Emerging and Versatile Non-Mammalian Model Organisms for Studying the In Vivo Antioxidant Properties of Food-Derived Bioactive Compounds
Abstract
1. Introduction
2. Conventional Methods and Models for Evaluating Antioxidant Activity
2.1. Chemical In Vitro Methods
2.2. Computational In Silico Models
2.3. Conventional In Vivo Models
3. Emerging Models for Evaluating the Antioxidant Activity of Bioactive Compounds
3.1. Model Systems Using Unicellular Microorganisms
3.2. Model Systems Using Non-Mammalian Multicellular Organisms
Unicellular Microorganism Used | Experimental Model for Oxidative Stress | Bioactive Compounds | Evaluation, Biomarkers, and/or Use of the Model | References |
Saccharomyces cerevisiae | Hydrogen peroxide, cadmium, and carbon tetrachloride | Hyperoside (quercetin-3-O-galactoside), galactan (microbial exo-polysaccharide), plant essential oils, onion extract (Allium cepa L.), Iberian ham extracts rich in fatty acids and polyphenols |
| [66,67,69,70,72] |
Escherichia coli | Hydrogen peroxide | Fruit, vegetable, and plant extracts (Eucommia ulmoides Oliv., Potentilla fruticosa y Ginkgo biloba) |
| [64,68,71] |
Multicellular Organism Used | Experimental Model for Oxidative Stress | Bioactive Compounds | Evaluation, Biomarkers, and/or Use of the Model | References |
Caenorhabditis elegans | Thermal treatment (>35 °C, <5 h), paraquat (herbicide), hydrogen peroxide, tert-Butyl hydroperoxide | Extracts of blueberry (Vaccinium myrtillus L.), chive (Allium macrostemon Bunge), red algae (Agarophyton chilense), and herb Artemisia argyi; bioactive peptides derived from edible crickets (Gryllodes sigillatus); fermented beverage based on kiwi and pitahaya juices; canary seed (Phalaris canariensis L.) peptides |
| [76,81,82,84,86,87,88] |
Drosophila melanogaster | Hydrogen peroxide, paraquat (herbicide), heat stress (>30 °C), high-sugar diet | Hemp seed oil (Cannabis sativa L.), fucoidan polysaccharide (Sargassum fusiforme), blueberry extracts (Vaccinium myrtillus L.) and amaranth leaf extracts (Amaranthus dubius), bioactive peptides derived from rice |
| [77,79,80,83,91] |
Danio rerio | Dimethyl phthalate, copper sulfate, scopolamine | Ginger roots (Zingiber officinale Roscoe), rice bran oil, mango peel extract (Mangifera indica cv. Ataulfo), essential oil of Angelica purpurascens Gilli., apple cider vinegar |
| [75,85,92,93] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Griel, A.E.; Etherton, T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 2002, 113, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Banwo, K.; Olojede, A.O.; Adesulu-Dahunsi, A.T.; Verma, D.K.; Thakur, M.; Tripathy, S.; Singh, S.; Patel, A.R.; Gupta, A.K.; Aguilar, C.N.; et al. Functional importance of bioactive compounds of foods with potential health benefits: A review on recent trends. Food Biosci. 2021, 43, 101320. [Google Scholar] [CrossRef]
- Sorrenti, V.; Burò, I.; Consoli, V.; Vanella, L. Recent advances in health benefits of bioactive compounds from food wastes and by-products: Biochemical aspects. Int. J. Mol. Sci. 2023, 24, 2019. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Mohamed, A.A.; Mohamed, H.I.; Ramadan, K.M.A.; Barqawi, A.A.; Mansour, A.T. Phytochemical and potential properties of seaweeds and their recent applications: A review. Mar. Drugs 2022, 20, 342. [Google Scholar] [CrossRef]
