Oxidative Stress and Antioxidants in Glioblastoma: Mechanisms of Action, Therapeutic Effects and Future Directions
Abstract
1. Introduction
2. Molecular Basis of Oxidative Stress
3. Oxidative Stress in Glioblastoma
3.1. Clinical and Experimental Evidence of Oxidative Stress in GBM
3.2. Hypoxic Microenvironment and ROS
3.3. Hormesis and the Paradoxical Role of ROS
3.4. Gene Expression Changes Related to Oxidative Stress and Immunosuppression
3.5. SP/NK1R Pathway as a Source of Oxidative Stress
3.6. Oxidative Stress in Metabolism, Invasion, and Motility
3.7. The Role of Oxidative Stress in Treatment Resistance
3.8. Potential Molecular Targets and Redox Pathways
3.9. Therapeutic Strategies Exploiting Oxidative Stress
3.10. Enzymatic Pathways and Oxidative Stress Inhibitors
3.11. Regulation of Oxidative Stress by Transcription Factors
3.12. Other ROS-Based Therapeutic Strategies
4. Dietary and Pharmacological Antioxidant Compounds in Glioblastoma
4.1. Glutathione
4.2. SOD
4.3. CAT
4.4. Carotenoids
4.4.1. Astaxanthin
4.4.2. Lycopene
4.4.3. Crocetin
4.4.4. Zeaxanthin
4.5. Coenzyme Q10
4.6. Curcumin
4.7. Flavonoids
4.7.1. Quercetin
4.7.2. Fisetin
4.7.3. Rutin
4.7.4. Apigenin
4.7.5. Acacetin
4.7.6. Irigenin
4.7.7. Kaempferol
4.7.8. 2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one
4.7.9. 5-Hydroxy-3′,4′,6,7-tetramethoxyflavone
4.7.10. Epigallocatechin Gallate
4.7.11. Epicatechin
4.7.12. Chrysin
4.7.13. Xanthohumol
4.7.14. Hispidulin
4.7.15. Silibinin
4.8. Resveratrol
4.9. Rosmarinic Acid
4.10. Sinularin
4.11. Vitamin A
4.12. Vitamin E
4.13. Vitamin C
5. Challenges and Limitations
6. Future Directions–Combination Therapies and Novel Delivery Systems
6.1. Oxidative Stress
6.2. Antioxidants
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Urbańska, K.; Sokołowska, J.; Szmidt, M.; Sysa, P. Review Glioblastoma Multiforme—An Overview. Współczesna Onkol. 2014, 5, 307. [Google Scholar] [CrossRef]
- Gao, L. Glioma an Overview of Current Classifications Characteristics Molecular Biology and Target Therapies. Front. Biosci. 2015, 20, 1104. [Google Scholar] [CrossRef]
- Nowacka, A.; Śniegocki, M.; Smuczyński, W.; Bożiłow, D.; Ziółkowska, E. Angiogenesis in Glioblastoma—Treatment Approaches. Cells 2025, 14, 407. [Google Scholar] [CrossRef] [PubMed]
- Oronsky, B.; Reid, T.R.; Oronsky, A.L.; Sandhu, N.; Knox, S.J. A Review of Newly Diagnosed Glioblastoma. Front. Oncol. 2021, 10, 574012. [Google Scholar] [CrossRef] [PubMed]
- Fath, M.K.; Babakhaniyan, K.; Anjomrooz, M.; Jalalifar, M.-R.; Alizadeh, S.D.; Pourghasem, Z.; Oshagh, P.A.; Azargoonjahromi, A.; Almasi, F.; Manzoor, H.Z.; et al. Recent Advances in Glioma Cancer Treatment: Conventional and Epigenetic Realms. Vaccines 2022, 10, 1448. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Cui, Y.; Zou, L. Treatment Advances in High-Grade Gliomas. Front. Oncol. 2024, 14, 1287725. [Google Scholar] [CrossRef]
- Chandrasekar, G.; Bansal, V.S.; Manas, P.; Kitambi, S.S. An Overview of Targets and Therapies for Glioblastoma Multiforme. J. Cancer Res. Ther. 2022, 18, 591. [Google Scholar] [CrossRef]
- Sadowski, K.; Jażdżewska, A.; Kozłowski, J.; Zacny, A.; Lorenc, T.; Olejarz, W. Revolutionizing Glioblastoma Treatment: A Comprehensive Overview of Modern Therapeutic Approaches. Int. J. Mol. Sci. 2024, 25, 5774. [Google Scholar] [CrossRef]
- McKinnon, C.; Nandhabalan, M.; Murray, S.A.; Plaha, P. Glioblastoma: Clinical Presentation, Diagnosis, and Management. BMJ 2021, 374, n1560. [Google Scholar] [CrossRef]
- Pope, W.B.; Brandal, G. Conventional and Advanced Magnetic Resonance Imaging in Patients with High-Grade Glioma. Q. J. Nucl. Med. Mol. Imaging 2018, 62, 239–253. [Google Scholar] [CrossRef]
- Haydar, N.; Alyousef, K.; Alanan, U.; Issa, R.; Baddour, F.; Alshehabi, Z.; Al-janabi, M.H. Role of Magnetic Resonance Imaging (MRI) in Grading Gliomas Comparable with Pathology: A Cross-Sectional Study from Syria. Ann. Med. Surg. 2022, 82, 104679. [Google Scholar] [CrossRef]
- Lukas, R.V. Glioblastoma. In Oxford University Press eBooks; Oxford University Press: Oxford, UK, 2023; p. 59. [Google Scholar]
- Liang, R.; Li, N.; Zhang, Z. Emerging Therapies for Glioblastoma: Current State and Future Directions. J. Exp. Clin. Cancer Res. 2022, 41, 142. [Google Scholar] [CrossRef]
- Gilard, V.; Tebani, A.; Dabaj, I.; Laquerrière, A.; Fontanilles, M.; Derrey, S.; Marret, S.; Bekri, S. Diagnosis and Management of Glioblastoma: A Comprehensive Perspective. J. Pers. Med. 2021, 11, 258. [Google Scholar] [CrossRef]
- Ludwig, K.; Muthukrishnan, S.D.; Alvarado, A.G.; Kornblum, H.I. Overview of Glioblastoma Biological Hallmarks and Molecular Pathology. In Elsevier eBooks; Elsevier: Amsterdam, The Netherlands, 2021; p. 1. [Google Scholar]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncol. 2021, 23, 1231. [Google Scholar] [CrossRef] [PubMed]
- McBrayer, S.K.; Mayers, J.R.; DiNatale, G.J.; Shi, D.D.; Khanal, J.; Chakraborty, A.A.; Sarosiek, K.A.; Briggs, K.J.; Robbins, A.K.; Sewastianik, T.; et al. Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma. Cell 2018, 175, 101. [Google Scholar] [CrossRef] [PubMed]
- Edge, R.; Truscott, T.G. The Reactive Oxygen Species Singlet Oxygen, Hydroxy Radicals, and the Superoxide Radical Anion—Examples of Their Roles in Biology and Medicine. Oxygen 2021, 1, 77. [Google Scholar] [CrossRef]
- Kozlov, A.V.; Javadov, S.; Sommer, N. Cellular ROS and Antioxidants: Physiological and Pathological Role. Antioxidants 2024, 13, 602. [Google Scholar] [CrossRef]
- Moldogazieva, N.T.; Mokhosoev, I.M.; Melnikova, T.I.; Zavadskiy, S.P.; Kuzmenko, A.N.; Terentiev, A.A. Dual Character of Reactive Oxygen, Nitrogen, and Halogen Species: Endogenous Sources, Interconversions and Neutralization. Biochem. Mosc. 2020, 85, 56. [Google Scholar] [CrossRef]
- Aranda-Rivera, A.K.; Cruz-Gregorio, A.; Arancibia-Hernández, Y.L.; Hernández-Cruz, E.Y.; Pedraza-Chaverrí, J. RONS and Oxidative Stress: An Overview of Basic Concepts. Oxygen 2022, 2, 437. [Google Scholar] [CrossRef]
- Nosaka, Y.; Nosaka, A.Y. Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem. Rev. 2017, 117, 11302. [Google Scholar] [CrossRef]
- Andrés, C.; de la Lastra, J.M.P.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Sies, H.; Jones, D.P. Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363. [Google Scholar] [CrossRef] [PubMed]
- Checa, J.; Aran, J.M. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. J. Inflamm. Res. 2020, 13, 1057–1073. [Google Scholar] [CrossRef] [PubMed]
- Olufunmilayo, E.O.; Gerke-Duncan, M.B.; Holsinger, R.M.D. Oxidative Stress and Antioxidants in Neurodegenerative Disorders. Antioxidants 2023, 12, 517. [Google Scholar] [CrossRef] [PubMed]
- Houldsworth, A. Role of Oxidative Stress in Neurodegenerative Disorders: A Review of Reactive Oxygen Species and Prevention by Antioxidants. Brain Commun. 2023, 6, fcad356. [Google Scholar] [CrossRef]
- Dash, U.C.; Bhol, N.K.; Swain, S.K.; Samal, R.R.; Nayak, P.K.; Raina, V.; Panda, S.K.; Kerry, R.G.; Duttaroy, A.K.; Jena, A.B. Oxidative Stress and Inflammation in the Pathogenesis of Neurological Disorders: Mechanisms and Implications. Acta Pharm. Sin. B 2024, 15, 15. [Google Scholar] [CrossRef]
- Bocci, V.; Valacchi, G. Free Radicals and Antioxidants: How to Reestablish Redox Homeostasis in Chronic Diseases? Curr. Med. Chem. 2013, 20, 3397. [Google Scholar] [CrossRef]
- Jomová, K.; Alomar, S.Y.; Alwasel, S.; Nepovimová, E.; Kuča, K.; Valko, M. Several Lines of Antioxidant Defense against Oxidative Stress: Antioxidant Enzymes, Nanomaterials with Multiple Enzyme-Mimicking Activities, and Low-Molecular-Weight Antioxidants. Arch. Toxicol. 2024, 98, 1323. [Google Scholar] [CrossRef]
- Sarniak, A.; Lipińska, J.; Tytman, K.; Lipińska, S. Endogenous Mechanisms of Reactive Oxygen Species (ROS) Generation. Postępy Hig. I Med. Doświadczalnej 2016, 70, 1150. [Google Scholar] [CrossRef]
- Afzal, S.; Manap, A.S.A.; Attiq, A.; Albokhadaim, I.; Kandeel, M.; Alhojaily, S. From Imbalance to Impairment: The Central Role of Reactive Oxygen Species in Oxidative Stress-Induced Disorders and Therapeutic Exploration. Front. Pharmacol. 2023, 14, 1269581. [Google Scholar] [CrossRef]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free Radicals, Antioxidants in Disease and Health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar] [CrossRef]
- Krumova, K.; Cosa, G. Chapter 1. Overview of Reactive Oxygen Species. In Comprehensive Series in Photochemistry and Photobiology/Comprehensive Series in Photochemical & Photobiological Sciences; Royal Society of Chemistry: London, UK, 2016; p. 1. [Google Scholar]
- Claro, S.; Ferreira, A.T.; Oshiro, M.E.M. Radiation-Generated ROS Induce Apoptosis via Mitochondrial. In IntechOpen eBooks; IntechOpen: London, UK, 2019. [Google Scholar]
- Mishra, K.; Meher, P. Radiation Oxidative Stress in Cancer Induction and Prevention. J. Radiat. Cancer Res. 2017, 8, 44. [Google Scholar] [CrossRef]
- Zhao, R.; Jiang, S.; Zhang, L.; Yu, Z. Mitochondrial Electron Transport Chain, ROS Generation and Uncoupling (Review). Int. J. Mol. Med. 2019, 44, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Bernacchia, A.; Biondi, A.; Genova, M.L.; Lenaz, G.; Falasca, A.I. The Various Sources of Mitochondrial Oxygen Radicals: A Minireview. Toxicol. Mech. Methods 2004, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS–Mediated Cellular Signaling. Oxidative Med. Cell. Longev. 2016, 2016, 4350965. [Google Scholar] [CrossRef] [PubMed]
