Ovary Metal Toxicity Remediation by Agro-Food Waste: Evidence for a Regulatory Mechanism of Oxidative Stress by Banana (Musa cavendish) Peel Extract
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Banana Peels Extracts
2.2. Analysis of the Phytochemical Component of the BP Sample by Gas Chromatography
2.3. Animals and Treatments
2.4. Sample Collection
2.5. Metal Analysis
2.6. Ovarian Oxidative and Antioxidative Stress Markers
2.7. Determination of Hormonal Profile Markers
2.8. Determination of Pro-Inflammatory Factors, Apoptotic and Transcriptional Factors
2.9. Histological Analysis
2.10. Statistical Analysis
3. Results
3.1. Heavy Metal Bioaccumulation in the Ovary of Albino Rat
3.2. Oxidative Stress Markers of Rats Treated with BP Extract Following HMM Exposure
3.3. Antioxidant Profile of Rats Treated with BP Extract Following HMM Exposure
3.4. Phytoconstituents in Banana Peel
3.5. Hormonal Profile in the Ovary of Rats Treated with BP Extract Following HMM Exposure
3.6. Banana (Musa cavendish) Peel Extract on Expression of Pro-Inflammatory Factors and Apoptotic and Transcriptional Factors in Male Albino Rat Testis Exposed to HMM
3.7. Banana (Musa cavendish) Peel Extract on Histological Profile of the Ovary of Rats Exposed to HMM
4. Discussion
4.1. Effect of Banana (Musa cavendish) Peel Extract on Bioaccumulation on Ovary Female Albino Rat Exposed to HMM
4.2. Banana (Musa cavendish) Peel Extract Affects Oxidative and Antioxidative Stress Biomarkers of Female Albino Rat Ovary Exposed to HMM
4.3. Effect of Banana (Musa cavendish) Peel Extract on Redox-Regulatory Mechanisms Expression of Female Albino Rat Ovary Exposed to HMM
4.4. Effect of Banana (Musa cavendish) Peel Extract on Hormonal Profile of the Female Albino Rat Ovary Exposed to HMM
4.5. Effect of Banana (Musa cavendish) Peel Extract on Histological Profile of the Female Albino Rat Ovary Exposed to HMM
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jomova, K.; Alomar, S.Y.; Nepovimova, E.; Kuca, K.; Valko, M. Heavy metals: Toxicity and human health effects. Arch. Toxicol. 2025, 99, 153–209. [Google Scholar] [CrossRef] [PubMed]
- Panda, B.P.; Mohanta, Y.K.; Parida, S.P.; Pradhan, A.; Mohanta, T.K.; Patowary, K.; Mahari, W.A.W.; Lam, S.S.; Ghfar, A.A.; Guerriero, G.; et al. Metal pollution in freshwater fish: A key indicator of contamination and carcinogenic risk to public health. Environ. Pollut. 2023, 330, 121796. [Google Scholar] [CrossRef]
- Adeogun, A.E.; Ogunleye, O.D.; Akhigbe, T.M.; Oyedokun, P.A.; Adegbola, C.A.L.; Saka, W.A.; Afolabi, O.A.; Akhigbe, R.E. Impact of arsenic on male and female reproductive function: A review of the pathophysiology and potential therapeutic strategies. Naunyn Schmiedebergs Arch. Pharmacol. 2025, 398, 1283–1297. [Google Scholar] [CrossRef]
- Piscopo, M.; Notariale, R.; Rabbito, D.; Ausió, J.; Olanrewaju, O.S.; Guerriero, G. Mytilus galloprovincialis (Lamarck, 1819) spermatozoa: hsp70 expression and protamine-like protein property studies. ESPR 2018, 25, 12957–12966. [Google Scholar] [CrossRef]