- Poljsak, B.; Kovač, V.; Milisav, I. Antioxidants, food processing and health. Antioxidants 2021, 10, 433. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Hossain, R.; Herrera-Bravo, J.; Islam, M.T.; Atolani, O.; Adeyemi, O.S.; Owolodun, O.A.; Kambizi, L.; Daştan, S.D.; Calina, D.; et al. Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update. Food Sci. Nutr. 2023, 11, 1657–1670. [Google Scholar] [CrossRef]
- Sies, H.; Belousov, V.V.; Chandel, N.S.; Davies, M.J.; Jones, D.P.; Mann, G.E.; Murphy, M.P.; Yamamoto, M.; Winterbourn, C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 2022, 23, 499–515. [Google Scholar] [CrossRef]
- Parcheta, M.; Świsłocka, R.; Orzechowska, S.; Akimowicz, M.; Choińska, R.; Lewandowski, W. Recent developments in effective antioxidants: The structure and antioxidant properties. Materials 2021, 14, 1984. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Understanding mechanisms of antioxidant action in health and disease. Nat. Rev. Mol. Cell Biol. 2024, 25, 13–33. [Google Scholar] [CrossRef]
- Gugliandolo, A.; Bramanti, P.; Mazzon, E. Activation of Nrf2 by natural bioactive compounds: A promising approach for stroke? Int. J. Mol. Sci. 2020, 21, 4875. [Google Scholar] [CrossRef]
- Thiruvengadam, M.; Venkidasamy, B.; Subramanian, U.; Samynathan, R.; Ali Shariati, M.; Rebezov, M.; Girish, S.; Thangavel, S.; Dhanapal, A.R.; Fedoseeva, N.; et al. Bioactive compounds in oxidative stress-mediated diseases: Targeting the NRF2/ARE signaling pathway and epigenetic regulation. Antioxidants 2021, 10, 1859. [Google Scholar] [CrossRef]
- Kciuk, M.; Marciniak, B.; Mojzych, M.; Kontek, R. Focus on UV-induced DNA damage and repair—Disease relevance and protective strategies. Int. J. Mol. Sci. 2020, 21, 7264. [Google Scholar] [CrossRef]
- Zavadskiy, S.; Sologova, S.; Moldogazieva, N. Oxidative distress in aging and age-related diseases: Spatiotemporal dysregulation of protein oxidation and degradation. Biochimie 2022, 195, 114–134. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.; Gevezova, M.; Sarafian, V.; Maes, M. Redox regulation of the immune response. Cell. Mol. Immunol. 2022, 19, 1079–1101. [Google Scholar] [CrossRef] [PubMed]
- Basak, S.; Gokhale, J. Immunity boosting nutraceuticals: Current trends and challenges. J. Food Biochem. 2022, 46, e13902. [Google Scholar] [CrossRef]
- Mucha, P.; Skoczyńska, A.; Małecka, M.; Hikisz, P.; Budzisz, E. Overview of the antioxidant and anti-inflammatory activities of selected plant compounds and their metal ions complexes. Molecules 2021, 26, 4886. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.E.; Liceaga, A.M. Cellular antioxidant effect of bioactive peptides and molecular mechanisms underlying: Beyond chemical properties. Int. J. Food Sci. Technol. 2021, 56, 2193–2204. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Amorati, R.; Valgimigli, L. Methods to measure the antioxidant activity of phytochemicals and plant extracts. J. Agric. Food Chem. 2018, 66, 3324–3329. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.B.L.; Lim, Y.Y. Critical analysis of current methods for assessing the in vitro antioxidant and antibacterial activity of plant extracts. Food Chem. 2015, 172, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Akar, Z.; Küçük, M.; Doğan, H. A new colorimetric DPPH• scavenging activity method with no need for a spectrophotometer applied on synthetic and natural antioxidants and medicinal herbs. J. Enzym. Inhib. Med. Chem. 2017, 32, 640–647. [Google Scholar] [CrossRef]
- Gulcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef]
- Lauritano, C.; Montuori, E.; De Falco, G.; Carrella, S. In silico methodologies to improve antioxidants’ characterization from marine organisms. Antioxidants 2023, 12, 710. [Google Scholar] [CrossRef] [PubMed]
- Tonolo, F.; Grinzato, A.; Bindoli, A.; Rigobello, M.P. From in silico to a cellular model: Molecular docking approach to evaluate antioxidant bioactive peptides. Antioxidants 2023, 12, 665. [Google Scholar] [CrossRef]
- Schilter, O.; Schwaller, P.; Laino, T. Balancing computational chemistry’s potential with its environmental impact. Green Chem. 2024, 26, 8669–8679. [Google Scholar] [CrossRef]
- Flora, S.J.S. Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative Med. Cell. Longev. 2009, 2, 873634. [Google Scholar] [CrossRef]
- Ghironi, S.; Viganò, E.L.; Selvestrel, G.; Benfenati, E. QSAR models for predicting the antioxidant potential of chemical substances. J. Xenobiotics 2025, 15, 80. [Google Scholar] [CrossRef]
- Joshi, T.; Sehgal, H.; Puri, S.; Karnika; Mahapatra, T.; Joshi, M.; Deepa, P.R.; Sharma, P.K. ML-based technologies in sustainable agro-food production and beyond: Tapping the (semi) arid landscape for bioactives-based product development. J. Agric. Food Res. 2024, 18, 101350. [Google Scholar] [CrossRef]
- Muratov, E.N.; Bajorath, J.; Sheridan, R.P.; Tetko, I.V.; Filimonov, D.; Poroikov, V.; Oprea, T.I.; Baskin, I.I.; Varnek, A.; Roitberg, A.; et al. QSAR without borders. Chem. Soc. Rev. 2020, 49, 3525–3564. [Google Scholar] [CrossRef]
- Tropsha, A. Best practices for QSAR model development, validation, and exploitation. Mol. Inform. 2010, 29, 476–488. [Google Scholar] [CrossRef] [PubMed]
- Barba-Ostria, C.; Carrera-Pacheco, S.E.; Gonzalez-Pastor, R.; Heredia-Moya, J.; Mayorga-Ramos, A.; Rodríguez-Pólit, C.; Zúñiga-Miranda, J.; Arias-Almeida, B.; Guamán, L.P. Evaluation of biological activity of natural compounds: Current trends and methods. Molecules 2022, 27, 4490. [Google Scholar] [CrossRef]
- Agarwal, S.; Mehrotra, R. An overview of molecular docking. JSM Chem. 2016, 4, 1024. [Google Scholar]
- Nayab, R.S.; Maddila, S.; Krishna, M.P.; Titinchi, S.J.J.; Thaslim, B.S.; Chintha, V.; Wudayagiri, R.; Nagam, V.; Tartte, V.; Chinnam, S.; et al. In silico molecular docking and in vitro antioxidant activity studies of novel α-aminophosphonates bearing 6-amino-1,3-dimethyl uracil. J. Recept. Signal Transduct. 2020, 40, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Narsinghani, T.; Sharma, M.C.; Bhargav, S. Synthesis, docking studies and antioxidant activity of some chalcone and aurone derivatives. Med. Chem. Res. 2013, 22, 4059–4068. [Google Scholar] [CrossRef]
- Guedes, L.; Reis, P.B.P.S.; Machuqueiro, M.; Ressaissi, A.; Pacheco, R.; Serralheiro, M.L. Bioactivities of Centaurium erythraea (Gentianaceae) decoctions: Antioxidant activity, enzyme inhibition and docking studies. Molecules 2019, 24, 3795. [Google Scholar] [CrossRef]