- Takata, T.; Araki, S.; Tsuchiya, Y.; Watanabe, Y. Oxidative Stress Orchestrates MAPK and Nitric-Oxide Synthase Signal. Int. J. Mol. Sci. 2020, 21, 8750. [Google Scholar] [CrossRef]
- Son, Y.; Cheong, Y.-K.; Kim, N.; Chung, H.; Kang, D.G.; Pae, H. Mitogen-Activated Protein Kinases and Reactive Oxygen Species: How Can ROS Activate MAPK Pathways? J. Signal Transduct. 2011, 2011, 792639. [Google Scholar] [CrossRef]
- Mathur, P.; Ding, Z.; Saldeen, T.; Mehta, J.L. Tocopherols in the Prevention and Treatment of Atherosclerosis and Related Cardiovascular Disease. Clin. Cardiol. 2015, 38, 570. [Google Scholar] [CrossRef]
- Ighodaro, O.M.; Akinloye, O.A. First Line Defence Antioxidants-Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPX): Their Fundamental Role in the Entire Antioxidant Defence Grid. Alex. J. Med. 2017, 54, 287. [Google Scholar] [CrossRef]
- Wang, X.; Tan, X.; Zhang, J.; Wu, J.; Shi, H. The Emerging Roles of MAPK-AMPK in Ferroptosis Regulatory Network. Cell Commun. Signal. 2023, 21, 200. [Google Scholar] [CrossRef]
- Manoharan, R.R.; Prasad, A.; Pospíšil, P.; Kzhyshkowska, J. ROS Signaling in Innate Immunity via Oxidative Protein Modifications. Front. Immunol. 2024, 15, 1359600. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative Stress: Concept and Some Practical Aspects. Antioxidants 2020, 9, 852. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, R.; Liu, N. Nuclear DNA Damages Generated by Reactive Oxygen Molecules (ROS) under Oxidative Stress and Their Relevance to Human Cancers, Including Ionizing Radiation-Induced Neoplasia Part II: Relation between ROS-Induced DNA Damages and Human Cancer. Radiat. Med. Prot. 2020, 1, 196. [Google Scholar] [CrossRef]
- Li, X.; Yang, C.; Wu, H.; Chen, H.; Gao, X.; Zhou, S.; Zhang, T.; Ma, W. DSB-Induced Oxidative Stress: Uncovering Crosstalk between DNA Damage Response and Cellular Metabolism. DNA Repair 2024, 141, 103730. [Google Scholar] [CrossRef]
- Lalkovičová, M.; Danielisová, V. Neuroprotection and Antioxidants. Neural Regen. Res. 2016, 11, 865. [Google Scholar] [CrossRef]
- Greceanu, I.M.I.; Tănase, H.I.; Dobrescu, C.M.; Dorobăţ, M.L. The mechanism and biochemistry in oxidative stress a brief overview. Curr. Trends Nat. Sci. 2023, 12, 84. [Google Scholar] [CrossRef]
- Madkour, L.H. Oxidative Stress and Oxidative Damage-Induced Cell Death. In Elsevier eBooks; Elsevier: Amsterdam, The Netherlands, 2020; p. 175. [Google Scholar]
- Michalska, P.; León, R. When It Comes to an End: Oxidative Stress Crosstalk with Protein Aggregation and Neuroinflammation Induce Neurodegeneration. Antioxidants 2020, 9, 740. [Google Scholar] [CrossRef]
- Hassan, W.; Noreen, H.; Rehman, S.; Kamal, M.A.; Rocha, J.B.T. da Association of Oxidative Stress with Neurological Disorders. Curr. Neuropharmacol. 2021, 20, 1046. [Google Scholar] [CrossRef]
- Espinós, C.; Galindo, M.I.; García-Gimeno, M.A.; Ibáñez-Cabellos, J.S.; Martínez-Rubio, D.; Millán, J.M.; Rodrigo, R.; Sanz, P.; Seco-Cervera, M.; Sevilla, T.; et al. Oxidative Stress, a Crossroad Between Rare Diseases and Neurodegeneration. Antioxidants 2020, 9, 313. [Google Scholar] [CrossRef]
- Demko, I.V.; Sobko, E.A.; Solovyeva, I.A.; Kraposhina, A.Y.U.; Gordeeva, N.; Anikin, D.A. The role of oxidative stress in the pathophysiology of cardiovascular pathology. Bull. Contemp. Clin. Med. 2022, 15, 107. [Google Scholar] [CrossRef]
- Robert, G.; Wagner, J.R. ROS-Induced DNA Damage as an Underlying Cause of Aging. Adv. Geriatr. Med. Res. 2020, 4, e200024. [Google Scholar] [CrossRef]
- Kamila, R.; Ahmed, M.M.; Mukhtiar, A.; Łukowiak, M.; Kisielewicz, K. Nanomedicine-Enhanced Radiotherapy for Glioblastoma: Advances in Targeted Therapy and Adaptive Treatment Strategies. Pharmaceutics 2025, 17, 508. [Google Scholar] [CrossRef]
- Angom, R.S.; Nakka, N.M.R.; Bhattacharya, S. Advances in Glioblastoma Therapy: An Update on Current Approaches. Brain Sci. 2023, 13, 1536. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, Y.; Sun, S.-J.; Zhao, C.-J.; Bai, Y.; Wang, J.; Ma, L. ROS Regulation in Gliomas: Implications for Treatment Strategies. Front. Immunol. 2023, 14, 1259797. [Google Scholar] [CrossRef]
- Liu, S.; Dong, L.; Shi, W.; Zheng, Z.; Liu, Z.; Meng, L.; Xin, Y.; Jiang, X. Potential Targets and Treatments Affect Oxidative Stress in Gliomas: An Overview of Molecular Mechanisms. Front. Pharmacol. 2022, 13, 921070. [Google Scholar] [CrossRef]
- Dico, A.L.; Salvatore, D.; Diceglie, C.; Martelli, C.; Ottobrini, L. Role of Mitochondrial Reactive Oxygen Species in Glioblastoma Drug Resistance and Strategies for Therapeutic Intervention. In Elsevier eBooks; Elsevier: Amsterdam, The Netherlands, 2021; p. 263. [Google Scholar]
- Huang, G.; Hou, X.; Li, X.; Yu, Y.; Ge, X.; Gan, H. Identification of a Novel Glioblastoma Multiforme Molecular Subtype with Poor Prognosis and High Immune Infiltration Based on Oxidative Stress-Related Genes. Medicine 2024, 103, e35828. [Google Scholar] [CrossRef]
- Agrawal, K.; Asthana, S.; Kumar, D. Role of Oxidative Stress in Metabolic Reprogramming of Brain Cancer. Cancers 2023, 15, 4920. [Google Scholar] [CrossRef]
- Krawczynski, K.; Godlewski, J.; Bronisz, A. Oxidative Stress—Part of the Solution or Part of the Problem in the Hypoxic Environment of a Brain Tumor. Antioxidants 2020, 9, 747. [Google Scholar] [CrossRef] [PubMed]
- Christophe, O.D.; Oliver, L.; Lalier, L.; Vallette, F.M. Drug Resistance in Glioblastoma: The Two Faces of Oxidative Stress. Front. Mol. Biosci. 2021, 7, 620677. [Google Scholar] [CrossRef] [PubMed]
- Orlicka-Płocka, M.; Fedoruk-Wyszomirska, A.; Gurda, D.; Pawelczak, P.; Krawczyk, P.A.; Giel-Pietraszuk, M.; Framski, G.; Ostrowski, T.; Wyszko, E. Implications of Oxidative Stress in Glioblastoma Multiforme Following Treatment with Purine Derivatives. Antioxidants 2021, 10, 950. [Google Scholar] [CrossRef] [PubMed]
- Faraji-Rad, M.; Khajavi, M.; Arjmand, M.H.; Shajari, E.; Hamidi Alamdari, D. Pro-Oxidant-Antioxidant Balance in Patients with High Grade Glioblastoma Multiform. Middle East J. Cancer 2015, 6, 79–83. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, Y.; Guo, X.; Wang, X.; Han, X.; Kanwore, K.; Hong, X.; Zhou, H.; Gao, D. Hypoxia-Induced ROS Aggravate Tumor Progression through HIF-1α-SERPINE1 Signaling in Glioblastoma. J. Zhejiang Univ. Sci. B 2023, 24, 32. [Google Scholar] [CrossRef] [PubMed]
- Lei, F.; Chiang, J.; Chang, H.-J.; Chen, D.-C.; Wang, H.-L.; Yang, H.-A.; Wei, K.-Y.; Huang, Y.; Wang, C.; Wei, S.; et al. Cellular and Exosomal GPx1 Are Essential for Controlling Hydrogen Peroxide Balance and Alleviating Oxidative Stress in Hypoxic Glioblastoma. Redox Biol. 2023, 65, 102831. [Google Scholar] [CrossRef] [PubMed]
- Bhakta-Guha, D.; Efferth, T. Hormesis: Decoding Two Sides of the Same Coin. Pharmaceuticals 2015, 8, 865. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Mattson, M.P.; Dhawan, G.; Kapoor, R.; Calabrese, V.; Giordano, J. Hormesis: A Potential Strategic Approach to the Treatment of Neurodegenerative Disease. Int. Rev. Neurobiol. 2020, 155, 271–301. [Google Scholar]
- Nitti, M.; Marengo, B.; Furfaro, A.L.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C.; Traverso, N. Hormesis and Oxidative Distress: Pathophysiology of Reactive Oxygen Species and the Open Question of Antioxidant Modulation and Supplementation. Antioxidants 2022, 11, 1613. [Google Scholar] [CrossRef]
- Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative Stress in Cancer. Cancer Cell 2020, 38, 167. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, J.; Mai, Y.-Y.; Hong, Y.; Jia, Z.; Tian, G.; Liu, Y.; Liang, H.; Liu, J. Current Advances and Future Trends of Hormesis in Disease. NPJ Aging 2024, 10, 26. [Google Scholar] [CrossRef]
- Liang, X.; Wang, Z.; Dai, Z.; Liu, J.; Zhang, H.; Wen, J.; Zhang, N.; Zhang, J.; Luo, P.; Liu, Z.; et al. Oxidative Stress Is Involved in Immunosuppression and Macrophage Regulation in Glioblastoma. Clin. Immunol. 2023, 258, 109802. [Google Scholar] [CrossRef]
- Hong, X.; Ma, J.; Zheng, S.; Zhao, G.; Fu, C. Advances in the Research and Application of Neurokinin-1 Receptor Antagonists. J. Zhejiang Univ.-Sci. B 2024, 25, 91. [Google Scholar] [CrossRef]
- Harrison, S.; Geppetti, P. Substance P. Int. J. Biochem. Cell Biol. 2001, 33, 555–576. [Google Scholar] [CrossRef]
- García-Aranda, M.; Téllez, T.; McKenna, L.; Redondo, M. Neurokinin-1 Receptor (NK-1R) Antagonists as a New Strategy to Overcome Cancer Resistance. Cancers 2022, 14, 2255. [Google Scholar] [CrossRef] [PubMed]
- Coveñas, R.; Rodríguez, F.D.; Muñoz, M. The Neurokinin-1 Receptor: A Promising Antitumor Target. Receptors 2022, 1, 72. [Google Scholar] [CrossRef]
- Rezaei, S.; Darban, R.A.; Javid, H.; Hashemy, S.I. The Therapeutic Potential of Aprepitant in Glioblastoma Cancer Cells through Redox Modification. BioMed Res. Int. 2022, 2022, 8540403. [Google Scholar] [CrossRef]
- Ghahremani, F.; Sabbaghzadeh, R.; Ebrahimi, S.; Javid, H.; Ghahremani, J.; Hashemy, S.I. Pathogenic Role of the SP/NK1R System in GBM Cells through Inhibiting the Thioredoxin System. DOAJ Dir. Open Access, J. 2021, 24, 499. [Google Scholar] [CrossRef]
- Mehrabani, N.; Kakhki, M.R.V.; Javid, H.; Ebrahimi, S.; Hashemy, S.I. The SP/NK1R System-Mediated ROS Generation in GBM Cells through Inhibiting Glutaredoxin Protein. Neurol. Res. Int. 2021, 2021, 9966000. [Google Scholar] [CrossRef]
