Modulation of Pulmonary Inflammation and the Redox Pathway In Vitro and In Vivo by Fumaric Ester
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture and Cigarette Smoke Extract (CSE) Preparation
2.2. MTT Assay
2.3. Lactate Dehydrogenase Activity Assay
2.4. NF-κB and Nrf2/ARE Luciferase Activity Assay
2.5. Animals and Experimental Design
2.6. Western Blotting
2.7. Nitrite Assay
2.8. Thiobarbituric Acid Reactive Substances (TBARS)
2.9. Histology and Morphometry
2.10. Immunohistochemistry
2.11. Detection of Reactive Oxygen Species In Vitro and In Vivo
2.12. Statistical Analysis
3. Results
3.1. Effects of CSE and Monomethyl Fumarate (MMF) on Cell Viability and Oxidative Stress
3.2. Effects of DMF on the Elastase-Induced Pulmonary Emphysema (Study 1)
3.3. Effects of DMF on Oxidative Stress During Elastase-Induced Pulmonary Emphysema (Study 1)
3.4. DMF Treatment Reverses Elastase-Induced Pulmonary Emphysema (Study 2)
3.5. DMF Treatment Reduces Oxidative Stress Following Emphysema (Study 2)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APF | Aminophenyl fluorescein |
ARE | Antioxidant response element |
BALF | Bronchoalveolar lavage fluid |
BSA | Bovine serum albumin |
COPD | Chronic obstructive pulmonary disease |
CSE | Cigarette smoke extract |
DAB | 3,3′-Diaminobenzidine |
DCF | Dichlorofluorescein |
DMF | Dimethyl fumarate |
DNA | Deoxyribonucleic acid |
FBS | Fetal bovine serum |
GSTA2 | Glutathione S-transferase A2 |
H&E | Hematoxylin and eosin |
HBSS | Hanks’ balanced salt solution |
HO-1 | Heme oxygenase-1 |
Keap1 | Kelch-like ECH-associated protein 1 |
LDH | Lactate dehydrogenase |
Lm | Mean linear intercept |
MDA | Malondialdehyde |
MMF | Monomethyl fumarate |
MMP-9 | Matrix metalloproteinase 9 |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
NAD+ | Nicotinamide adenine dinucleotide (oxidized form) |
NADH | Nicotinamide adenine dinucleotide (reduced form) |
NF-κB | Nuclear factor kappa B |
NQO1 | NAD(P)H quinone dehydrogenase 1 |
Nrf2 | Nuclear factor erythroid 2–related factor 2 |
PBS | Phosphate-buffered saline |
PNK | Nitrotyrosine |
PPE | Porcine pancreatic elastase |
RPMI | Roswell Park Memorial Institute medium |
ROS | Reactive oxygen species |
RSN | Reactive species of nitrogen |
SOD1 | Superoxide dismutase 1 |
TBARS | Thiobarbituric acid reactive substances |
TBS | Tris-buffered saline |
Vv | Volume density |
References
- Patel, A.R.; Patel, A.R.; Singh, S.; Singh, S.; Khawaja, I. Global initiative for chronic obstructive lung disease: The changes made. Cureus 2019, 11, e4985. [Google Scholar] [CrossRef]
- Sharafkhaneh, A.; Hanania, N.A.; Kim, V. Pathogenesis of emphysema: From the bench to the bedside. Proc. Am. Thorac. Soc. 2008, 5, 475–477. [Google Scholar] [CrossRef] [PubMed]
- Knobloch, J.; Peters, H.; Jungck, D.; Muller, K.; Strauch, J.; Koch, A. Tnfalpha-induced gm-csf release from human airway smooth muscle cells depends on activation of an et-1 autoregulatory positive feedback mechanism. Thorax 2009, 64, 1044–1052. [Google Scholar] [CrossRef]
- Fischer, B.M.; Pavlisko, E.; Voynow, J.A. Pathogenic triad in copd: Oxidative stress, protease-antiprotease imbalance, and inflammation. Int. J. Chron. Obs. Pulmon. Dis. 2011, 6, 413–421. [Google Scholar] [CrossRef]
- Thorley, A.J.; Tetley, T.D. Pulmonary epithelium, cigarette smoke, and chronic obstructive pulmonary disease. Int. J. Chron. Obs. Pulmon. Dis. 2007, 2, 409–428. [Google Scholar]