- Shalaby, M.A.; Fahim, A.M.; Rizk, S.A. Microwave-assisted synthesis, antioxidant activity, docking simulation, and DFT analysis of different heterocyclic compounds. Sci. Rep. 2023, 13, 4999. [Google Scholar] [CrossRef]
- Al-Salahi, R.; Taie, H.A.A.; Bakheit, A.H.; Marzouk, M.; Almehizia, A.A.; Herqash, R.; Abuelizz, H.A. Antioxidant activities and molecular docking of 2-thioxobenzo[g]quinazoline derivatives. Pharmacol. Rep. 2019, 71, 695–700. [Google Scholar] [CrossRef]
- Farouk, A.; Mohsen, M.; Ali, H.; Shaaban, H.; Albaridi, N. Antioxidant activity and molecular docking study of volatile constituents from different aromatic Lamiaceous plants cultivated in Madinah Monawara, Saudi Arabia. Molecules 2021, 26, 4145. [Google Scholar] [CrossRef]
- Shehab, W.S.; Abdelaziz, M.; Elhoseni, N.K.R.; Assy, M.G.; Abdellattif, M.H.; Hamed, E.O. Design, synthesis, molecular docking, and evaluation antioxidant and antimicrobial activities for novel 3-Phenylimidazolidin-4-One and 2-Aminothiazol-4-One derivatives. Molecules 2022, 27, 767. [Google Scholar] [CrossRef]
- Tu, W.; Wang, H.; Li, S.; Liu, Q.; Sha, H. The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging Dis. 2019, 10, 637–651. [Google Scholar] [CrossRef]
- Mooney, C.; Haslam, N.J.; Pollastri, G.; Shields, D.C. Towards the improved discovery and design of functional peptides: Common features of diverse classes permit generalized prediction of bioactivity. PLoS ONE 2012, 7, e45012. [Google Scholar] [CrossRef]
- Mudgil, P.; Kamal, H.; Yuen, G.C.; Maqsood, S. Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates. Food Chem. 2018, 259, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela Zamudio, F.; Hidalgo-Figueroa, S.N.; Ortíz Andrade, R.R.; Hernández Álvarez, A.J.; Segura Campos, M.R. Identification of antidiabetic peptides derived from in silico hydrolysis of three ancient grains: Amaranth, Quinoa and Chia. Food Chem. 2022, 394, 133479. [Google Scholar] [CrossRef] [PubMed]
- Su, N.; Yi, L.; He, J.; Ming, L.; Jambal, T.; Mijiddorj, B.; Maizul, B.; Enkhtuul, T.; Ji, R. Identification and molecular docking of a novel antidiabetic peptide from protamex-camel milk protein hydrolysates against α-amylase and DPP-IV. Int. Dairy J. 2024, 152, 105884. [Google Scholar] [CrossRef]
- Pang, L.; Zhang, W.; Chen, C.; Li, R.; Huang, Z.; Liu, S.; Zhao, K.; Zhao, F.; Yang, X.; Jiang, Y. Effect of enzymatic hydrolysis and ultrasound pretreatment on allergenicity, functional properties and bioactivity of whey protein isolates. LWT 2024, 210, 116891. [Google Scholar] [CrossRef]
- Gonzalez-de la Rosa, T.; Herreros-Isidro, A.; Marquez-Paradas, E.; Barrera-Chamorro, L.; Leon, M.J.; Montserrat-de la Paz, S. Olive leaf protein hydrolysate as a novel source of antimicrobial peptides: Peptidomic characterization and in silico evaluation. Molecules 2025, 30, 3382. [Google Scholar] [CrossRef] [PubMed]
- Coassolo, L.; Danneskiold-Samsøe, N.B.; Nguyen, Q.; Wiggenhorn, A.; Zhao, M.; Wang, D.C.-H.; Toomer, D.; Lone, J.; Wei, Y.; Patel, A.; et al. Prohormone cleavage prediction uncovers a non-incretin anti-obesity peptide. Nature 2025, 641, 192–201. [Google Scholar] [CrossRef]