- Korfi, F.; Javid, H.; Darban, R.A.; Hashemy, S.I. The Effect of SP/NK1R on the Expression and Activity of Catalase and Superoxide Dismutase in Glioblastoma Cancer Cells. Biochem. Res. Int. 2021, 2021, 6620708. [Google Scholar] [CrossRef]
- Cholia, R.P.; Dhiman, M.; Kumar, R.; Mantha, A.K. Oxidative Stress Stimulates Invasive Potential in Rat C6 and Human U-87 MG Glioblastoma Cells via Activation and Cross-Talk between PKM2, ENPP2 and APE1 Enzymes. Metab. Brain Dis. 2018, 33, 1307. [Google Scholar] [CrossRef]
- Chen, X.; Chen, S.; Yu, D. Protein Kinase Function of Pyruvate Kinase M2 and Cancer. Cancer Cell Int. 2020, 20, 523. [Google Scholar] [CrossRef]
- Zahra, K.; Dey, T.; Ashish; Mishra, S.P.; Pandey, U. Pyruvate Kinase M2 and Cancer: The Role of PKM2 in Promoting Tumorigenesis. Front. Oncol. 2020, 10, 159. [Google Scholar] [CrossRef]
- Li, C.; Zhao, Z.; Zhou, Z.; Liu, R. PKM2 Promotes Cell Survival and Invasion Under Metabolic Stress by Enhancing Warburg Effect in Pancreatic Ductal Adenocarcinoma. Dig. Dis. Sci. 2015, 61, 767. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhang, Z.; Chen, Y.; Qin, S.; Zhou, L.; Gao, W.; Shen, Z. Metabolic Adaptation-Mediated Cancer Survival and Progression in Oxidative Stress. Antioxidants 2022, 11, 1324. [Google Scholar] [CrossRef] [PubMed]
- Magkrioti, C.; Oikonomou, N.; Kaffe, E.; Mouratis, M.-A.; Xylourgidis, N.; Barbayianni, I.; Megadoukas, P.; Harokopos, V.; Valavanis, C.; Chun, J.; et al. The Autotaxin—Lysophosphatidic Acid Axis Promotes Lung Carcinogenesis. Cancer Res. 2018, 78, 3634. [Google Scholar] [CrossRef] [PubMed]
- Koh, E.; Clair, T.; Woodhouse, E.C.; Schiffmann, E.; Liotta, L.A.; Stracke, M.L. Site-Directed Mutations in the Tumor-Associated Cytokine, Autotaxin, Eliminate Nucleotide Phosphodiesterase, Lysophospholipase D, and Motogenic Activities. Cancer Res. 2003, 63, 2042. [Google Scholar]
- Saurty-Seerunghen, M.; Daubon, T.; Bellenger, L.; Delaunay, V.; Castro, G.; Guyon, J.; Rezk, A.; Fabrega, S.; Idbaïh, A.; Almairac, F.; et al. Glioblastoma Cell Motility Depends on Enhanced Oxidative Stress Coupled with Mobilization of a Sulfurtransferase. Cell Death Dis. 2022, 13, 913. [Google Scholar] [CrossRef]
- Tiek, D.; Song, X.; Wu, R.; Yu, X.; Iglesia, R.P.; Hu, B.; Cheng, S. TMET-31. Oxidative stress induced protein aggregation via ggct produced pyroglutamic acid in drug resistant glioblastoma. Neuro-Oncol. 2024, 26, 111769. [Google Scholar] [CrossRef]
- Dico, A.L.; Salvatore, D.; Martelli, C.; Ronchi, D.; Diceglie, C.; Lucignani, G.; Ottobrini, L. Intracellular Redox-Balance Involvement in Temozolomide Resistance-Related Molecular Mechanisms in Glioblastoma. Cells 2019, 8, 1315. [Google Scholar] [CrossRef]
- Esteban-Román, N.F.; Taddei, E.; Castro-Velázquez, E.; Villafuentes-Vidal, L.; Velez-Herrera, A.; Rubio-Osornio, M.; Rubio, C. Redox-Regulated Pathways in Glioblastoma Stem-like Cells: Mechanistic Insights and Therapeutic Implications. Brain Sci. 2025, 15, 884. [Google Scholar] [CrossRef]
- Wu, W.; Wu, Y.; Mayer, K.; von Rosenstiel, C.; Schecker, J.; Baur, S.; Würstle, S.; Liesche-Starnecker, F.; Gempt, J.; Schlegel, J. Lipid Peroxidation Plays an Important Role in Chemotherapeutic Effects of Temozolomide and the Development of Therapy Resistance in Human Glioblastoma. Transl. Oncol. 2020, 13, 100748. [Google Scholar] [CrossRef]
- Li, H.; Wu, Y.; Chen, Y.; Lv, J.; Qu, C.; Mei, T.; Zheng, Y.; Ye, C.; Li, F.; Ge, S.S.; et al. Overcoming Temozolomide Resistance in Glioma: Recent Advances and Mechanistic Insights. Acta Neuropathol. Commun. 2025, 13, 126. [Google Scholar] [CrossRef]
- Augello, F.R.; Lombardi, F.; Ciummo, V.; Ciafarone, A.; Cifone, M.G.; Cinque, B.; Palumbo, P. COX-2 Inhibition in Glioblastoma Cells Counteracts Resistance to Temozolomide by Inducing Oxidative Stress. Antioxidants 2025, 14, 459. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhou, Q.; Jiang, H.; Zhang, T.; Miao, C.; Xu, X.; Wu, J.; Yin, S.; Xu, S.; Peng, J.; et al. Piperlongumine Conquers Temozolomide Chemoradiotherapy Resistance to Achieve Immune Cure in Refractory Glioblastoma via Boosting Oxidative Stress-Inflamation-CD8+-T Cell Immunity. J. Exp. Clin. Cancer Res. 2023, 42, 118. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Lu, X.; Wang, Y.-D.; He, J.; Cao, H.; Zhang, L.; Cheng, L. Recent Status and Trends Regarding Oxidative Stress in Gliomas (2013–2025): A Systematic Review and Bibliometric Analysis. Front. Oncol. 2025, 15, 1586515. [Google Scholar] [CrossRef] [PubMed]
- Thulasitha, W.S.; Kim, Y.; Umasuthan, N.; Jayasooriya, R.G.P.T.; Kim, G.; Nam, B.; Noh, J.K.; Lee, J. Thioredoxin Domain-Containing Protein 12 from Oplegnathus Fasciatus: Molecular Characterization, Expression against Immune Stimuli, and Biological Activities Related to Oxidative Stress. Fish Shellfish Immunol. 2016, 54, 11. [Google Scholar] [CrossRef]
- Tang, L.; Yu, Y.; Deng, W.; Liu, J.; Wang, Y.; Ye, F.; Kang, R.; Tang, D.; He, Q. TXNDC12 Inhibits Lipid Peroxidation and Ferroptosis. iScience 2023, 26, 108393. [Google Scholar] [CrossRef]
- Ren, G.; Stephan, D.; Xu, Z.; Zheng, Y.; Tang, D.; Harrison, R.S.; Kurz, M.; Jarrott, R.; Shouldice, S.R.; Hiniker, A.; et al. Properties of the Thioredoxin Fold Superfamily Are Modulated by a Single Amino Acid Residue. J. Biol. Chem. 2009, 284, 10150. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, J.; Li, H.; Yan, Z. Suppression of Glioblastoma Proliferation by Inducing Oxidative Stress via Modulation of TXNDC12 Expression. Int. J. Cancer Manag. 2024, 17, e147132. [Google Scholar] [CrossRef]
- Iqbal, M.J.; Kabeer, A.; Abbas, Z.; Siddiqui, H.A.; Călina, D.; Sharifi-Rad, J.; Cho, W.C. Interplay of Oxidative Stress, Cellular Communication and Signaling Pathways in Cancer. Cell Commun. Signal. 2024, 22, 7. [Google Scholar] [CrossRef]
- Shi, Z.; Wu, Y.; Zhuo, Q.; Zuo, Y.; Lin, J.; Shi, H.; Zhou, H.; Xu, Z. Comprehensive Analysis of Oxidative Stress-Related lncRNA Signatures in Glioma Reveals the Discrepancy of Prognostic and Immune Infiltration. Sci. Rep. 2023, 13, 7731. [Google Scholar] [CrossRef]
- Perillo, B.; Donato, M.D.; Pezone, A.; Zazzo, E.D.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in Cancer Therapy: The Bright Side of the Moon. Exp. Mol. Med. 2020, 52, 192. [Google Scholar] [CrossRef]
- Kostić, A.; Stojanov, S.J.; Podolski-Renić, A.; Nešović, M.; Dragoj, M.; Nikolić, I.; Tasić, G.; Schenone, S.; Pešić, M.; Dinić, J. Pyrazolo[3,4-d]Pyrimidine Tyrosine Kinase Inhibitors Induce Oxidative Stress in Patient-Derived Glioblastoma Cells. Brain Sci. 2021, 11, 884. [Google Scholar] [CrossRef]
- Tong, S.; Xia, M.; Xu, Y.; Sun, Q.; Ye, L.; Yuan, F.; Wang, Y.; Cai, J.; Ye, Z.; Tian, D. Identification and Validation of a Novel Prognostic Signature Based on Mitochondria and Oxidative Stress Related Genes for Glioblastoma. J. Transl. Med. 2023, 21, 136. [Google Scholar] [CrossRef]
- Alsaad, I.; Rahman, D.; Al-Tamimi, O.; Alhaj, S.A.; Sabbah, D.A.; Hajjo, R.; Bardaweel, S.K. Targeting MAO-B with Small-Molecule Inhibitors: A Decade of Advances in Anticancer Research (2012–2024). Molecules 2024, 30, 126. [Google Scholar] [CrossRef]
- Merce, A.P.; Ionică, L.N.; Bînă, A.M.; Popescu, S.; Lighezan, R.; Petrescu, L.; Borza, C.; Sturza, A.; Muntean, D.; Creţu, O. Monoamine Oxidase Is a Source of Cardiac Oxidative Stress in Obese Rats: The Beneficial Role of Metformin. Mol. Cell. Biochem. 2022, 478, 59. [Google Scholar] [CrossRef] [PubMed]
- Marconi, G.D.; Gallorini, M.; Carradori, S.; Guglielmi, P.; Cataldi, A.; Zara, S. The Up-Regulation of Oxidative Stress as a Potential Mechanism of Novel MAO-B Inhibitors for Glioblastoma Treatment. Molecules 2019, 24, 2005. [Google Scholar] [CrossRef] [PubMed]
- Cesca, B.A.; Caverzán, M.D.; Lamberti, M.J.; Ibarra, L.E. Enhancing Therapeutic Approaches in Glioblastoma with Pro-Oxidant Treatments and Synergistic Combinations: In Vitro Experience of Doxorubicin and Photodynamic Therapy. Int. J. Mol. Sci. 2024, 25, 7525. [Google Scholar] [CrossRef] [PubMed]
- Loenhout, J.V.; Boullosa, L.F.; Quatannens, D.; Waele, J.D.; Merlin, C.; Lambrechts, H.; Lau, H.W.; Hermans, C.; Lin, A.; Lardon, F.; et al. Auranofin and Cold Atmospheric Plasma Synergize to Trigger Distinct Cell Death Mechanisms and Immunogenic Responses in Glioblastoma. Cells 2021, 10, 2936. [Google Scholar] [CrossRef]
- Buccarelli, M.; D’Alessandris, Q.G.; Matarrese, P.; Mollinari, C.; Signore, M.; Cappannini, A.; Martini, M.; D’Aliberti, P.; Luca, G.D.; Pedini, F.; et al. Elesclomol-Induced Increase of Mitochondrial Reactive Oxygen Species Impairs Glioblastoma Stem-like Cell Survival and Tumor Growth. J. Exp. Clin. Cancer Res. 2021, 40, 228. [Google Scholar] [CrossRef]
- Alnasser, S.M. The Role of Glutathione S-Transferases in Human Disease Pathogenesis and Their Current Inhibitors. Genes Dis. 2024, 12, 101482. [Google Scholar] [CrossRef]
- Mazari, A.M.A.; Zhang, L.; Ye, Z.; Zhang, J.; Tew, K.D.; Townsend, D.M. The Multifaceted Role of Glutathione S-Transferases in Health and Disease. Biomolecules 2023, 13, 688. [Google Scholar] [CrossRef]
- Russell, T.M.; Richardson, D.R. The Good Samaritan Glutathione-S-Transferase P1: An Evolving Relationship in Nitric Oxide Metabolism Mediated by the Direct Interactions between Multiple Effector Molecules. Redox Biol. 2022, 59, 102568. [Google Scholar] [CrossRef]
- Ross, D.; Siegel, D. Functions of NQO1 in Cellular Protection and CoQ10 Metabolism and Its Potential Role as a Redox Sensitive Molecular Switch. Front. Physiol. 2017, 8, 595. [Google Scholar] [CrossRef]
