animal Tissues: Development and Validation of a Rapid Extraction and Chromatographic Method for Nutrition and Health Studies" Antioxidants 15, no. 1: 43. https://doi.org/10.3390/antiox15010043
APA StyleBenítez-González, A. M., Stinco, C. M., Brnčić, M., Barba, F. J., & Meléndez-Martínez, A. J. (2026). Bioactive Lipophilic Antioxidants (Carotenoids, Tocols, Retinol, and Coenzyme Q10) in Human and Animal Tissues: Development and Validation of a Rapid Extraction and Chromatographic Method for Nutrition and Health Studies. Antioxidants, 15(1), 43. https://doi.org/10.3390/antiox15010043