- Wu, K.; Chen, Y.; Huang, W. Combined molecular toxicity mechanism of heavy metals mixtures. In Toxicological Assessment of Combined Chemicals in the Environment; Wiley: New York, NY, USA, 2025; pp. 125–172. [Google Scholar] [CrossRef]
- Laoye, B.; Olagbemide, P.; Ogunnusi, T.; Akpor, O. Heavy metal contamination: Sources, health impacts, and sustainable mitigation strategies with insights from nigerian case studies. F1000Research 2025, 14, 134. [Google Scholar] [CrossRef]
- Guerriero, G.; D’Errico, G.; Di Giaimo, R.; Rabbito, D.; Olanrewaju, O.S.; Ciarcia, G. Reactive oxygen species and glutathione antioxidants in the testis of the soil biosentinel Podarcis sicula (Rafinesque 1810). Environ. Sci. Pollut. Res. 2018, 25, 18286–18296. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, W.; Wang, S.; Zhang, H.; Zhang, Y. Response of male reproductive function to environmental heavy metal pollution in a free-living passerine bird, Passer Montanus. Sci. Total Environ. 2020, 747, 141402. [Google Scholar] [CrossRef] [PubMed]
- Balali-Mood, M.; Eizadi-Mood, N.; Moghaddam, H.H.; Etemad, L.; Moshiri, M.; Vahabzadeh, M.; Sadeghi, M. Recent advances in the clinical management of intoxication by five heavy metals: Mercury, lead, chromium, cadmium and arsenic. Heliyon 2025, 11, e42696. [Google Scholar] [CrossRef]
- Bhardwaj, J.K.; Bikal, P.; Sachdeva, S.N. Cadmium as an ovarian toxicant: A review. J. Appl. Toxicol. 2024, 44, 129–147. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Gorain, B.; Choudhury, H.; Roychoudhury, S.; Sengupta, P. Environmental and occupational exposure of metals and female reproductive health. ESPR 2022, 29, 62067–62092. [Google Scholar] [CrossRef]
- Witkowska, D.; Słowik, J.; Chilicka, K. Heavy metals and human health: Possible exposure pathways and the competition for protein binding sites. Molecules 2021, 26, 6060. [Google Scholar] [CrossRef]
- Mititelu, M.; Neacșu, S.M.; Busnatu, Ș.S.; Scafa-Udriște, A.; Andronic, O.; Lăcraru, A.E.; Ioniță-Mîndrica, C.-B.; Lupuliasa, D.; Negrei, C.; Olteanu, G. Assessing heavy metal contamination in food: Implications for human health and environmental safety. Toxics 2025, 13, 333. [Google Scholar] [CrossRef]
- Fatima, G.; Raza, A.M.; Dhole, P. Heavy Metal Exposure and Its Health Implications: A Comprehensive Review. Indian J. Clin. Biochem. 2025, 1–29. [Google Scholar] [CrossRef]
- Islam, M.; Roy, D.; Singha, D. Metal Ion Toxicity in Human Body: Sources, Effects, Mechanisms and Detoxification Methods. CHAF 2025, 8, 1–19. [Google Scholar] [CrossRef]
- Ali, Z.; Sher, N.; Muhammad, I.; Nayab, G.E.; Alouffi, A.; Almutairi, M.M.; Khan, I.; Ali, A. The combined effect of cadmium and copper induces bioaccumulation, and toxicity and disrupts the antioxidant enzymatic activities of goldfish (Carassius auratus). Toxicol. Rep. 2025, 14, 101972. [Google Scholar] [CrossRef] [PubMed]
- Höfer, N.; Diel, P.; Wittsiepe, J.; Wilhelm, M.; Degen, G.H. Dose and route dependent hormonal activity of the metalloestrogen cadmium in the rat uterus. Toxicol. Lett. 2009, 191, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, X.; Wang, Y.; Fan, R.; Qiu, C.; Zhong, S. Effect of cadmium on cellular ultrastructure in mouse ovary. Ultrastruct. Pathol. 2015, 39, 324–328. [Google Scholar] [CrossRef]