- Ross, D.; Siegel, D. The Diverse Functionality of NQO1 and Its Roles in Redox Control. Redox Biol. 2021, 41, 101950. [Google Scholar] [CrossRef]
- Lei, K.; Gu, X.; Alvarado, A.G.; Du, Y.; Luo, S.; Ahn, E.H.; Kang, S.S.; Ji, B.; Liu, X.; Mao, H.; et al. Discovery of a Dual Inhibitor of NQO1 and GSTP1 for Treating Glioblastoma. J. Hematol. Oncol. 2020, 13, 141. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; Ham, W.; Kim, J. Roles of NAD(P)H:Quinone Oxidoreductase 1 in Diverse Diseases. Life 2021, 11, 1301. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Soto, C.Y.; Ramírez-Carreto, R.J.; Ortíz-Alegría, L.B.; Silva-Palacios, A.; Zazueta, C.; Galván-Arzate, S.; Karasu, Ç.; Túnez, I.; Tinkov, A.A.; Aschner, M.; et al. S-Allyl-Cysteine Triggers Cytotoxic Events in Rat Glioblastoma RG2 and C6 Cells and Improves the Effect of Temozolomide through the Regulation of Oxidative Responses. Discov. Oncol. 2024, 15, 141. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Lin, G.; Zhang, R.; Wen, Y.; Luo, C.; Wang, R.; Wang, F.; Peng, S.; Zhang, J. Bufotalin Induces Oxidative Stress-Mediated Apoptosis by Blocking the ITGB4/FAK/ERK Pathway in Glioblastoma. Antioxidants 2024, 13, 1179. [Google Scholar] [CrossRef]
- Lei, K.; Xia, Y.; Wang, X.; Ahn, E.H.; Jin, L.; Ye, K. C/EBPβ Mediates NQO1 and GSTP1 Anti-Oxidative Reductases Expression in Glioblastoma, Promoting Brain Tumor Proliferation. Redox Biol. 2020, 34, 101578. [Google Scholar] [CrossRef]
- Yang, Y.; More, S.; Smet, F.D.; Vleeschouwer, S.D.; Agostinis, P. Antioxidant Network-Based Signatures Cluster Glioblastoma into Distinct Redox-Resistant Phenotypes. Front. Immunol. 2024, 15, 1342977. [Google Scholar] [CrossRef]
- Zheng, X.-L. POLR2J Expression Promotes Glioblastoma Malignancy by Regulating Oxidative Stress and the STAT3 Signaling Pathway. Am. J. Cancer Res. 2024, 14, 2037. [Google Scholar] [CrossRef]
- Quéré, M.; Alberto, J.; Broly, F.; Hergalant, S.; Christov, C.I.; Gauchotte, G.; Guéant, J.; Namour, F.; Battaglia-Hsu, S.-F. ALDH1L2 Knockout in U251 Glioblastoma Cells Reduces Tumor Sphere Formation by Increasing Oxidative Stress and Suppressing Methionine Dependency. Nutrients 2022, 14, 1887. [Google Scholar] [CrossRef] [PubMed]
- Girotti, A.W.; Fahey, J.M.; Korytowski, W. Nitric Oxide-Elicited Resistance to Anti-Glioblastoma Photodynamic Therapy. Cancer Drug Resist. 2020, 3, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Sumiyoshi, A.; Shibata, S.; Zhelev, Z.; Miller, T.; Lazarova, D.; Aoki, I.; Obata, T.; Higashi, T.; Bakalova, R. Targeting Glioblastoma via Selective Alteration of Mitochondrial Redox State. Cancers 2022, 14, 485. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Jha, S.K.; Jha, N.K.; Dewanjee, S.; Dey, A.; Deka, R.; Pritam, P.; Ramgopal, K.; Liu, W.-T.; Hou, K. Antioxidants in Brain Tumors: Current Therapeutic Significance and Future Prospects. Mol. Cancer 2022, 21, 204. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z. Increased Oxidative Stress as a Selective Anticancer Therapy. Oxidative Med. Cell. Longev. 2015, 2015, 294303. [Google Scholar] [CrossRef]
- Averill-Bates, D.A. The Antioxidant Glutathione. Vitam. Horm. 2023, 121, 109–141. [Google Scholar] [CrossRef]
- Dwivedi, D.; Megha, K.; Mishra, R.; Mandal, P.K. Glutathione in Brain: Overview of Its Conformations, Functions, Biochemical Characteristics, Quantitation and Potential Therapeutic Role in Brain Disorders. Neurochem. Res. 2020, 45, 1461. [Google Scholar] [CrossRef]
- Meister, A.; Anderson, M.E. Glutathione. Annu. Rev. Biochem. 1983, 52, 711. [Google Scholar] [CrossRef]
- Kalpravidh, R.W.; Tangjaidee, T.; Hatairaktham, S.; Charoensakdi, R.; Panichkul, N.; Siritanaratkul, N.; Fucharoen, S. Glutathione Redox System in β-Thalassemia/Hb E Patients. Sci. World J. 2013, 2013, 543973. [Google Scholar] [CrossRef]
- Martinez-Jaramillo, E.; Jamali, F.; Abdalbari, F.H.; Abdulkarim, B.; Jean-Claude, B.J.; Telleria, C.M.; Sabri, S. Pro-Oxidant Auranofin and Glutathione-Depleting Combination Unveils Synergistic Lethality in Glioblastoma Cells with Aberrant Epidermal Growth Factor Receptor Expression. Cancers 2024, 16, 2319. [Google Scholar] [CrossRef]
- Franco, Y.E.M.; Alves, M.J.F.; Uno, M.; Moretti, I.F.; Trombetta-Lima, M.; de Santos, S.S.; dos Santos, A.F.; Arini, G.S.; Baptista, M.S.; Lerário, A.M.; et al. Glutaminolysis Dynamics during Astrocytoma Progression Correlates with Tumor Aggressiveness. Cancer Metab. 2021, 9, 18. [Google Scholar] [CrossRef]
- Gupta, K.; Vučković, I.; Zhang, S.; Xiong, Y.; Carlson, B.L.; Jacobs, J.J.; Olson, I.; Petterson, X.-M.; Macura, S.; Sarkaria, J.N.; et al. Radiation Induced Metabolic Alterations Associate with Tumor Aggressiveness and Poor Outcome in Glioblastoma. Front. Oncol. 2020, 10, 535. [Google Scholar] [CrossRef]
- Udutha, S.; Taglang, C.; Batsios, G.; Gillespie, A.M.; Tran, M.; Ronen, S.M.; Hoeve, J.T.; Graeber, T.G.; Viswanath, P. Telomerase Reverse Transcriptase Induces Targetable Alterations in Glutathione and Nucleotide Biosynthesis in Glioblastomas. bioRxiv 2023. [Google Scholar] [CrossRef]
- Zhu, Z.; Du, S.; Du, Y.; Ren, J.; Ying, G.; Zhao, Y. Glutathione Reductase Mediates Drug Resistance in Glioblastoma Cells by Regulating Redox Homeostasis. J. Neurochem. 2017, 144, 93. [Google Scholar] [CrossRef]
- Guo, B.; Liao, W.; Wang, S. The Clinical Significance of Glutathione Peroxidase 2 in Glioblastoma Multiforme. Transl. Neurosci. 2021, 12, 32. [Google Scholar] [CrossRef]
- Zheng, G.; Ke, T.; Zhao, W.; Shan, H.; Li, G.; Yang, X.; Ouyang, Z.; Wang, H.; Yang, H.; Liao, C. GSH-Responsive and Mitochondria-Targeting Multifunctional Nanoplatform for MR Imaging-Guided Enhanced Chemotherapy of Glioma by Reshaping the Tumor Immune Microenvironment. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Feng, W.; Lin, Y.; Pan, R.; Peng, Y.; Chen, M.; Kang, J.; Zhu, J.; Wang, J.; Wu, B.; Shen, W.; et al. Virus-Inspired Biodegradable Tetrasulfide-Bridged Mesoporous Organosilica with GSH Depletion for Fluorescence Imaging-Guided Sonodynamic Chemotherapy of Glioblastoma Multiforme. ACS Appl. Mater. Interfaces 2024, 16, 70407. [Google Scholar] [CrossRef]
- Chidambaram, S.B.; Anand, N.; Varma, S.; Ramamurthy, S.; Vichitra, C.; Sharma, A.; Mahalakshmi, A.M.; Essa, M.M. Superoxide Dismutase and Neurological Disorders. IBRO Neurosci. Rep. 2024, 16, 373. [Google Scholar] [CrossRef] [PubMed]
- Su, I.; Su, Y.-K.; Setiawan, S.A.; Yadav, V.K.; Fong, I.-H.; Yeh, C.; Lin, C.; Liu, H.-W. NADPH Oxidase Subunit CYBB Confers Chemotherapy and Ferroptosis Resistance in Mesenchymal Glioblastoma via Nrf2/SOD2 Modulation. Int. J. Mol. Sci. 2023, 24, 7706. [Google Scholar] [CrossRef] [PubMed]
- Flor, S.; Oliva, C.R.; Ali, M.Y.; Coleman, K.L.; Greenlee, J.D.W.; Jones, K.A.; Monga, V.; Griguer, C.E. Catalase Overexpression Drives an Aggressive Phenotype in Glioblastoma. Antioxidants 2021, 10, 1988. [Google Scholar] [CrossRef] [PubMed]
- Glorieux, C.; Calderón, P.B. Targeting Catalase in Cancer. Redox Biol. 2024, 77, 103404. [Google Scholar] [CrossRef]
- Popov, B.; Gadjeva, V.; Valkanov, P.; Popova, S.; Tolekova, A. Lipid Peroxidation, Superoxide Dismutase and Catalase Activities in Brain Tumor Tissues. Arch. Physiol. Biochem. 2003, 111, 455. [Google Scholar] [CrossRef] [PubMed]
- Starska, K. Dietary Carotenoids in Head and Neck Cancer—Molecular and Clinical Implications. Nutrients 2022, 14, 531. [Google Scholar] [CrossRef] [PubMed]
- Dewanjee, S.; Das, S.; Joardar, S.; Bhattacharjee, S.; Chakraborty, P. Carotenoids as Anticancer Agents. In Springer eBooks; Springer Nature: Berlin/Heidelberg, Germany, 2021; p. 475. [Google Scholar]
- Niranjana, R.; Gayathri, R.; Mol, S.N.; Sugawara, T.; Hirata, T.; Miyashita, K.; Ponesakki, G. Carotenoids Modulate the Hallmarks of Cancer Cells. J. Funct. Foods 2014, 18, 968. [Google Scholar] [CrossRef]
- Hussain, Y.; Abdullah; Alsharif, K.F.; Aschner, M.; Theyab, A.; Khan, F.; Saso, L.; Khan, H. Therapeutic Role of Carotenoids in Blood Cancer: Mechanistic Insights and Therapeutic Potential. Nutrients 2022, 14, 1949. [Google Scholar] [CrossRef]
- Koklesová, L.; Líšková, A.; Samec, M.; Buhrmann, C.; Samuel, S.M.; Varghese, E.; Ashrafizadeh, M.; Najafi, M.; Shakibaei, M.; Büsselberg, D.; et al. Carotenoids in Cancer Apoptosis—The Road from Bench to Bedside and Back. Cancers 2020, 12, 2425. [Google Scholar] [CrossRef]
- Safahi, S.E.; Lotfabadi, N.N. Astaxanthin and Cancer: A Comprehensive Review of Research. Int. J. New Find. Health Educ. Sci. IJHES 2024, 2, 154. [Google Scholar]
- Siangcham, T.; Vivithanaporn, P.; Sangpairoj, K. Anti-Migration and Invasion Effects of Astaxanthin against A172 Human Glioblastoma Cell Line. Asian Pac. J. Cancer Prev. 2020, 21, 2029. [Google Scholar] [CrossRef]
- Rezaee, A.; Radmanesh, M.; Asghari, A.; Nazari, A.; Shahidi, A.A.; Chahardehi, A.M.; Arefnezhad, R.; Farkhondeh, T.; Saminin, M.; Samarghandian, S. Astaxanthin Is a Novel Candidate for Glioblastoma Treatment? A Review. Curr. Med. Chem. 2024, 32, 6231–6245. [Google Scholar] [CrossRef]
- Yu, J.; Lin, M.; Zhang, W.R.; Lao, F.; Huang, H. Astaxanthin Prevents Oxidative Damage and Cell Apoptosis Under Oxidative Stress Involving the Restoration of Mitochondrial Function. Cell Biochem. Funct. 2024, 42, e70027. [Google Scholar] [CrossRef]