- Holton, T.A.; Pollastri, G.; Shields, D.C.; Mooney, C. CPPpred: Prediction of cell penetrating peptides. Bioinformatics 2013, 29, 3094–3096. [Google Scholar] [CrossRef]
- Spracklin, D.K.; Chen, D.; Bergman, A.J.; Callegari, E.; Obach, R.S. Mini-review: Comprehensive drug disposition knowledge generated in the modern human radiolabeled ADME study. CPT Pharmacomet. Syst. Pharmacol. 2020, 9, 428–434. [Google Scholar] [CrossRef]
- El-Fagal, S.F.; El-Helw, E.A.E.; El-Bordany, E.A.; Ghareeb, E.A. Antioxidant activity, molecular docking, and modeling pharmacokinetics study of some benzo[f]quinoline candidates. Sci. Rep. 2025, 15, 16522. [Google Scholar] [CrossRef]
- El fadili, M.; Er-rajy, M.; Imtara, H.; Noman, O.M.; Mothana, R.A.; Abdullah, S.; Zerougui, S.; Elhallaoui, M. QSAR, ADME-Tox, molecular docking and molecular dynamics simulations of novel selective glycine transporter type 1 inhibitors with memory enhancing properties. Heliyon 2023, 9, e13706. [Google Scholar] [CrossRef]
- Lakkadi, A.; Vuppala, S.; Nampally, V.; Kim, J.; Kim, K.; Jang, J.; Tigulla, P. Development of novel chromones as antioxidant COX2 inhibitors: In vitro, QSAR, DFT, molecular docking, and molecular dynamics studies. J. Biomol. Struct. Dyn. 2024, 42, 2793–2808. [Google Scholar] [CrossRef]
- Siddeeg, A.; AlKehayez, N.M.; Abu-Hiamed, H.A.; Al-Sanea, E.A.; Al-Farga, A.M. Mode of action and determination of antioxidant activity in the dietary sources: An overview. Saudi J. Biol. Sci. 2021, 28, 1633–1644. [Google Scholar] [CrossRef] [PubMed]
- Zehiroglu, C.; Ozturk Sarikaya, S.B. The importance of antioxidants and place in today’s scientific and technological studies. J. Food Sci. Technol. 2019, 56, 4757–4774. [Google Scholar] [CrossRef] [PubMed]
- Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free radical properties, source and targets, antioxidant consumption and health. Oxygen 2022, 2, 48–78. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Du, R.; Liu, K.; Zhao, S.; Chen, F. Changes in antioxidant activity of peptides identified from brown rice hydrolysates under different conditions and their protective effects against AAPH-induced oxidative stress in human erythrocytes. ACS Omega 2020, 5, 12751–12759. [Google Scholar] [CrossRef]
- Leonard, W.; Xiong, Y.; Zhang, P.; Ying, D.; Fang, Z. Enhanced lignanamide absorption and antioxidative effect of extruded hempseed (Cannabis sativa L.) hull in Caco-2 intestinal cell culture. J. Agric. Food Chem. 2021, 69, 11259–11271. [Google Scholar] [CrossRef]
- Meng, D.; Zhang, P.; Li, S.; Ho, C.-T.; Zhao, H. Antioxidant activity evaluation of dietary phytochemicals using Saccharomyces cerevisiae as a model. J. Funct. Foods 2017, 38, 36–44. [Google Scholar] [CrossRef]
- Mudd, N.; Liceaga, A.M. Caenorhabditis elegans as an in vivo model for food bioactives: A review. Curr. Res. Food Sci. 2022, 5, 845–856. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Wang, D.; Yang, L.; Liu, Z.; Zhang, Y. A modified and improved assay based on microbial test system (MTS) to evaluate antioxidant activity. Food Anal. Methods 2016, 9, 895–904. [Google Scholar] [CrossRef]
- Vargas-Maya Naurú, I.; Franco, B. Escherichia coli as a Model Organism and Its Application in Biotechnology. In Escherichia coli; Amidou, S., Ed.; Chapter 13; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar]