- Srnovršnik, T.; Virant-Klun, I.; Pinter, B. Heavy metals and essential elements in association with oxidative stress in women with polycystic ovary syndrome—A systematic review. Antioxid 2023, 12, 1398. [Google Scholar] [CrossRef]
- He, Y.; Su, X.; Niu, Z.; Zhang, B.; Mu, H.; Wang, L.; Yao, Y.; Wang, X. Association Between Mixed Metal Exposures and Female Infertility: A Large Cross-sectional Study. IJER 2025, 19, 103. [Google Scholar] [CrossRef]
- Agarwal, A.; Aponte-Mellado, A.; Premkumar, B.J.; Shaman, A.; Gupta, S. The effects of oxidative stress on female reproduction: A review. Reprod. Biol. Endocrinol. 2012, 10, 49. [Google Scholar] [CrossRef]
- Luderer, U. Ovarian toxicity from reactive oxygen species. Vitam. Horm. 2014, 94, 99–127. [Google Scholar] [CrossRef]
- Flora, S.J.S.; Mittal, M.; Mehta, A. Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J. Med. Res. 2008, 128, 501–523. [Google Scholar]
- Mishra, K.P.; Singh, V.K.; Rani, R.; Yadav, V.S.; Chandran, V.; Srivastava, R.K.; Tripathi, P. Radiation-induced oxidative stress and its amelioration. J. Environ. Pathol. Toxicol. Oncol. 2014, 33, 331–347. [Google Scholar]
- Ozoani, H.A.; Orisakwe, O.E.; Parisi, C.; Assisi, L.; Ezejiofor, A.N.; Okolo, K.O.; Orish, C.N.; Vangone, R.; Sivieri, E.M.; Guerriero, G. Role of Anonychium africanum (plantae, Fabaceae) in metal Oxido-inflammatory response: Protection evidence in gonad of male albino rat. Antioxid 2024, 13, 1028. [Google Scholar] [CrossRef] [PubMed]
- Ruslee, S.S.; Zaid, S.S.M.; Bakrin, I.H.; Goh, Y.M.; Mustapha, N.M. Protective effect of Tualang honey against cadmium-induced morphological abnormalities and oxidative stress in the ovary of rats. CAM 2020, 20, 160. [Google Scholar] [CrossRef] [PubMed]
- Zaid, S.S.M.; Othman, S.; Kassim, N.M. Protective role of Ficus deltoidea against BPA-induced impairments of the follicular development, estrous cycle, gonadotropin and sex steroid hormones level of prepubertal rats. J. Ovarian Res. 2018, 11, 99. [Google Scholar] [CrossRef]
- Haseeb, A.; Naz, S.; Satti, S.; Khan, R.U.; Asad, F.; Alrefaei, A.F.; Almutairi, M.H.; Momand, N.K.; Ibiwoye, D.I. Comparative impact of selenium sources and doses on sexual behaviour, productivity and gonadal bioaccumulation in Coturnix coturnix japonica. J. Appl. Anim. Res. 2025, 53, 2475919. [Google Scholar] [CrossRef]
- Ekaye, S.O.; Uwagie-Ero, E.A.; Odigie, E.A.; Aghayedo, C.O. Protective effect of shea oil on the ovary of albino rats intoxicated with refinery effluents. Anim. Res. Int. 2018, 15. [Google Scholar]
- Salehi, B.; Mishra, A.P.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.V.T.; Martins, N.; Sharifi-Rad, J. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines 2018, 6, 91. [Google Scholar] [CrossRef]
- Anyachor, C.P.; Orisakwe, O.E.; Orish, C.N.; Parisi, C.; Vangone, R.; Guerretti, V.; Assisi, L.; Ajibo, D.N.; Dooka, B.D.; Ezealisiji, K.M.; et al. Testis metal toxicity remediation by agro-food waste: Evidence of a protective effect of melon seed husk extract Cucumeropsis mannii silica nanoparticles on gonadotropin and sex steroid hormones. Environ. Sci. Pollut Res 2025, 32, 6172–6184. [Google Scholar] [CrossRef]