- Tsuji, S.; Nakamura, S.; Maoka, T.; Yamada, T.; Imai, T.; Ohba, T.; Yako, T.; Hayashi, M.; Endo, K.; Saio, M.; et al. Antitumour Effects of Astaxanthin and Adonixanthin on Glioblastoma. Mar. Drugs 2020, 18, 474. [Google Scholar] [CrossRef]
- Shafe, M.O.; Gumede, N.M.; Nyakudya, T.T.; Chivandi, E. Lycopene: A Potent Antioxidant with Multiple Health Benefits. J. Nutr. Metab. 2024, 2024, 6252426. [Google Scholar] [CrossRef]
- Yasmeen, N.; Aga, S.S.; Nissar, S. Lycopene. In Elsevier eBooks; Elsevier: Amsterdam, The Netherlands, 2022; p. 115. [Google Scholar]
- Imran, M.; Ghorat, F.; Ul-Haq, I.; Ur-Rehman, H.; Aslam, F.; Heydari, M.; Shariati, M.A.; Okuskhanova, E.; Yessimbekov, Z.; Thiruvengadam, M.; et al. Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders. Antioxidants 2020, 9, 706. [Google Scholar] [CrossRef]
- Ko, H.-J.; Su, Y.; Loh, J.; Tsai, C.Y. Lycopene Induces Cytotoxicity through Apoptosis via Mitochondrial Reactive Oxygen Species in Glioblastoma. Formos. J. Surg. 2024, 57, 181–188. [Google Scholar] [CrossRef]
- Czarnik-Kwaśniak, J.; Kwaśniak, K.; Kwasek, P.; Świerzowska, E.; Strojewska, A.; Tabarkiewicz, J. The Influence of Lycopene, [6]-Gingerol, and Silymarin on the Apoptosis on U-118MG Glioblastoma Cells In Vitro Model. Nutrients 2019, 12, 96. [Google Scholar] [CrossRef]
- Guo, Z.; Li, M.; Li, X.; Wang, P.; Wang, W.; Du, W.-Z.; Yang, Z.; Chen, S.; Wu, D.; Tian, X. Crocetin: A Systematic Review. Front. Pharmacol. 2022, 12, 745683. [Google Scholar] [CrossRef] [PubMed]
- Frusciante, S.; Demurtas, O.C.; Sulli, M.; Mini, P.; Aprea, G.; Diretto, G.; Karcher, D.; Bock, R.; Giuliano, G. Heterologous Expression of Bixa Orellana Cleavage Dioxygenase 4–3 Drives Crocin but Not Bixin Biosynthesis. Plant Physiol. 2021, 188, 1469. [Google Scholar] [CrossRef] [PubMed]
- Colapietro, A.; Mancini, A.; Vitale, F.; Martellucci, S.; Angelucci, A.; Llorens, S.; Mattei, V.; Gravina, G.L.; Alonso, G.L.; Festuccia, C. Crocetin Extracted from Saffron Shows Antitumor Effects in Models of Human Glioblastoma. Int. J. Mol. Sci. 2020, 21, 423. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.-E.; Liu, Y.-T.; Kuo, F.-H.; Cheng, W.-Y.; Shen, C.; Chiao, M.; Huang, Y.-F.; Liang, Y.-J.; Yang, Y.; Hsieh, W.-Y.; et al. Crocetin Enhances Temozolomide Efficacy in Glioblastoma Therapy Through Multiple Pathway Suppression. Curr. Neurovascular Res. 2024, 21, 320. [Google Scholar] [CrossRef]
- Murillo, A.G.; Hu, S.; Fernández, M.L. Zeaxanthin: Metabolism, Properties, and Antioxidant Protection of Eyes, Heart, Liver, and Skin. Antioxidants 2019, 8, 390. [Google Scholar] [CrossRef]
- Bouyahya, A.; Omari, N.E.; Hakkur, M.; Hachlafi, N.E.; Charfi, S.; Balahbib, A.; Guaouguaou, F.; Rebezov, M.; Maksimiuk, N.; Shariati, M.A.; et al. Sources, Health Benefits, and Biological Properties of Zeaxanthin. Trends Food Sci. Technol. 2021, 118, 519. [Google Scholar] [CrossRef]
- Lu, F.; Wu, Q.; Lei, J.; Zhou, Y.; Liu, Y.; Zhu, N.; You, Y.; Li, L.; Hu, M. Zeaxanthin Impairs Angiogenesis and Tumor Growth of Glioblastoma: An in Vitro and in Vivo Study. Arch. Biochem. Biophys. 2024, 754, 109957. [Google Scholar] [CrossRef]
- Kumar, R.; Khan, M.I.; Prasad, M.; Kumar, S.R.; Kumar, S.S. Preclinical and Clinical Role of Coenzyme Q10 Supplementation in Various Pathological States. Drug Res. 2022, 72, 367. [Google Scholar] [CrossRef] [PubMed]
- Silić, I.A. Coenzyme Q10: A Ubiquitous Supplemental Enzyme Contributing to the Health. Sci. Insights 2023, 43, 1129. [Google Scholar] [CrossRef]
- Littarru, G.P.; Brugè, F.; Tiano, L. Biochemistry of Coenzyme Q10. In Trends in Andrology and Sexual Medicine; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; p. 23. [Google Scholar]
- Gasmi, A.; Bjørklund, G.; Mujawdiya, P.K.; Semenova, Y.; Piscopo, S.; Peana, M. Coenzyme Q 10 in Aging and Disease. Crit. Rev. Food Sci. Nutr. 2022, 64, 3907. [Google Scholar] [CrossRef]
- Sun, J.; Merchant, M.; Diers, A.R.; Kazerounian, S.; Gesta, S.; Narain, N.R.; Sarangarajan, R.; Nagpal, S.; Recht, L.D. Abstract 2968: BPM31510, a Coenzyme Q10 (CoQ10) Containing Lipid Nanodispersion, Enhances Radiation Effects to Prolong Survival in a Rodent Glioblastoma Model. Cancer Res. 2020, 80, 2968. [Google Scholar] [CrossRef]
- Liao, C.-C.; Jhunjhunwala, M.; Chung, L.-H.; Chen, C. Abstract 2931: The Compounding Effects of Coenzyme Q10 and Radiation Treatment on Glial Fibrillary Acidic Protein Network of Glioma in Vitro. Cancer Res. 2019, 79, 2931. [Google Scholar] [CrossRef]
- Burić, S.S.; Podolski-Renić, A.; Dinić, J.; Stanković, T.; Jovanović, M.; Hadžić, S.; Ayuso, J.M.; Virumbrales-Muñoz, M.; Fernández, L.J.; Ochoa, I.; et al. Modulation of Antioxidant Potential with Coenzyme Q10 Suppressed Invasion of Temozolomide-Resistant Rat Glioma In Vitro and In Vivo. Oxidative Med. Cell. Longev. 2019, 2019, 3061607. [Google Scholar] [CrossRef]
- Stocksdale, B.; Bertrand, S.; Villanueva, E.; Naya, L.; Molaie, D.; Lyng, A.; Berman, B.; Vishnudas, V.K.; Kiebish, M.A.; Gesta, S.; et al. CTNI-27. Trial in progress a phase 2 study of bpm 31510 (an oxidized COQ10-lipid conjugate nanodispersion) with Vitamin K and standard chemoradiation in newly diagnosed glioblastoma. Neuro-Oncol. 2023, 25, v80. [Google Scholar] [CrossRef]
- Fatima, M.; Hussain, S.; Babar, M.; Shahzad, M.; Zafar, M.S. Curcumin. In Advances in Medical Diagnosis, Treatment, and Care (AMDTC); Book Series; IGI Global: Palmdale, PA, USA, 2023; p. 278. [Google Scholar]
- da Lopes, L.S.; Pereira, S.K.S.; Lima, L.K.F. Pharmacokinetics and Pharmacodynamics of Curcumin; Springer: Berlin/Heidelberg, Germany, 2023; p. 3. [Google Scholar]
- Nowacka, A.; Ziółkowska, E.; Smuczyński, W.; Bożiłow, D.; Śniegocki, M. Potential of Curcumin and Its Analogs in Glioblastoma Therapy. Antioxidants 2025, 14, 351. [Google Scholar] [CrossRef]
- Wong, S.C.; Kamarudin, M.N.A.; Naidu, R. Anticancer Mechanism of Curcumin on Human Glioblastoma. Nutrients 2021, 13, 950. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jung, C.; Lee, W.S.; Kim, H.; Jeong, H.-J.; Park, M.; Jang, W.I.; Kim, E.H. Interaction of Curcumin with Glioblastoma Cells via High and Low Linear Energy Transfer Radiation Therapy Inducing Radiosensitization Effects. J. Radiat. Res. 2022, 63, 342. [Google Scholar] [CrossRef] [PubMed]
- Seyithanoğlu, M.H.; Abdallah, A.; Kitiş, S.; Güler, E.M.; Koçyiğit, A.; Dündar, T.T.; Papaker, M.G. Investigation of Cytotoxic, Genotoxic, and Apoptotic Effects of Curcumin on Glioma Cells. Cell. Mol. Biol. 2019, 65, 101. [Google Scholar] [CrossRef]
- Gersey, Z.C.; Rodriguez, G.A.; Barbarite, E.; Sanchez, A.; Walters, W.; Ohaeto, K.C.; Komotar, R.J.; Graham, R.M. Curcumin Decreases Malignant Characteristics of Glioblastoma Stem Cells via Induction of Reactive Oxygen Species. BMC Cancer 2017, 17, 99. [Google Scholar] [CrossRef]
- Zoi, V.; Galani, V.; Vartholomatos, E.; Zacharopoulou, N.; Tsoumeleka, E.; Gkizas, G.; Bozios, G.; Tsekeris, P.; Chousidis, I.; Leonardos, I.; et al. Curcumin and Radiotherapy Exert Synergistic Anti-Glioma Effect In Vitro. Biomedicines 2021, 9, 1562. [Google Scholar] [CrossRef]
- Serafino, A.; Krasnowska, E.K.; Romanò, S.; Gregorio, A.D.; Colone, M.; Dupuis, M.L.; Bonucci, M.; Ravagnan, G.; Stringaro, A.; Fuggetta, M.P. The Synergistic Combination of Curcumin and Polydatin Improves Temozolomide Efficacy on Glioblastoma Cells. Int. J. Mol. Sci. 2024, 25, 10572. [Google Scholar] [CrossRef]
- Ağca, C.A. Homocysteine-Induced Damage of Cultured Glioblastoma Cells: Amelioration by Curcumin. Neurophysiology 2019, 51, 416. [Google Scholar] [CrossRef]
- Lee, J.E.; Yoon, S.-S.; Moon, E. Curcumin-Induced Autophagy Augments Its Antitumor Effect against A172 Human Glioblastoma Cells. Biomol. Ther. 2019, 27, 484. [Google Scholar] [CrossRef]
- Su, X.; Chen, S.; Lu, H.; Li, H.; Qin, C. Study on the Inhibitory Effect of Curcumin on GBM and Its Potential Mechanism. Drug Des. Dev. Ther. 2021, 15, 2769–2781. [Google Scholar] [CrossRef]
- Luo, S.-M.; Wu, Y.; Huang, L.; Huang, S.; Hueng, D. The Anti-Cancer Effect of Four Curcumin Analogues on Human Glioma Cells. OncoTargets Ther. 2021, 14, 4345–4359. [Google Scholar] [CrossRef]
- He, Y.; Wu, C.; Duan, J.; Miao, J.; Ren, H.; Liu, J. Anti-Glioma Effect with Targeting Therapy Using Folate Modified Nano-Micelles Delivery Curcumin. J. Biomed. Nanotechnol. 2020, 16, 1–13. [Google Scholar] [CrossRef]
- Gallien, J.; Srinageshwar, B.; Gallo, K.; Holtgrefe, G.; Koneru, S.; Otero, P.; Bueno, C.A.; Mosher, J.; Roh, A.; Kohtz, D.S.; et al. Curcumin Loaded Dendrimers Specifically Reduce Viability of Glioblastoma Cell Lines. Molecules 2021, 26, 6050. [Google Scholar] [CrossRef] [PubMed]
- Abhinav, S.; Pentu, N.; Rao, T.R. An Updated Review on Flavonoids. Pharma Innov. 2024, 13, 1–8. [Google Scholar] [CrossRef]
- Priya, M.G.R.; Priya, R.; Mahesh, J.; Dasappa, P.; Murali, G.; Shivanna, M.B.; Solomon, V.R. A Comprehensive Overview of the Chemistry and Biological Activities of Flavonoids. Curr. Drug Ther. 2025, 20, e15748855345598. [Google Scholar] [CrossRef]
- Ku, Y.; Ng, M.; Cheng, S.; Lo, A.W.-Y.; Xiao, Z.; Shin, T.; Chung, G.; Lam, H. Understanding the Composition, Biosynthesis, Accumulation and Transport of Flavonoids in Crops for the Promotion of Crops as Healthy Sources of Flavonoids for Human Consumption. Nutrients 2020, 12, 1717. [Google Scholar] [CrossRef]
- Hasnat, H.; Shompa, S.A.; Islam, M.; Alam, S.; Richi, F.T.; Emon, N.U.; Ashrafi, S.; Ahmed, N.U.; Chowdhury, M.N.R.; Fatema, N.; et al. Flavonoids: A Treasure House of Prospective Pharmacological Potentials. Heliyon 2024, 10, e27533. [Google Scholar] [CrossRef]