- Ishii, Y.; Itoh, K.; Morishima, Y.; Kimura, T.; Kiwamoto, T.; Iizuka, T.; Hegab, A.E.; Hosoya, T.; Nomura, A.; Sakamoto, T.; et al. Transcription factor nrf2 plays a pivotal role in protection against elastase-induced pulmonary inflammation and emphysema. J. Immunol. 2005, 175, 6968–6975. [Google Scholar] [CrossRef] [PubMed]
- Vogelmeier, C.F.; Criner, G.J.; Martinez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Chen, R.; Decramer, M.; Fabbri, L.M.; et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. Gold executive summary. Am. J. Respir. Crit. Care. Med. 2017, 195, 557–582. [Google Scholar] [CrossRef] [PubMed]
- Firdous, S.M.; Pal, S.; Mandal, S.; Sindhu, R.K. Antioxidants in inflammatory diseases. In Antioxidants; Wiley: Hoboken, NJ, USA, 2025; pp. 83–126. [Google Scholar] [CrossRef]
- Rahman, I.; Adcock, I.M. Oxidative stress and redox regulation of lung inflammation in copd. Eur. Respir. J. 2006, 28, 219–242. [Google Scholar] [CrossRef]
- Muralidharan, P.; Hayes, D., Jr.; Black, S.M.; Mansour, H.M. Microparticulate/nanoparticulate powders of a novel nrf2 activator and an aerosol performance enhancer for pulmonary delivery targeting the lung nrf2/keap-1 pathway. Mol. Syst. Des. Eng. 2016, 1, 48–65. [Google Scholar] [CrossRef]
- Seidel, P.; Goulet, S.; Hostettler, K.; Tamm, M.; Roth, M. Dmf inhibits pdgf-bb induced airway smooth muscle cell proliferation through induction of heme-oxygenase-1. Respir. Res. 2010, 11, 145. [Google Scholar] [CrossRef] [PubMed]
- Unni, S.; Deshmukh, P.; Krishnappa, G.; Kommu, P.; Padmanabhan, B. Structural insights into the multiple binding modes of dimethyl fumarate (dmf) and its analogs to the kelch domain of keap1. FEBS J. 2021, 288, 1599–1613. [Google Scholar] [CrossRef] [PubMed]
- Bomprezzi, R. Dimethyl fumarate in the treatment of relapsing-remitting multiple sclerosis: An overview. Ther. Adv. Neurol. Disord. 2015, 8, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-N.; Zhang, Y.-J.; Wang, L.; Hong, S.-J.; Zhang, C.-L.; Zhao, X.-L.; Zeng, T. Nlrp3 inflammasome activation triggers severe inflammatory liver injury in n, n-dimethylformamide-exposed mice. Sci. Total Environ. 2024, 929, 172653. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Wang, Y.; Lei, K. Nrf2/ho-1 signaling activation alleviates cigarette smoke-induced inflammation in chronic obstructive pulmonary disease by suppressing nlrp3-mediated pyroptosis. J. Cardiothorac. Surg. 2024, 19, 58. [Google Scholar] [CrossRef]
- Dunnill, M.S. Quantitative methods in the study of pulmonary pathology. Thorax 1962, 17, 320–328. [Google Scholar] [CrossRef]
- Mercer, R.R.; Crapo, J.D. Spatial distribution of collagen and elastin fibers in the lungs. J. Appl. Physiol. 1990, 69, 756–765. [Google Scholar] [CrossRef]
- Barroso, M.V.; Cattani-Cavalieri, I.; de Brito-Gitirana, L.; Fautrel, A.; Lagente, V.; Schmidt, M.; Porto, L.C.; Romana-Souza, B.; Valença, S.S.; Lanzetti, M. Propolis reversed cigarette smoke-induced emphysema through macrophage alternative activation independent of nrf2. Bioorg. Med. Chem. 2017, 25, 5557–5568. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, A.O.P.; Pecli, E.S.C.; Anjos, F.F.D.; Quesnot, N.; Valenca, H.D.M.; Cattani-Cavalieri, I.; Brito-Gitirana, L.; Valenca, S.S.; Lanzetti, M. Diallyl disulfide prevents cigarette smoke-induced emphysema in mice. Pulm. Pharmacol. Ther. 2021, 69, 102053. [Google Scholar] [CrossRef]