- Gouw, V.P.; Jung, J.; Zhao, Y. Functional properties, bioactive compounds, and in vitro health benefits of banana peel: A review. Food Rev. Int. 2021, 37, 125–135. [Google Scholar]
- Edenta, C.; James, D.B.; Owolabi, O.A.; Okoduwa, S.I.R. Hypolipidemic effects of aqueous extract of three Cultivars of Musa sapientum fruit peel on poloxamer-407 induced hyperlipidemic wistar rats. Int. J. Pharm. Sci. Res. 2014, 5, 1046–1051. [Google Scholar]
- Eddie-Amadi, B.F.; Ezejiofor, A.N.; Orish, C.N.; Rovira, J.; Allison, T.A.; Orisakwe, E.O. Banana peel ameliorated hepato-renal damage and exerted anti-inflammatory and anti-apoptotic effects in metal mixture mediated hepatic nephropathy by activation of Nrf2/Hmox-1 and inhibition of Nfkb pathway. Food Chem. Toxicol. 2022, 170, 113471. [Google Scholar] [CrossRef] [PubMed]
- Akamine, K.; Tomoyuki, K.; Kazunaga, Y. Banana peel extract suppressed prostate gland enlargement in testosterone-treated mice. Biosci. Biotechnol. Biochem. 2009, 73, 1911–1914. [Google Scholar] [CrossRef]
- Hill, A.D.; Patterson, K.Y.; Veillon, C.; Morris, E.R. Digestion of bio logical materials for mineral analyses using a combination of wet and dry ashing. Anal. Chem. 1986, 58, 2340–2342. [Google Scholar] [CrossRef]
- Anyachor, C.P.; Orish, C.N.; Ezejiofor, A.N.; Cirovic, A.; Cirovic, A.; Ezealisiji, K.M.; Orisakwe, O.E. Nickel and aluminium mixture elicit memory impairment by activation of oxidative stress, COX-2, and diminution of AChE, BDNF and NGF levels in cerebral cortex and hippocampus of male albino rats. Curr. Res. Toxicol. 2023, 5, 100129. [Google Scholar] [CrossRef]
- Guerriero, G.; DiFinizio, A.; Ciarcia, G. Stress-Induced Changes of Plasma Antioxidants in Aquacultured Sea Bass, Dicentrarchus labrax. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2002, 132, 205–211. [Google Scholar] [CrossRef]
- Thakur, S.; Chandra, A.; Kumar, V.; Bharti, S. Environmental Pollutants: Endocrine Disruptors/Pesticides/Reactive Dyes and Inorganic Toxic Compounds Metals, Radionuclides, and Metalloids and Their Impact on the Ecosystem. In Biotechnology for Environmental Sustainability; Springer: Singapore, 2025; pp. 55–100. [Google Scholar] [CrossRef]
- Khaksar, M.R.; Dehchenari, R.A.; Ghafuri, Y. Characterization and Toxicity Mechanism of Environmental Risk Factors (Heavy Metals) and Reproductive Health: A Review Paper. J. Chem. Health Risks 2025, 15, 221. [Google Scholar] [CrossRef]
- Virtuoso, S.; Raggi, C.; Maugliani, A.; Baldi, F.; Gentili, D.; Narciso, L. Toxicological effects of naturally occurring endocrine disruptors on various human health targets: A rapid review. Toxics 2024, 12, 256. [Google Scholar] [CrossRef]
- Ezejiofor, A.N.; Orisakwe, O.E. Evaluation of Protective Effect of Aqueous Leave Extract of Costus afer onFemale Albino Wistar Rats Exposed to Lead Acetate. EC Pharm Tox. 2017, 42, 75–92. [Google Scholar] [CrossRef]