- Singh, S.; Verma, R. Exploring the Therapeutic Potential of Flavonoids in the Management of Cancer. Curr. Pharm. Biotechnol. 2024, 26, 17. [Google Scholar] [CrossRef]
- Parmenter, B.H.; Thompson, A.S.; Bondonno, N.P.; Jennings, A.; Murray, K.; Perez-Cornago, A.; Hodgson, J.M.; Tresserra-Rimbau, A.; Kühn, T.; Cassidy, A. High Diversity of Dietary Flavonoid Intake Is Associated with a Lower Risk of All-Cause Mortality and Major Chronic Diseases. Nat. Food 2025, 6, 668–680. [Google Scholar] [CrossRef]
- Kusaczuk, M.; Tovar-Ambel, E.; Martín-Cabrera, P.; Lorente, M.; Salvador, N.; Mikłosz, A.; Chabowski, A.; Velasco, G.; Naumowicz, M. Cytotoxicity, Proapoptotic Activity and Drug-like Potential of Quercetin and Kaempferol in Glioblastoma Cells: Preclinical Insights. Int. J. Mol. Sci. 2024, 25, 10740. [Google Scholar] [CrossRef]
- Chen, B.; Li, X.; Wu, L.; Zhou, D.; Song, Y.; Zhang, L.; Wu, Q.; He, Q.; Wang, G.; Liu, X.; et al. Quercetin Suppresses Human Glioblastoma Migration and Invasion via GSK3β/β-Catenin/ZEB1 Signaling Pathway. Front. Pharmacol. 2022, 13, 963614. [Google Scholar] [CrossRef]
- Kim, H.I.; Lee, S.J.; Choi, Y.-J.; Kim, M.J.; Kim, T.Y.; Ko, S. Quercetin Induces Apoptosis in Glioblastoma Cells by Suppressing Axl/IL-6/STAT3 Signaling Pathway. Am. J. Chin. Med. 2021, 49, 767. [Google Scholar] [CrossRef]
- Baba, R.A.; Mir, H.A.; Mokhdomi, T.A.; Bhat, H.F.; Ahmad, A.; Khanday, F.A. Quercetin Suppresses ROS Production and Migration by Specifically Targeting Rac1 Activation in Gliomas. Front. Pharmacol. 2024, 15, 1318797. [Google Scholar] [CrossRef]
- Wang, L.; Ji, S.; Liu, Z.; Zhao, J. Quercetin Inhibits Glioblastoma Growth and Prolongs Survival Rate through Inhibiting Glycolytic Metabolism. Chemotherapy 2022, 67, 132. [Google Scholar] [CrossRef]
- Pourmasoumi, P.; Abdouss, M.; Farhadi, M.; Jameie, S.B.; Khonakdar, H.A. Co-Delivery of Temozolomide and Quercetin with Folic Acid-Conjugated Exosomes in Glioblastoma Treatment. Nanomedicine 2024, 19, 2271–2287. [Google Scholar] [CrossRef]
- Bhandarkar, S.; Prabhakar, B.; Shende, P. Quercetin-loaded Platelets as a Potential Targeted Therapy for Glioblastoma Multiforme Cell Line U373-MG. Biotechnol. J. 2021, 16, 2100271. [Google Scholar] [CrossRef] [PubMed]
- Joma, N.; Zhang, I.; Righetto, G.L.; McKay, L.M.; Gran, E.R.; Kakkar, A.; Maysinger, D. Flavonoids Regulate Redox-Responsive Transcription Factors in Glioblastoma and Microglia. Cells 2023, 12, 2821. [Google Scholar] [CrossRef] [PubMed]
- Beltzig, L.; Christmann, M.; Dobreanu, M.; Kaina, B. Genotoxic and Cytotoxic Activity of Fisetin on Glioblastoma Cells. Anticancer Res. 2024, 44, 901. [Google Scholar] [CrossRef]
- da Silva, A.B.; Coelho, P.L.C.; Oliveira, M.N.; Oliveira, J.L.; Amparo, J.A.O.; da Silva, K.C.; Soares, J.R.P.; Pitanga, B.P.S.; Souza, C.D.S.; de Lopes, G.P.F.; et al. The Flavonoid Rutin and Its Aglycone Quercetin Modulate the Microglia Inflammatory Profile Improving Antiglioma Activity. Brain Behav. Immun. 2019, 85, 170. [Google Scholar] [CrossRef]
- Lima, I.S.; Soares, É.N.; Nonaka, C.K.V.; de Souza, B.S.F.; dos Santos, B.L.; Costa, S.L. Flavonoid Rutin Presented Anti-Glioblastoma Activity Related to the Modulation of Onco miRNA-125b Expression and STAT3 Signaling and Impact on Microglia Inflammatory Profile. Brain Sci. 2024, 14, 90. [Google Scholar] [CrossRef]
- de Oliveira, C.T.P.; Colenci, R.; Pacheco, C.C.; Mariano, P.M.; do Prado, P.R.; Mamprin, G.P.R.; Santana, M.G.; Gambero, A.; de Carvalho, P.O.; Priolli, D.G. Hydrolyzed Rutin Decreases Worsening of Anaplasia in Glioblastoma Relapse. CNS Neurol. Disord.-Drug Targets 2019, 18, 405. [Google Scholar] [CrossRef]
- Erçelik, M.; Tekin, Ç.; Parın, F.N.; Mutlu, B.; Dogan, H.Y.; Tezcan, G.; Aksoy, S.A.; Gurbuz, M.; Yıldırım, K.; Bekâr, A.; et al. Co-Loading of Temozolomide with Oleuropein or Rutin into Polylactic Acid Core-Shell Nanofiber Webs Inhibit Glioblastoma Cell by Controlled Release. Int. J. Biol. Macromol. 2023, 253, 126722. [Google Scholar] [CrossRef] [PubMed]
- Stump, T.A.; Santee, B.; Williams, L.P.; Kunze, R.; Heinze, C.E.; Huseman, E.D.; Gryka, R.J.; Simpson, D.S.; Amos, S. The Antiproliferative and Apoptotic Effects of Apigenin on Glioblastoma Cells. J. Pharm. Pharmacol. 2017, 69, 907. [Google Scholar] [CrossRef] [PubMed]
- Lotfi, M.-S.; Jafari-Sabet, M. Comparative in Silico Study of Apigenin and Its Dimeric Forms on PIM1 Kinase in Glioblastoma Multiform. Comput. Biol. Chem. 2024, 113, 108253. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, H.; Jia, C.; Fan, K.; Xie, T.; Zhu, Z.; Xie, M.-L. Apigenin Increases Radiosensitivity of Glioma Stem Cells by Attenuating HIF-1α-Mediated Glycolysis. Med. Oncol. 2021, 38, 131. [Google Scholar] [CrossRef]
- Shendge, A.K.; Chaudhuri, D.; Mandal, N. The Natural Flavones, Acacetin and Apigenin, Induce Cdk-Cyclin Mediated G2/M Phase Arrest and Trigger ROS-Mediated Apoptosis in Glioblastoma Cells. Mol. Biol. Rep. 2021, 48, 539. [Google Scholar] [CrossRef]
- Xu, J.; Sun, S.; Zhang, W.; Dong, J.; Huang, C.; Wang, X.; Jia, M.; Yang, H.; Wang, Y.; Jiang, Y.; et al. Irigenin Inhibits Glioblastoma Progression through Suppressing YAP/β-Catenin Signaling. Front. Pharmacol. 2022, 13, 1027577. [Google Scholar] [CrossRef]
- Chen, S.; Ma, J.; Yang, L.; Teng, M.; Lai, Z.; Chen, X.; He, J. Anti-Glioblastoma Activity of Kaempferol via Programmed Cell Death Induction: Involvement of Autophagy and Pyroptosis. Front. Bioeng. Biotechnol. 2020, 8, 614419. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Y.; Chen, J.; Xiong, N.; Yi, D. Kaempferol Suppresses Glioma Progression and Synergistically Enhances the Antitumor Activity of Gefitinib by Inhibiting the EGFR/SRC/STAT3 Signaling Pathway. Drug Dev. Res. 2023, 84, 582. [Google Scholar] [CrossRef]
- dos Santos, J.S.; Suzan, A.J.; Bonafé, G.A.; Fernandes, A.M.A.P.; Longato, G.B.; Antônio, M.A.; de Carvalho, P.O.; Ortega, M.M. Kaempferol and Biomodified Kaempferol from Sophora Japonica Extract as Potential Sources of Anti-Cancer Polyphenolics against High Grade Glioma Cell Lines. Int. J. Mol. Sci. 2023, 24, 10716. [Google Scholar] [CrossRef]
- Rauf, A.; Soonmin, H.; Khan, M.U.; Khurram, I.; Akram, Z.; Al-Awthan, Y.S.; Bahattab, O.; Iriti, M. Anticancer Potential of Flavonoids Isolated from Pistacia Chinensis against Glioblastoma (U87) Cell Line: Extensive in Vitro and in Silico Research. Eurasian J. Med. Oncol. 2025, 9, 144. [Google Scholar] [CrossRef]
- Papapetrou, P.; Dimitriadis, K.; Galani, V.; Zoi, V.; Giannakopoulou, M.; Papathanasopoulou, V.A.; Sioka, C.; Tsekeris, P.; Kyritsis, A.P.; Lazari, D.; et al. Antitumor Activity of 5-Hydroxy-3′,4′,6,7-Tetramethoxyflavone in Glioblastoma Cell Lines and Its Antagonism with Radiotherapy. Biomol. Concepts 2024, 15, 20220039. [Google Scholar] [CrossRef]
- Kuduvalli, S.S.; Precilla, D.S.; Biswas, I.; Anitha, T.S. The Synergistic Anti-Warburg Efficacy of Temozolomide, Metformin and Epigallocatechin Gallate in Glioblastoma. bioRxiv 2022. [Google Scholar] [CrossRef]
- Kuduvalli, S.S.; Precilla, D.S.; Vaithy, A.; Purushothaman, M.; Muralidharan, A.R.; Agiesh, K.B.; Mezger, M.; Antony, J.S.; Subramani, M.; Dubashi, B.; et al. A Combination of Metformin and Epigallocatechin Gallate Potentiates Glioma Chemotherapy in Vivo. Front. Pharmacol. 2023, 14, 1096614. [Google Scholar] [CrossRef]
- Sajjadi, R.S.; Ahmadi, S.; Mantashloo, M.; Layeghi, S.M.; Asgari, Y.; Ghorbani, M.; Mohammadi, S.D.; Saffari, M. Combination of Arsenic Trioxide Epigallocatechin-3-Gallate and Resveratrol Synergistically Suppresses the Growth and Invasion in Brain Tumor Cell Lines. bioRxiv 2020. [Google Scholar] [CrossRef]
- Rahman, A.A.; Ngah, W.Z.W.; Jamal, R.; Makpol, S.; Harun, R.; Mokhtar, N.M. Inhibitory Mechanism of Combined Hydroxychavicol With Epigallocatechin-3-Gallate Against Glioma Cancer Cell Lines: A Transcriptomic Analysis. Front. Pharmacol. 2022, 13, 844199. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Pandey, A.K. Epicatechin an Incredible Tool to Dissociate MDM2-P53 Interaction for Treatment of Glioblastomas: A Molecular Docking and Molecular Dynamics Simulation Approach. Netw. Model. Anal. Health Inform. Bioinform. 2021, 10, 6. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Sun, K.; Wang, X.; Pan, H.; Zhu, J.; Ji, X.; Li, X. Chrysin Suppresses Proliferation, Migration, and Invasion in Glioblastoma Cell Lines via Mediating the ERK/Nrf2 Signaling Pathway. Drug Des. Dev. Ther. 2018, 12, 721–733. [Google Scholar] [CrossRef]
- Mahdi, W.A.; Alanazi, M.M.; Imam, S.S.; Alshehri, S.; Hussain, A.; Altamimi, M.A.; Alhudaithi, S.S. Formulation of Multicomponent Inclusion Complex of Cyclodextrin-Amino Acid with Chrysin: Physicochemical Characterization, Cell Viability and Apoptosis Assessment in Human Primary Glioblastoma Cell Line. Int. J. Pharm. X 2023, 6, 100211. [Google Scholar] [CrossRef]
- Yuan, J.; Peng, G.; Xiao, G.; Yang, Z.; Huang, J.; Liu, Q.; Yang, Z.; Liu, D. Xanthohumol Suppresses Glioblastoma via Modulation of Hexokinase 2 -Mediated Glycolysis. J. Cancer 2020, 11, 4047. [Google Scholar] [CrossRef]