- Gao, Y.; Fang, L.; Wang, X.; Lan, R.; Wang, M.; Du, G.; Guan, W.; Liu, J.; Brennan, M.; Guo, H.; et al. Antioxidant activity evaluation of dietary flavonoid hyperoside using Saccharomyces cerevisiae as a model. Molecules 2019, 24, 788. [Google Scholar] [CrossRef]
- Kavitake, D.; Veerabhadrappa, B.; Sudharshan, S.J.; Kandasamy, S.; Devi, P.B.; Dyavaiah, M.; Shetty, P.H. Oxidative stress alleviating potential of galactan exopolysaccharide from Weissella confusa KR780676 in yeast model system. Sci. Rep. 2022, 12, 1089. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Wang, D.-M.; Fan, S.-F.; Li, D.-W.; Luo, Z.-W. Synergistic effects and related bioactive mechanism of Potentilla fruticosa L. leaves combined with Ginkgo biloba extracts studied with microbial test system (MTS). BMC Complement. Altern. Med. 2016, 16, 495. [Google Scholar] [CrossRef]
- Bruna-García, E.; Isabel-Redondo, B.; Sabater-Munoz, B.; Miguel-Castro, M. Assessment of antioxidant bioactive properties of iberian dry-cured ham fat-derived essences using the yeast Saccharomyces cerevisiae as experimental model. LWT-Food Sci. Technol. 2023, 186, 115235. [Google Scholar] [CrossRef]
- Ridaoui, K.; Guenaou, I.; Taouam, I.; Cherki, M.; Bourhim, N.; Elamrani, A.; Kabine, M. Comparative study of the antioxidant activity of the essential oils of five plants against the H2O2 induced stress in Saccharomyces cerevisiae. Saudi J. Biol. Sci. 2022, 29, 1842–1852. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Yu, D.; Zhang, Y.; Dong, J.; Li, D.; Wang, D. Metabolite profiles, bioactivity, and HPLC fingerprint of different varieties of Eucommia ulmoides Oliv.: Towards the utilization of medicinal and commercial chinese endemic tree. Molecules 2018, 23, 1898. [Google Scholar] [CrossRef]
- Piechowiak, T.; Balawejder, M. Onion skin extract as a protective agent against oxidative stress in Saccharomyces cerevisiae induced by cadmium. J. Food Biochem. 2019, 43, e12872. [Google Scholar] [CrossRef]
- Irion, U.; Nüsslein-Volhard, C. Developmental genetics with model organisms. Proc. Natl. Acad. Sci. USA 2022, 119, e2122148119. [Google Scholar] [CrossRef]
- Natale, C.; Barzago, M.M.; Diomede, L. Caenorhabditis elegans models to investigate the mechanisms underlying tau toxicity in tauopathies. Brain Sci. 2020, 10, 838. [Google Scholar] [CrossRef]
- Boiangiu, R.S.; Bagci, E.; Dumitru, G.; Hritcu, L.; Todirascu-Ciornea, E. Angelica purpurascens (AvÉ-Lall.) Gilli. essential oil improved brain function via cholinergic modulation and antioxidant effects in the scopolamine-induced Zebrafish (Danio rerio) model. Plants 2022, 11, 1096. [Google Scholar] [CrossRef]
- González-Paramás, A.M.; Brighenti, V.; Bertoni, L.; Marcelloni, L.; Ayuda-Durán, B.; González-Manzano, S.; Pellati, F.; Santos-Buelga, C. Assessment of the in vivo antioxidant activity of an anthocyanin-rich bilberry extract using the Caenorhabditis elegans model. Antioxidants 2020, 9, 509. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Wang, M.; Feng, Z.; Zhu, Y.; Chen, J. Antiaging effects of rice protein hydrolysates on Drosophila melanogaster. J. Food Biochem. 2021, 45, e13602. [Google Scholar] [CrossRef] [PubMed]