- Anyanwu, B.O.; Orish, C.N.; Ezejiofor, A.N.; Nwaogazie, I.F.; Orisakwe, O.E. Neuroprotective effect of Costus afer on low dose heavy metal mixture (lead, cadmium and mercury) induced neurotoxicity via antioxidant, anti-inflammatory activities. Toxicol. Rep. 2020, 7, 1032–1038. [Google Scholar] [CrossRef]
- Nkpaa, K.W.; Amadi, B.A.; Awogbindin, I.O.; Abolaji, A.O.; Adedara, I.A.; Wegwu, M.O.; Farombi, E.O. Ethanol exacerbates manganese—Induced neurobehavioral defcits, striatal oxidative stress and apoptosis via regulation of p53, caspase-3 and Bax/Bcl-2 ratio-dependent pathway in rat striatum. Biol. Trace Elem. Res. 2018, 191, 135–148. [Google Scholar] [CrossRef]
- Fan, Y.; Jiang, X.; Xiao, Y.; Li, H.; Chen, J.; Bai, W. Natural antioxidants mitigate heavy metal induced reproductive toxicity: Prospective mechanisms and biomarkers. Crit. Rev. Food Sci. Nutr. 2024, 64, 11530–11542. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch. Toxicol. 2024, 98, 1323–1367. [Google Scholar] [CrossRef]
- Xiao, C.L.; Lai, H.T.; Zhou, J.J.; Liu, W.Y.; Zhao, M.; Zhao, K. Nrf2 signaling pathway: Focus on oxidative stress in spinal cord injury. Mol. Neurobiol. 2025, 62, 2230–2249. [Google Scholar] [CrossRef]
- Guerriero, G.; Di Finizio, A.; Ciarcia, G. Oxidative defenses in the sea bass, Dicentrarchus labrax. In Oxygen Transport to Tissue XXIV; Springer: Berlin/Heidelberg, Germany, 2003; pp. 681–688. [Google Scholar] [CrossRef]
- Dutta, S.; Sengupta, P.; Izuka, E.; Menuba, I.; Nwagha, U. Oxidative and nitrosative stress and female reproduction: Roles of oxidants and antioxidants. J. Integr. Sci. Technol. 2024, 12, 754. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, C.; Wang, Z. Therapeutic effects and molecular mechanism of chlorogenic acid on polycystic ovarian syndrome: Role of HIF-1alpha. Nutrients 2023, 15, 2833. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhao, G.; Orsulic, S.; Matei, D. Metabolic dependencies and targets in ovarian cancer. Pharmacol Ther. 2023, 245, 108413. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Li, Y.; Shi, L.; Hussain, R.; Mehmood, K.; Tang, Z.; Zhang, H. Heavy metals induced mitochondrial dysfunction in animals: Molecular mechanism of toxicity. Toxicology 2022, 469, 153136. [Google Scholar] [CrossRef] [PubMed]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef] [PubMed]
- Al-Ani, N.K.; Al-Kawaz, U.; Saeed, B.T. Protective Influence of Zinc on Reproductive Parameters in Male Rat Treated with Cadmium. Am. J. Med. Sci. 2015, 5, 73–81. [Google Scholar] [CrossRef]
- Jamshidi, Z.; Roohbakhsh, A.; Karimi, G. An overview on the protective effects of ellagic acid against heavy metals, drugs, and chemicals. Food Sci. Nutr. 2023, 11, 7469–7484. [Google Scholar] [CrossRef] [PubMed]
- Puraikalan, Y. Characterization of proximate, phytochemical and antioxidant analysis of banana (Musa sapientum) peels/skins and objective evaluation of ready to eat/cook product made with banana peels. Curr. Res. Nutr. Food Sci. 2018, 6, 382–391. [Google Scholar] [CrossRef]
- Meng, T.; Xiao, D.; Muhammed, A.; Deng, J.; Chen, L.; He, J. Anti- Inflammatory Action and Mechanisms of Resveratrol. Molecules 2021, 26, 229. [Google Scholar] [CrossRef]