- Kennedy-Feitosa, E.; Cattani-Cavalieri, I.; Barroso, M.V.; Romana-Souza, B.; Brito-Gitirana, L.; Valenca, S.S. Eucalyptol promotes lung repair in mice following cigarette smoke-induced emphysema. Phytomedicine 2019, 55, 70–79. [Google Scholar] [CrossRef]
- Lanzetti, M.; Lopes, A.A.; Ferreira, T.S.; de Moura, R.S.; Resende, A.C.; Porto, L.C.; Valenca, S.S. Mate tea ameliorates emphysema in cigarette smoke-exposed mice. Exp. Lung Res. 2011, 37, 246–257. [Google Scholar] [CrossRef]
- Posso, S.V.; Quesnot, N.; Moraes, J.A.; Brito-Gitirana, L.; Kennedy-Feitosa, E.; Barroso, M.V.; Porto, L.C.; Lanzetti, M.; Valença, S.S. At-rvd1 repairs mouse lung after cigarette smoke-induced emphysema via downregulation of oxidative stress by nrf2/keap1 pathway. Int. Immunopharmacol. 2018, 56, 330–338. [Google Scholar] [CrossRef]
- Brennan, M.S.; Matos, M.F.; Li, B.; Hronowski, X.; Gao, B.; Juhasz, P.; Rhodes, K.J.; Scannevin, R.H. Dimethyl fumarate and monoethyl fumarate exhibit differential effects on keap1, nrf2 activation, and glutathione depletion in vitro. PLoS ONE 2015, 10, e0120254. [Google Scholar] [CrossRef] [PubMed]
- Ha, C.M.; Park, S.; Choi, Y.K.; Jeong, J.Y.; Oh, C.J.; Bae, K.H.; Lee, S.J.; Kim, J.H.; Park, K.G.; Jun Do, Y.; et al. Activation of nrf2 by dimethyl fumarate improves vascular calcification. Vasc. Pharmacol 2014, 63, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Zhen, X.; Jindong, L.; Yang, Z.; Yashi, R.; Wei, G.; Wei, J.; Wei, Z.; Sudong, L. Activation of nrf2 pathway by dimethyl fumarate attenuates renal ischemia-reperfusion injury. Transplant. Proc. 2021, 53, 2133–2139. [Google Scholar] [CrossRef]
- Möller, M.N.; Denicola, A. Diffusion of peroxynitrite, its precursors, and derived reactive species, and the effect of cell membranes. Redox Biochem. Chem. 2024, 9, 100033. [Google Scholar] [CrossRef]
- Prolo, C.; Piacenza, L.; Radi, R. Peroxynitrite: A multifaceted oxidizing and nitrating metabolite. Curr. Opin. Chem. Biol. 2024, 80, 102459. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Uno, H.; Matsuba, K.; Hamachi, I. Profiling proteins involved in peroxynitrite homeostasis using ros/rns conditional proteomics. bioRxiv 2024. [Google Scholar] [CrossRef]
- Cattani-Cavalieri, I.; da Maia Valença, H.; Moraes, J.A.; Brito-Gitirana, L.; Romana-Souza, B.; Schmidt, M.; Valença, S.S. Dimethyl fumarate attenuates lung inflammation and oxidative stress induced by chronic exposure to diesel exhaust particles in mice. Int. J. Mol. Sci. 2020, 21, 9658. [Google Scholar] [CrossRef]
- Fang, H.; Wang, X.; Damarla, M.; Sun, R.; He, Q.; Li, R.; Luo, P.; Liu, J.O.; Xia, Z. Dimethyl fumarate protects against lipopolysaccharide- (lps-) induced sepsis through inhibition of nf-κb pathway in mice. Mediat. Inflamm. 2023, 2023, 5133505. [Google Scholar] [CrossRef]
- Grzegorzewska, A.P.; Seta, F.; Han, R.; Czajka, C.A.; Makino, K.; Stawski, L.; Isenberg, J.S.; Browning, J.L.; Trojanowska, M. Dimethyl fumarate ameliorates pulmonary arterial hypertension and lung fibrosis by targeting multiple pathways. Sci. Rep. 2017, 7, 41605. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Sandey, M.; Suryawanshi, A.; Cattley, R.C.; Mishra, A. Dimethyl fumarate abrogates dust mite-induced allergic asthma by altering dendritic cell function. Immun. Inflamm. Dis. 2019, 7, 201–213. [Google Scholar] [CrossRef]