- Ahmadifar, E.; Dawood, M.A.O.; Moghadam, M.S.; Sheikhzadeh, N.; Hoseinifar, S.H.; Musthafa, M.S. Modulation of immune parameters and antioxidant defense in zebrafish (Danio rerio) using dietary apple cider vinegar. Aquaculture 2019, 513, 734412. [Google Scholar] [CrossRef]
- Johnmark, N.; Kinyi, H.W. Amaranth leaf extract protects against hydrogen peroxide induced oxidative stress in Drosophila melanogaster. BMC Res. Notes 2021, 14, 188. [Google Scholar] [CrossRef]
- Neamtu, A.-A.; Szoke-Kovacs, R.; Mihok, E.; Georgescu, C.; Turcus, V.; Olah, N.K.; Frum, A.; Tita, O.; Neamtu, C.; Szoke-Kovacs, Z.; et al. Bilberry (Vaccinium myrtillus L.) extracts comparative analysis regarding their phytonutrient profiles, antioxidant capacity along with the in vivo rescue effects tested on a Drosophila melanogaster high-sugar diet model. Antioxidants 2020, 9, 1067. [Google Scholar] [CrossRef]
- Pinto, C.; Ibáñez, M.R.; Loyola, G.; León, L.; Salvatore, Y.; González, C.; Barraza, V.; Castañeda, F.; Aldunate, R.; Contreras-Porcia, L.; et al. Characterization of an Agarophyton chilense oleoresin containing PPARγ natural ligands with insulin-sensitizing effects in a C57Bl/6J mouse model of diet-induced obesity and antioxidant activity in Caenorhabditis elegans. Nutrients 2021, 13, 1828. [Google Scholar] [CrossRef]
- Tang, Z.; Zhao, Z.; Chen, S.; Lin, W.; Wang, Q.; Shen, N.; Qin, Y.; Xiao, Y.; Chen, H.; Chen, H.; et al. Dragon fruit-kiwi fermented beverage: In vitro digestion, untargeted metabolome analysis and anti-aging activity in Caenorhabditis elegans. Front. Nutr. 2023, 9, 1052818. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, M.; Hu, C.; Liu, A.; Chen, J.; Gu, C.; Zhang, X.; You, C.; Tong, H.; Wu, M.; et al. Sargassum fusiforme fucoidan SP2 extends the lifespan of Drosophila melanogaster by upregulating the Nrf2-mediated antioxidant signaling pathway. Oxidative Med. Cell. Longev. 2019, 2019, 8918914. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, Z.; Guo, Y.; Lu, S.; Du, H.; Cao, Y. Antioxidant capacity of flavonoids from Folium Artemisiae Argyi and the molecular mechanism in Caenorhabditis elegans. J. Ethnopharmacol. 2021, 279, 114398. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, P.; Xue, M.; Zhang, M.; Xiao, Z.; Xu, C.; Fan, Y.; Liu, W.; Wu, Y.; Wu, M.; et al. Anti-inflammatory and antioxidant properties of rice bran oil extract in copper sulfate-induced inflammation in zebrafish (Danio rerio). Fish Shellfish Immunol. 2023, 136, 108740. [Google Scholar] [CrossRef]
- Wu, Z.-Q.; Li, K.; Ma, J.-K.; Huang, Q.; Tian, X.; Li, Z.-J. Antioxidant activity of organic sulfides from fresh Allium macrostemon Bunge and their protective effects against oxidative stress in Caenorhabditis elegans. J. Food Biochem. 2020, 44, e13447. [Google Scholar] [CrossRef]
- Mudd, N.; Martin-Gonzalez, F.S.; Ferruzzi, M.; Liceaga, A.M. In vivo antioxidant effect of edible cricket (Gryllodes sigillatus) peptides using a Caenorhabditis elegans model. Food Hydrocoll. Health 2022, 2, 100083. [Google Scholar] [CrossRef]
- Urbizo-Reyes, U.; Kim, K.-H.; Reddivari, L.; Anderson, J.M.; Liceaga, A.M. Oxidative stress protection by canary seed (Phalaris canariensis L.) peptides in Caco-2 cells and Caenorhabditis elegans. Nutrients 2022, 14, 2415. [Google Scholar] [CrossRef]