- Mattioli, V.; Zanolin, M.E.; Cazzoletti, L.; Bono, R.; Cerveri, I.; Ferrari, M.; Pirina, P.; Garcia-Larsen, V. Dietary flavonoids and respiratory diseases: A population-based multi-case–control study in Italian adults. Public Health Nutr. 2020, 23, 2548–2556. [Google Scholar] [CrossRef]
- Gupta, G.; Saxena, S.; Baranwal, M.; Reddy, M.S. In vitro evaluation of bioactive properties of banana sap. Biologia 2022, 77, 2989–3000. [Google Scholar] [CrossRef]
- Nisar, A.; Jagtap, S.; Vyavahare, S.; Deshpande, M.; Harsulkar, A.; Ranjekar, P.; Prakash, O. Phytochemicals in the treatment of inflammation-associated diseases: The journey from preclinical trials to clinical practice. Front. Pharmacol. 2023, 14, 1177050. [Google Scholar] [CrossRef]
- Arijit, M.; Banerjee, S.; Bose, S.; Das, P.P.; Sandberg, E.N.; Atanasov, A.G.; Bishayee, A. Cancer preventive and therapeutic potential of banana and its bioactive constituents: A systematic, comprehensive, and mechanistic review. Front. Oncol. 2021, 11, 697143. [Google Scholar] [CrossRef]
- Ashka, F.; Dubey, P.K.; Kumar, S.; Dubey, P. Banana Peels as Bioactive Ingredient Systematic Review of Nutritional and Pharmacological Attributes. JFCN 2023, 9, 577–587. [Google Scholar] [CrossRef]
- Parisi, C.; Guerriero, G. Antioxidative Defense and Fertility Ratein the Assessment of Reprotoxcity Risk Posed by Global Warming. Antioxid 2019, 8, 622. [Google Scholar] [CrossRef]
- Ashoka, G.B.; Manchanahally, B.S. Antibacterial, antioxidant, and anticancer activities of Penicillium citrinum Thom. endophytic in Jatropha heynei. J. Appl. Pharm. Sci. 2023, 13, 196–207. [Google Scholar] [CrossRef]
- Khan, A.; Chen, H.; Wan, X.; Tania, M.; Xu, A.; Chen, F.; Zhang, D. Regulatory effects of resveratrol on antioxidant enzymes: A mechanism of growth inhibition and apoptosis induction in cancer cells. Mol. Cells 2013, 35, 219–225. [Google Scholar] [CrossRef]
- Sedlak, L.; Wojnar, W.; Zych, M.; Wyględowska-Promieńska, D.; Mrukwa-Kominek, E.; Kaczmarczyk-Sedlak, I. Effect of Resveratrol, a Dietary-Derived Polyphenol, on the Oxidative Stress and Polyol Pathway in the Lens of Rats with Streptozotocin-Induced Diabetes. Nutrients 2018, 10, 1423. [Google Scholar] [CrossRef]
- Banu, S.K.; Stanley, J.A.; Sivakumar, K.K.; Arosh, J.A.; Burghardt, R.C. Resveratrol protects the ovary against chromium-toxicity by enhancing endogenous antioxidant enzymes and inhibiting metabolic clearance of estradiol. Toxicol. Appl. Pharmacol. 2016, 303, 65–78. [Google Scholar] [CrossRef]
- Maleki, M.H.; Omidi, F.; Javanshir, Z.; Bagheri, M.; Tanhadoroodzani, Z.; Dastghaib, S.; Shams, M.; Akbari, M.; Dastghaib, S. β-Hydroxybutyrate and melatonin suppress maladaptive UPR, excessive autophagy and pyroptosis in Aβ 1–42 and LPS-Induced SH-SY5Y cells. Mol. Biol. Rep. 2024, 51, 802. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Ma, W.; Zhang, D.; Tian, Z.; Yang, Y.; Huang, Y.; Hong, Y. Application of Natural Antioxidants as Feed Additives in Aquaculture: A Review. Biology 2025, 14, 87. [Google Scholar] [CrossRef]