- Festa, M.; Capasso, A.; D’Acunto, C.W.; Masullo, M.; Rossi, A.G.; Pìzza, C.; Piacente, S. Xanthohumol Induces Apoptosis in Human Malignant Glioblastoma Cells by Increasing Reactive Oxygen Species and Activating MAPK Pathways. J. Nat. Prod. 2011, 74, 2505. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, G.; Sheng, C.; Lei, J.; Song, S.; Zhu, J. Hispidulin Enhances Temozolomide (TMZ)-Induced Cytotoxicity against Malignant Glioma Cells In Vitro by Inhibiting Autophagy. Comput. Intell. Neurosci. 2022, 2022, 5266770. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liu, X.; Jianxin, Q.; Cao, B. Silibinin Suppresses Glioblastoma Cell Growth, Invasion, Stemness, and Glutamine Metabolism by YY1/SLC1A5 Pathway. Transl. Neurosci. 2024, 15, 20220333. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Tay, V.; Guo, S.; Ren, J.; Shu, M. Silibinin Induced Human Glioblastoma Cell Apoptosis Concomitant with Autophagy through Simultaneous Inhibition of mTOR and YAP. BioMed Res. Int. 2018, 2018, 6165192. [Google Scholar] [CrossRef]
- Wiciński, M.; Erdmann, J.; Nowacka, A.; Kuźmiński, O.; Michalak, K.; Janowski, K.; Ohla, J.; Biernaciak, A.; Szambelan, M.; Zabrzyński, J. Natural Phytochemicals as SIRT Activators—Focus on Potential Biochemical Mechanisms. Nutrients 2023, 15, 3578. [Google Scholar] [CrossRef]
- Nowacka, A.; Śniegocka, M.; Smuczyński, W.; Liss, S.; Ziółkowska, E.; Bożiłow, D.; Śniegocki, M.; Wiciński, M. The Potential Application of Resveratrol and Its Derivatives in Central Nervous System Tumors. Int. J. Mol. Sci. 2024, 25, 13338. [Google Scholar] [CrossRef]
- Shinn, L.J.; Lagalwar, S. Treating Neurodegenerative Disease with Antioxidants: Efficacy of the Bioactive Phenol Resveratrol and Mitochondrial-Targeted MitoQ and SkQ. Antioxidants 2021, 10, 573. [Google Scholar] [CrossRef]
- Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The Therapeutic Potential of Resveratrol: A Review of Clinical Trials. NPJ Precis. Oncol. 2017, 1, 35. [Google Scholar] [CrossRef]
- Zhang, C.; Qian, P.; Tang, Y.; Wang, C.; Wang, S.; Dong, Y.; Hou, S.; Wang, Y.; Zhang, L.; Lin, N. Resveratrol Ameliorates Glioblastoma Inflammatory Response by Reducing NLRP3 Inflammasome Activation through Inhibition of the JAK2/STAT3 Pathway. J. Cancer Res. Clin. Oncol. 2024, 150, 168. [Google Scholar] [CrossRef]
- Jin, X.; Wang, Z.; Xu, H.; Liu, C.; Wei, Z.; Zhao, L.; Ren, L. Pak2 Inhibition Promotes Resveratrol-mediated Glioblastoma A172 Cell Apoptosis via Modulating the AMPK-YAP Signaling Pathway. J. Cell. Physiol. 2020, 235, 6563. [Google Scholar] [CrossRef]
- Sánchez-Melgar, A.; Muñoz-López, S.; Albasanz, J.L.; Martín, M. Antitumoral Action of Resveratrol Through Adenosinergic Signaling in C6 Glioma Cells. Front. Neurosci. 2021, 15, 702817. [Google Scholar] [CrossRef]
- Jia, B.; Zheng, X.; Wu, M.; Tian, X.; Xue, S.; Liu, Y.; Li, P.; Liu, J. Increased Reactive Oxygen Species and Distinct Oxidative Damage in Resveratrol-Suppressed Glioblastoma Cells. J. Cancer 2020, 12, 141. [Google Scholar] [CrossRef]
- Liu, Y.; Xue, S.; Wu, M.; Wu, J.; Liu, J. Synergistic Effects of Resveratrol and Temozolomide Against Glioblastoma Cells: Underlying Mechanism and Therapeutic Implications. Cancer Manag. Res. 2020, 12, 8341–8354. [Google Scholar] [CrossRef]
- Wu, M.; Song, D.; Li, H.; Ahmad, N.; Xu, H.; Yang, X.; Wang, Q.; Cheng, X.; Deng, S.; Shu, X. Resveratrol Enhances Temozolomide Efficacy in Glioblastoma Cells through Downregulated MGMT and Negative Regulators-Related STAT3 Inactivation. Int. J. Mol. Sci. 2023, 24, 9453. [Google Scholar] [CrossRef]
- Qian, L.; Mao, L.; Mo, W.; Wang, R.; Zhang, Y. Resveratrol Enhances the Radiosensitivity by Inducing DNA Damage and Antitumor Immunity in a Glioblastoma Rat Model under 3 T MRI Monitoring. J. Oncol. 2022, 2022, 9672773. [Google Scholar] [CrossRef]
- Yi, G.; Liu, H.; Sun, F.; Du, R.; Kong, J.; Wang, H.; Cheng, H.; Wang, G.; Gao, F.; Liang, P. Intratumor Injection of Thermosensitive Polypeptide with Resveratrol Inhibits Glioblastoma Growth. Tissue Eng. Part C Methods 2023, 29, 103. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.; Shah, S.; Yadav, H.N.; Ali, J.; Gupta, M.M.; Baboota, S. Quality by Design Engineered, Enhanced Anticancer Activity of Temozolomide and Resveratrol Coloaded NLC and Brain Targeting via Lactoferrin Conjugation in Treatment of Glioblastoma. Eur. J. Pharm. Biopharm. 2023, 191, 175. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.; Imran, M.; Gondal, T.A.; Imran, A.; Shahbaz, M.; Amir, R.M.; Sajid, M.; Qaisrani, T.B.; Atif, M.; Hussain, G.; et al. Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review. Appl. Sci. 2019, 9, 3139. [Google Scholar] [CrossRef]
- Khaksar, S.; Kiarostami, K.; Ramdan, M. Effect of Rosmarinic Acid on Cell Proliferation, Oxidative Stress, and Apoptosis Pathways in an Animal Model of Induced Glioblastoma Multiforme. Arch. Med. Res. 2024, 55, 103005. [Google Scholar] [CrossRef]
- Meng, X.; Li, Y.; Yan, Z.; Ye, S.; Wang, K.; Chen, J.; Yu, R.; Ma, Q. Sinularin Induces Autophagy-Dependent Cell Death by Activating ULK1 and Enhancing FOXO3-ATG4A Axis in Prostate Cancer Cells. Sci. Rep. 2025, 15, 15875. [Google Scholar] [CrossRef]
- Hsu, S.; Wen, Z.; Shih, P.; Kuo, H.; Lin, S.-C.; Liu, H.; Lee, Y.-H.; Wang, Y.-J.; Chen, W.-F.; Chen, N. Sinularin Induces Oxidative Stress-Mediated Apoptosis and Mitochondrial Dysfunction, and Inhibits Angiogenesis in Glioblastoma Cells. Antioxidants 2022, 11, 1433. [Google Scholar] [CrossRef]
- Alashry, A.; Morsy, T. Overview of Vitamin A. J. Egypt. Soc. Parasitol. 2021, 51, 29. [Google Scholar] [CrossRef]
- Carazo, A.; Macáková, K.; Matoušová, K.; Krčmová, L.K.; Protti, M.; Mladěnka, P. Vitamin A Update: Forms, Sources, Kinetics, Detection, Function, Deficiency, Therapeutic Use and Toxicity. Nutrients 2021, 13, 1703. [Google Scholar] [CrossRef]
- Osman, D.E.-R.; Phon, B.W.S.; Kamarudin, M.N.A.; Ponnampalam, S.N.; Radhakrishnan, A.K.; Bhuvanendran, S. Biomarkers Regulated by Lipid-Soluble Vitamins in Glioblastoma. Nutrients 2022, 14, 2873. [Google Scholar] [CrossRef]
- Abdelqader, A.; Obeidat, M.D.; Al-Rawashdeh, M.; Alhaj, A.A. The role of Vitamin E as an antioxidant and preventing damage caused by free radicals. J. Life Sci. Appl. Res. 2023, 4, 89–95. [Google Scholar] [CrossRef]
- Börmel, L.; Geisler, A.R.; Lorkowski, S.; Wallert, M. Importance of Vitamin E and Its Metabolism for Health and Disease. In Advances in Biochemistry in Health and Disease; Springer International Publishing: Berlin/Heidelberg, Germany, 2024; p. 181. [Google Scholar]
- Kowalska, A. Vitamin E: Overview of History of Discovery, Mechanism of Action, Role and Deficiency. Prospect. Pharm. Sci. 2024, 22, 76. [Google Scholar] [CrossRef]
- Gaby, S.K.; Machlin, L.J. Vitamin E. In CRC Press eBooks; CRC Press: Boca Raton, FL, USA, 2024; p. 71. [Google Scholar]
- Zaaboul, F.; Liu, Y. Vitamin E in Foodstuff: Nutritional, Analytical, and Food Technology Aspects. Compr. Rev. Food Sci. Food Saf. 2022, 21, 964. [Google Scholar] [CrossRef]
- Hsu, S.; Lin, Y.; Chen, H.Z.; Liang, W. Involvement of Oxidative Stress-related Apoptosis in Chlorpyrifos-induced Cytotoxicity and the Ameliorating Potential of the Antioxidant Vitamin E in Human Glioblastoma Cells. Environ. Toxicol. 2023, 38, 2143. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, W.; Liang, W. Investigation of Cytotoxicity and Oxidative Stress Induced by the Pyrethroid Bioallethrin in Human Glioblastoma Cells: The Protective Effect of Vitamin E (VE) and Its Underlying Mechanism. Chem. Res. Toxicol. 2022, 35, 880. [Google Scholar] [CrossRef]
- Ni, Y.-J.; Huang, Y.-Q.; Yu, L.; Zhang, X.; Zhu, Q.; Shu, L.; Zhang, L. Associations between Dietary Antioxidant Vitamins and Risk of Glioma: An Updated Systematic Review and Meta-Analysis of Observational Studies. Front. Nutr. 2024, 11, 1428528. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.C.; Maggini, S. Vitamin C and Immune Function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef] [PubMed]
- Pehlivan, F.E. Vitamin C: An Antioxidant Agent. In InTech eBooks; InTechOpen: London, UK, 2017. [Google Scholar]
- Bender, D.A.; Fontana, L. Vitamin C. In Elsevier eBooks; Elsevier: Amsterdam, The Netherlands, 2022; p. 504. [Google Scholar]
- Richard, S.A.; Sackey, M.; Kortei, N.K. Exploring the Pivotal Neurophysiologic and Therapeutic Potentials of Vitamin C in Glioma. J. Oncol. 2021, 2021, 6141591. [Google Scholar] [CrossRef]
- Jara, N.; Ramírez, E.; Ferrada, L.; Salazar, K.; Espinoza, F.; González-Chavarría, I.; Nualart, F. Vitamin C Deficient Reduces Proliferation in a Human Periventricular Tumor Stem Cell-derived Glioblastoma Model. J. Cell. Physiol. 2021, 236, 5801. [Google Scholar] [CrossRef]
- Piotrowsky, A.; Burkard, M.; Hammerschmidt, K.; Ruple, H.K.; Nonnenmacher, P.; Schumacher, M.; Leischner, C.; Berchtold, S.; Marongiu, L.; Kufer, T.A.; et al. Analysis of High-Dose Ascorbate-Induced Cytotoxicity in Human Glioblastoma Cells and the Role of Dehydroascorbic Acid and Iron. Antioxidants 2024, 13, 1095. [Google Scholar] [CrossRef]
- Burgess, E.R.; Praditi, C.; Phillips, E.; Vissers, M.C.M.; Robinson, B.A.; Dachs, G.U.; Wiggins, G.A.R. Role of Sodium-Dependent Vitamin C Transporter-2 and Ascorbate in Regulating the Hypoxic Pathway in Cultured Glioblastoma Cells. J. Cell. Biochem. 2024, 126, e30658. [Google Scholar] [CrossRef]
- Malloy, M.A.; Sudhir, S.; Khela, H.; Fagundo-Lugo, M.; Lal, B.; Bressler, J.; Laterra, J.; Bertoni, H.L. Abstract B009: Sub-Oxidant Ascorbate Sensitizes Glioblastoma Stem Cells to DNA Damaging Agents by Inducing DNA de-Methylation and Altering the Chromatin Landscape. Cancer Res. 2022, 82, B009. [Google Scholar] [CrossRef]