- Gil, A.G.; Arbillaga, L.; de Cerain, A.L. Non-clinical toxicity studies on bioactive compounds within the framework of nutritional and health claims. Int. J. Food Sci. Nutr. 2015, 66, S13–S21. [Google Scholar] [CrossRef]
- Foroughi-Gilvaee, M.R.; Martirosyan, D.; Mashayekhnia, M.J.; Maadi, M.A.; Sarvendani, M.R.R.; Maghsoumi, M. Exploring the potential of bioactive compounds in preventing cancer growth and progression: A comprehensive review. Bioact. Compd. Health Dis. 2024, 7, 302–324. [Google Scholar] [CrossRef]
- Vitorović, J.; Joković, N.; Radulović, N.; Mihajilov-Krstev, T.; Cvetković, V.J.; Jovanović, N.; Mitrović, T.; Aleksić, A.; Stanković, N.; Bernstein, N. Antioxidant activity of hemp (Cannabis sativa L.) seed oil in Drosophila melanogaster larvae under non-stress and H2O2-induced oxidative stress conditions. Antioxidants 2021, 10, 830. [Google Scholar] [CrossRef] [PubMed]
- Ahmadifar, E.; Sheikhzadeh, N.; Roshanaei, K.; Dargahi, N.; Faggio, C. Can dietary ginger (Zingiber officinale) alter biochemical and immunological parameters and gene expression related to growth, immunity and antioxidant system in zebrafish (Danio rerio)? Aquaculture 2019, 507, 341–348. [Google Scholar] [CrossRef]
- Lizárraga-Velázquez, C.E.; Hernández, C.; González-Aguilar, G.A.; Heredia, J.B. Effect of dietary intake of phenolic compounds from mango peel extract on growth, lipid peroxidation and antioxidant enzyme activities in zebrafish (Danio rerio). Lat. Am. J. Aquat. Res. 2019, 47, 602–611. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda-Carrazco, A.; Torres-Salas, V.; Cruz-Monterrosa, R.G.; Rosas-Espejel, M.; Guerrero-Encinas, I.; González-González, J.N.; Quihui-Cota, L.; Liceaga, A.M.; Aguilar-Toalá, J.E. Emerging and Versatile Non-Mammalian Model Organisms for Studying the In Vivo Antioxidant Properties of Food-Derived Bioactive Compounds. Antioxidants 2025, 14, 1127. https://doi.org/10.3390/antiox14091127
Miranda-Carrazco A, Torres-Salas V, Cruz-Monterrosa RG, Rosas-Espejel M, Guerrero-Encinas I, González-González JN, Quihui-Cota L, Liceaga AM, Aguilar-Toalá JE. Emerging and Versatile Non-Mammalian Model Organisms for Studying the In Vivo Antioxidant Properties of Food-Derived Bioactive Compounds. Antioxidants. 2025; 14(9):1127. https://doi.org/10.3390/antiox14091127
Chicago/Turabian StyleMiranda-Carrazco, Alejandra, Verenice Torres-Salas, Rosy G. Cruz-Monterrosa, Monzerrat Rosas-Espejel, Ildefonso Guerrero-Encinas, Javier N. González-González, Luis Quihui-Cota, Andrea M. Liceaga, and José E. Aguilar-Toalá. 2025. "Emerging and Versatile Non-Mammalian Model Organisms for Studying the In Vivo Antioxidant Properties of Food-Derived Bioactive Compounds" Antioxidants 14, no. 9: 1127. https://doi.org/10.3390/antiox14091127
APA StyleMiranda-Carrazco, A., Torres-Salas, V., Cruz-Monterrosa, R. G., Rosas-Espejel, M., Guerrero-Encinas, I., González-González, J. N., Quihui-Cota, L., Liceaga, A. M., & Aguilar-Toalá, J. E. (2025). Emerging and Versatile Non-Mammalian Model Organisms for Studying the In Vivo Antioxidant Properties of Food-Derived Bioactive Compounds. Antioxidants, 14(9), 1127. https://doi.org/10.3390/antiox14091127