- Park, J.; Kil, Y.S.; Ryoo, G.H.; Jin, C.H.; Hong, M.J.; Kim, J.B.; Jung, C.H.; Nam, J.W.; Han, A.R. Phytochemical profile and anti-inflammatory activity of the hull of γ-irradiated wheat mutant lines (Triticum aestivum L.). Front. Nutr. 2023, 10, 1334344. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, K.; Hu, L. Advancements in delivery systems for dietary polyphenols in enhancing radioprotection effects: Challenges and opportunities. npj Sci. Food 2025, 9, 51. [Google Scholar] [CrossRef]
- Khan, H.; Ullah, H.; Castilho, P.C.M.F.; Gomila, A.S.; D’Onofrio, G.; Filosa, R.; Wang, F.; Nabavi, S.M.; Daglia, M.; Sanchez Silva, A.; et al. Targeting NF-κB signaling pathway in cancer by dietary polyphenols. Crit. Rev. Food Sci. Nutr. 2020, 60, 2790–2800. [Google Scholar] [CrossRef]
- Aqil, F.; Munagala, R.; Agrawal, A.K.; Jeyabalan, J.; Tyagi, N.; Rai, S.N.; Gupta, R.C. Anthocyanidins inhibit growth and chemosensitize triple-negative breast cancer via the NF-κB signaling pathway. Cancers 2021, 13, 6248. [Google Scholar] [CrossRef] [PubMed]
- Umahi-Ottah, G.; Obafemi, F.A. A review of the effect of fertility agents (Herbs and drugs) on the hypothalamus. WJARR 2023, 19, 705–718. [Google Scholar] [CrossRef]
- Cote, B.; Elbarbry, F.; Bui, F.; Su, J.W.; Seo, K.; Nguyen, A.; Lee, M.; Rao, D.A. Mechanistic Basis for the Role of Phytochemicals in Inflammation-Associated Chronic Diseases. Molecules 2022, 27, 781. [Google Scholar] [CrossRef]
- Akanda, M.d.R.; Kim, M.J.; Kim, I.S.; Ahn, D.; Tae, H.J.; Rahman, M.M.; Park, Y.G.; Seol, J.W.; Nam, h.h.; Choo, B.K.; et al. Neuroprotective effects of Sigesbeckia pubescens extract on glutamate-induced oxidative stress in HT22 cells via downregulation of MAPK/caspase-3 pathways. Cell. Mol. Neurobiol. 2018, 38, 497–505. [Google Scholar] [CrossRef]
- Alzokaky, A.A.; Al-Karmalawy, A.A.; Saleh, M.A.; Abdo, W.; Farage, A.E.; Belal, A.; Abourehab, M.A.; Antar, S.A. Metformin ameliorates doxorubicin-induced cardiotoxicity targeting HMGB1/TLR4/NLRP3 signaling pathway in mice. Life Sci. 2023, 316, 121390. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Bartosz, G. Prevention of protein glycation by natural compounds. Molecules 2015, 20, 3309–3334. [Google Scholar] [CrossRef]
- Yazdani, J.; Dehzad, M.J.; Ommati, M.M.; Heidari, R.; Arabnezhad, M.R.; Hejazi, N.; Ahmadi, A. The Effect of Banana (Musa nana Lour.) Peel Extract and Omega-3 on Biochemical and Histopathological Characteritics in Rat Model of Polycystic Ovary Syndrome. Int. J. Nutr. Sci. 2025, 10, 81–91. [Google Scholar] [CrossRef]
- Taiwo, A.M.; Ige, S.O.; Babalola, O.O. Assessments of possible gonadotoxic effect of lead on experimental male rabbits. Glob. Vet. 2010, 5, 282–286. [Google Scholar]
- Biswas, N.M.; Ghosh, P.K. Protection of adrenal and male gonadal functions by androgen in lead-treated rats. Kathmandu Univ. Med. J. 2006, 14, 1218–1221. [Google Scholar]
- Daku, A.B.; Salisu, A.I. Age-related effects of lead poisoning on sex hormones in adult male Wistar rats. J. Physiol. Pathophysiol. 2016, 7, 23–27. [Google Scholar] [CrossRef]
- Riaz, F.; Khan, U.A.; Ayub, M.; Shaukat, S. Protective role of ginger on lead induced derangement in plasma testosterone and LH levels of male sprague dawley rats. JAMC 2011, 23, 24–27. [Google Scholar]