- Reis, R.; Orak, D.; Yilmaz, D.; Cimen, H.; Sipahi, H. Modulation of cigarette smoke extract-induced human bronchial epithelial damage by eucalyptol and curcumin. Hum. Exp. Toxicol. 2021, 40, 1445–1462. [Google Scholar] [CrossRef]
- Iizuka, T.; Ishii, Y.; Itoh, K.; Kiwamoto, T.; Kimura, T.; Matsuno, Y.; Morishima, Y.; Hegab, A.E.; Homma, S.; Nomura, A.; et al. Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes Cells 2005, 10, 1113–1125. [Google Scholar] [CrossRef] [PubMed]
- Rangasamy, T.; Cho, C.Y.; Thimmulappa, R.K.; Zhen, L.; Srisuma, S.S.; Kensler, T.W.; Yamamoto, M.; Petrache, I.; Tuder, R.M.; Biswal, S. Genetic ablation of nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J. Clin. Investig. 2004, 114, 1248–1259. [Google Scholar] [CrossRef]
- Sohal, S.S.; Ward, C.; Danial, W.; Wood-Baker, R.; Walters, E.H. Recent advances in understanding inflammation and remodeling in the airways in chronic obstructive pulmonary disease. Expert Rev. Respir. Med. 2013, 7, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Lucey, E.C.; Keane, J.; Kuang, P.P.; Snider, G.L.; Goldstein, R.H. Severity of elastase-induced emphysema is decreased in tumor necrosis factor-alpha and interleukin-1beta receptor-deficient mice. Lab. Investig. 2002, 82, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Kensler, T.W.; Wakabayashi, N.; Biswal, S. Cell survival responses to environmental stresses via the keap1-nrf2-are pathway. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 89–116. [Google Scholar] [CrossRef]
- Reddy, N.M.; Potteti, H.R.; Mariani, T.J.; Biswal, S.; Reddy, S.P. Conditional deletion of nrf2 in airway epithelium exacerbates acute lung injury and impairs the resolution of inflammation. Am. J. Respir. Cell Mol. Biol. 2011, 45, 1161–1168. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, A.P.d.; Figueiredo-Junior, A.T.; Mineiro, P.C.d.O.; Mota, E.C.; Amorim, C.S.d.; Valenca, H.d.M.; Gomes, A.C.C.d.A.; Serra, S.S.d.S.; Silva, P.L.; Takiya, C.M.; et al. Modulation of Pulmonary Inflammation and the Redox Pathway In Vitro and In Vivo by Fumaric Ester. Antioxidants 2025, 14, 1141. https://doi.org/10.3390/antiox14091141
Oliveira APd, Figueiredo-Junior AT, Mineiro PCdO, Mota EC, Amorim CSd, Valenca HdM, Gomes ACCdA, Serra SSdS, Silva PL, Takiya CM, et al. Modulation of Pulmonary Inflammation and the Redox Pathway In Vitro and In Vivo by Fumaric Ester. Antioxidants. 2025; 14(9):1141. https://doi.org/10.3390/antiox14091141
Chicago/Turabian StyleOliveira, Aline Pontes de, Alexsandro Tavares Figueiredo-Junior, Priscilla Cristine de Oliveira Mineiro, Evelyn Caribé Mota, Carolinne Souza de Amorim, Helber da Maia Valenca, Aline Cristina Casimiro de Albuquerque Gomes, Sabrina Sodré de Souza Serra, Pedro Leme Silva, Christina Maeda Takiya, and et al. 2025. "Modulation of Pulmonary Inflammation and the Redox Pathway In Vitro and In Vivo by Fumaric Ester" Antioxidants 14, no. 9: 1141. https://doi.org/10.3390/antiox14091141
APA StyleOliveira, A. P. d., Figueiredo-Junior, A. T., Mineiro, P. C. d. O., Mota, E. C., Amorim, C. S. d., Valenca, H. d. M., Gomes, A. C. C. d. A., Serra, S. S. d. S., Silva, P. L., Takiya, C. M., Moraes, J. A. d., Valenca, S. S., & Lanzetti, M. (2025). Modulation of Pulmonary Inflammation and the Redox Pathway In Vitro and In Vivo by Fumaric Ester. Antioxidants, 14(9), 1141. https://doi.org/10.3390/antiox14091141