- El-Sayed, Y.S.; El-Neweshy, M.S. Impact of lead toxicity on male rat reproduction at “hormonal and histopathological levels”. Toxicol. Environ. Chem. 2010, 92, 765–774. [Google Scholar] [CrossRef]
- Gakunga, N.J.; Mugisha, K.; Owiny, D.; Waako, P. Effects of Crude Aqueous Leaf Extracts of Citropsis Articulata and Mystroxylon Aethiopicum on Sex Hormone Levels In Male Albino Rats. IJPS 2014, 3, 5–17. [Google Scholar]
- Gerriero, G.; Ferro, R.; Ciarcia, G. Correlations between plasma levels of sex steroids and spermatogenesis during the sexual cycle of the chub, Leuciscus cephalus L. (Pisces: Cyprinidae). Zool. Stud. 2005, 44, 228. [Google Scholar]
- Guerriero, G. Seasonal steroids variations and maturity stages in the female chub, Leuciscus cephalus L.(Pisces, Cyprinidae). Ital. J. Zool. 2007, 74, 317–324. [Google Scholar] [CrossRef]
- Guerriero, G.; Prins, G.S.; Birch, L.; Ciarcia, G. Neurodistribution of androgen receptor immunoreactivity in the male frog, Rana esculenta. Ann. N. Y. Acad. Sci. 2005, 1040, 332–336. [Google Scholar] [CrossRef] [PubMed]
Group | Treatment |
---|---|
Group 1 (Control) | Standard diet and deionized water only. |
Group 2 (Toxicity Control) | Metal mixture: Pb, (20 mg/kg), Hg (0.40 mg/kg), Mn (0.560 mg/kg) and Al (35 mg/kg) |
Group 3 | Treated with 200 mg/kg banana peel extract + metal mixture |
Group 4 | Treated with 400 mg/kg banana peel extract + metal mixture |
Group 5 | Treated with 800 mg/kg banana peel extract + metal mixture |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eddie-Amadi, B.F.; Vangone, R.; Guerretti, V.; Ozoani, H.A.; Okolo, K.O.; Awolayeofori, D.; Odinga-Israel, T.-B.; Nkpaa, K.W.; Sivieri, E.M.; Orisakwe, O.E.; et al. Ovary Metal Toxicity Remediation by Agro-Food Waste: Evidence for a Regulatory Mechanism of Oxidative Stress by Banana (Musa cavendish) Peel Extract. Antioxidants 2025, 14, 1129. https://doi.org/10.3390/antiox14091129
Eddie-Amadi BF, Vangone R, Guerretti V, Ozoani HA, Okolo KO, Awolayeofori D, Odinga-Israel T-B, Nkpaa KW, Sivieri EM, Orisakwe OE, et al. Ovary Metal Toxicity Remediation by Agro-Food Waste: Evidence for a Regulatory Mechanism of Oxidative Stress by Banana (Musa cavendish) Peel Extract. Antioxidants. 2025; 14(9):1129. https://doi.org/10.3390/antiox14091129
Chicago/Turabian StyleEddie-Amadi, Boma F., Rubina Vangone, Valeria Guerretti, Harrison A. Ozoani, Kenneth O. Okolo, Dokubo Awolayeofori, Tamuno-Boma Odinga-Israel, Kpobari W. Nkpaa, Emidio M. Sivieri, Orish E. Orisakwe, and et al. 2025. "Ovary Metal Toxicity Remediation by Agro-Food Waste: Evidence for a Regulatory Mechanism of Oxidative Stress by Banana (Musa cavendish) Peel Extract" Antioxidants 14, no. 9: 1129. https://doi.org/10.3390/antiox14091129
APA StyleEddie-Amadi, B. F., Vangone, R., Guerretti, V., Ozoani, H. A., Okolo, K. O., Awolayeofori, D., Odinga-Israel, T.-B., Nkpaa, K. W., Sivieri, E. M., Orisakwe, O. E., & Guerriero, G. (2025). Ovary Metal Toxicity Remediation by Agro-Food Waste: Evidence for a Regulatory Mechanism of Oxidative Stress by Banana (Musa cavendish) Peel Extract. Antioxidants, 14(9), 1129. https://doi.org/10.3390/antiox14091129