- Despotović, A.; Janjetović, K.; Zogović, N.; Tovilović, G. Pharmacological Akt and JNK Kinase Inhibitors 10-DEBC and SP600125 Potentiate Anti-Glioblastoma Effect of Menadione and Ascorbic Acid Combination in Human U251 Glioblastoma Cells. Biomedicines 2023, 11, 2652. [Google Scholar] [CrossRef] [PubMed]
- Zhai, K.; Siddiqui, M.; Abdellatif, B.; Líšková, A.; Kubatka, P.; Büsselberg, D. Natural Compounds in Glioblastoma Therapy: Preclinical Insights, Mechanistic Pathways, and Outlook. Cancers 2021, 13, 2317. [Google Scholar] [CrossRef] [PubMed]
- Persano, F.; Gigli, G.; Leporatti, S. Natural Compounds as Promising Adjuvant Agents in The Treatment of Gliomas. Int. J. Mol. Sci. 2022, 23, 3360. [Google Scholar] [CrossRef]
- Beylerli, O.; Beilerli, A.; Shumadalova, A.; Wang, X.; Yang, M.; Sun, H.; Teng, L. Therapeutic Effect of Natural Polyphenols against Glioblastoma. Front. Cell Dev. Biol. 2022, 10, 1036809. [Google Scholar] [CrossRef]
- Zhai, K.; Kubatka, P.; Büsselberg, D. Antitumor Effects Induced by Natural Molecules in the Brain. In Elsevier eBooks; Elsevier: Amsterdam, The Netherlands, 2024; p. 281. [Google Scholar]
- Luo, H.; Shusta, E.V. Blood–Brain Barrier Modulation to Improve Glioma Drug Delivery. Pharmaceutics 2020, 12, 1085. [Google Scholar] [CrossRef]
- Zhao, J.; Zang, F.-L.; Huo, X.; Zheng, S. Novel Approaches Targeting Ferroptosis in Treatment of Glioma. Front. Neurol. 2023, 14, 1292160. [Google Scholar] [CrossRef]
- Lin, J.; Xiao, W.; Hu, Z.; Liu, X.; Yuan, M. A Systematic Review of Nanoparticle-Mediated Ferroptosis in Glioma Therapy. Int. J. Nanomed. 2025, 20, 5779–5797. [Google Scholar] [CrossRef]
- Cheng, J.; Fan, Y.; Liu, B.; Zhou, H.; Wang, J.; Chen, Q. ACSL4 Suppresses Glioma Cells Proliferation via Activating Ferroptosis. Oncol. Rep. 2019, 43, 147–158. [Google Scholar] [CrossRef]
- D’Aprile, S.; Denaro, S.; Lavoro, A.; Candido, S.; Giallongo, S.; Torrisi, F.; Salvatorelli, L.; Lazzarino, G.; Amorini, A.M.; Lazzarino, G.; et al. Glioblastoma Mesenchymal Subtype Enhances Antioxidant Defence to Reduce Susceptibility to Ferroptosis. Sci. Rep. 2024, 14, 20770. [Google Scholar] [CrossRef]
- Norouzi, M.; Yathindranath, V.; Thliveris, J.A.; Kopec, B.M.; Siahaan, T.J.; Miller, D.W. Doxorubicin-Loaded Iron Oxide Nanoparticles for Glioblastoma Therapy: A Combinational Approach for Enhanced Delivery of Nanoparticles. Sci. Rep. 2020, 10, 11292. [Google Scholar] [CrossRef]
- Silva-Fisher, J.; Basso, J.; Mendes, M.; Sousa, J.; Pais, A.A.C.C.; Vitorino, C. Tailoring Drug and Gene Codelivery Nanosystems for Glioblastoma Treatment. In Elsevier eBooks; Elsevier: Amsterdam, The Netherlands, 2020; p. 141. [Google Scholar]
- Chung, S.; Sugimoto, Y.; Huang, J.; Zhang, M. Iron Oxide Nanoparticles Decorated with Functional Peptides for a Targeted siRNA Delivery to Glioma Cells. ACS Appl. Mater. Interfaces 2022, 15, 106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fu, X.; Jia, J.; Wikerholmen, T.; Xi, K.; Kong, Y.; Wang, J.; Chen, H.; Ma, Y.; Li, Z.; et al. Glioblastoma Therapy Using Codelivery of Cisplatin and Glutathione Peroxidase Targeting siRNA from Iron Oxide Nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 43408. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wen, J. Iron Oxide Nanoparticles Loaded with Paclitaxel Inhibits Glioblastoma by Enhancing Autophagy-Dependent Ferroptosis Pathway. Eur. J. Pharmacol. 2022, 921, 174860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xi, K.; Fu, X.; Sun, H.; Wang, H.; Yu, D.; Li, Z.; Ma, Y.; Liu, X.; Huang, B.; et al. Versatile Metal-Phenolic Network Nanoparticles for Multitargeted Combination Therapy and Magnetic Resonance Tracing in Glioblastoma. Biomaterials 2021, 278, 121163. [Google Scholar] [CrossRef]
- Ko, M.J.; Min, S.; Hong, H.; Yoo, W.; Joo, J.; Zhang, Y.S.; Kang, H.; Kim, D. Magnetic Nanoparticles for Ferroptosis Cancer Therapy with Diagnostic Imaging. Bioact. Mater. 2023, 32, 66. [Google Scholar] [CrossRef]
- Liu, B.; Ji, Q.; Cheng, Y.; Liu, M.; Zhang, B.; Mei, Q.; Liu, D.; Zhou, S. Biomimetic GBM-Targeted Drug Delivery System Boosting Ferroptosis for Immunotherapy of Orthotopic Drug-Resistant GBM. J. Nanobiotechnol. 2022, 20, 161. [Google Scholar] [CrossRef]
- Lim, X.Y.; Capinpin, S.M.; Bolem, N.; Foo, A.S.C.; Yip, G.W.; Kumar, A.P.; Teh, D.B.L. Biomimetic Nanotherapeutics for Targeted Drug Delivery to Glioblastoma Multiforme. Bioeng. Transl. Med. 2023, 8, e10483. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, S.; Lv, Z.; Yin, N.; Zhang, H.; Song, P.; Zhang, T.; Chen, Y.; Xu, H.-Y.; Wang, Y.; et al. An Intelligent Nanoplatform for Orthotopic Glioblastoma Therapy by Nonferrous Ferroptosis. Adv. Funct. Mater. 2022, 32, 2209227. [Google Scholar] [CrossRef]
- Zhang, F.; Zhuang, J.; de Ávila, B.E.F.; Tang, S.; Zhang, Q.; Fang, R.H.; Zhang, L.; Wang, J. A Nanomotor-Based Active Delivery System for Intracellular Oxygen Transport. ACS Nano 2019, 13, 11996. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, B.; Yan, M.; Liu, Y.; Zhao, R.; Wang, X.-N.; Shao, T.; Li, Y.; Imran, M.; Ji, M.; et al. Progress in Enzyme-Powered Micro/Nanomotors in Diagnostics and Therapeutics. Bioact. Mater. 2025, 46, 555. [Google Scholar] [CrossRef] [PubMed]
- Nwafor, D.C.; Obiri-Yeboah, D.; Fazad, F.; Blanks, W.; Mut, M. Focused Ultrasound as a Treatment Modality for Gliomas. Front. Neurol. 2024, 15, 1387986. [Google Scholar] [CrossRef] [PubMed]
- Seas, A.A.; Malla, A.P.; Sharifai, N.; Winkles, J.A.; Woodworth, G.F.; Anastasiadis, P. Microbubble-Enhanced Focused Ultrasound for Infiltrating Gliomas. Biomedicines 2024, 12, 1230. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, S.; Jiang, X.; Wu, Q.; Shen, W.; Zou, Z.; Wei, W.; Wu, C.; Gao, Y. Functional Paclitaxel-Manganese-Doped Mesoporous Silica Nanoparticles for Orthotopic Brain Glioma Targeted Therapy. Mater. Des. 2024, 238, 112715. [Google Scholar] [CrossRef]
- Wen, J.; Chen, H.; Ren, Z.; Zhang, P.; Chen, J.; Jiang, S. Ultrasmall Iron Oxide Nanoparticles Induced Ferroptosis via Beclin1/ATG5-Dependent Autophagy Pathway. Nano Converg. 2021, 8, 10. [Google Scholar] [CrossRef]
- Shadab, A.; Farokhi, S.; Fakouri, A.; Mohagheghzadeh, N.; Noroozi, A.A.; Razavi, Z.; Rouzbahani, A.K.; Zalpoor, H.; Mahjoor, M. Hydrogel-Based Nanoparticles: Revolutionizing Brain Tumor Treatment and Paving the Way for Future Innovations. Eur. J. Med. Res. 2025, 30, 71. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Wang, S.; Bing, X.; Ji, X.; He, D.; Han, M.; Wei, Y.; Wang, C.; Qian, X.; et al. Implantation of Hydrogel-Liposome Nanoplatform Inhibits Glioblastoma Relapse by Inducing Ferroptosis. Asian J. Pharm. Sci. 2023, 18, 100800. [Google Scholar] [CrossRef]
- Hao, X.; Wang, S.; Wang, L.; Li, J.; Li, Y.; Liu, J. Exosomes as Drug Delivery Systems in Glioma Immunotherapy. J. Nanobiotechnol. 2024, 22, 340. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.; Branscome, H.; Kashanchi, F.; Batrakova, E.V. Targeting of Extracellular Vesicle-Based Therapeutics to the Brain. Cells 2025, 14, 548. [Google Scholar] [CrossRef] [PubMed]
- Palombarini, F.; Fabio, E.D.; Boffi, A.; Macone, A.; Bonamore, A. Ferritin Nanocages for Protein Delivery to Tumor Cells. Molecules 2020, 25, 825. [Google Scholar] [CrossRef]
- Liu, W.; Lin, Q.; Fu, Y.; Huang, S.; Guo, C.; Li, L.; Wang, L.; Zhang, Z.; Zhang, L. Target Delivering Paclitaxel by Ferritin Heavy Chain Nanocages for Glioma Treatment. J. Control. Release 2019, 323, 191. [Google Scholar] [CrossRef]
- Meng, X.; Shen, Y.; Zhao, H.; Lu, X.; Wang, Z.; Zhao, Y. Redox-Manipulating Nanocarriers for Anticancer Drug Delivery: A Systematic Review. J. Nanobiotechnol. 2024, 22, 587. [Google Scholar] [CrossRef]
- Chen, M.; Liu, D.; Liu, F.; Wu, Y.; Peng, X.; Song, F. Recent Advances of Redox-Responsive Nanoplatforms for Tumor Theranostics. J. Control. Release 2021, 332, 269. [Google Scholar] [CrossRef]
- Fan, H.; Yan, G.; Zhao, Z.; Hu, X.; Zhang, W.; Liu, H.; Fu, X.; Fu, T.; Zhang, X.; Tan, W. A Smart Photosensitizer–Manganese Dioxide Nanosystem for Enhanced Photodynamic Therapy by Reducing Glutathione Levels in Cancer Cells. Angew. Chem. Int. Ed. 2016, 55, 5477. [Google Scholar] [CrossRef]
- Kim, H.S.; Seo, M.; Park, T.; Lee, D.Y. A Novel Therapeutic Strategy of Multimodal Nanoconjugates for State-of-the-Art Brain Tumor Phototherapy. J. Nanobiotechnol. 2022, 20, 14. [Google Scholar] [CrossRef]
- Overchuk, M.; Weersink, R.; Wilson, B.C.; Zheng, G. Photodynamic and Photothermal Therapies: Synergy Opportunities for Nanomedicine. ACS Nano 2023, 17, 7979. [Google Scholar] [CrossRef]
- Liu, X.; Pan, X.; Wang, C.; Liu, H. Modulation of Reactive Oxygen Species to Enhance Sonodynamic Therapy. Particuology 2022, 75, 199. [Google Scholar] [CrossRef]
- Tarantino, S.; Bianco, A.; Matteis, V.D.; Scarpa, E.; Rinaldi, R. Nanotechnology in Brain Cancer Treatment: The Role of Gold Nanoparticles as Therapeutic Enhancers. Ibrain 2025, 11, 119. [Google Scholar] [CrossRef]
- Guo, Q.; Tang, Y.; Wang, S.; Xia, X. Applications and Enhancement Strategies of ROS-Based Non-Invasive Therapies in Cancer Treatment. Redox Biol. 2025, 80, 103515. [Google Scholar] [CrossRef]
- He, M.; Wang, M.; Xu, T.; Zhang, M.; Dai, H.; Wang, C.; Ding, D.; Zhong, Z. Reactive Oxygen Species-Powered Cancer Immunotherapy: Current Status and Challenges. J. Control. Release 2023, 356, 623. [Google Scholar] [CrossRef]
- Zhang, J.; Pan, Y.; Liu, L.; Xu, Y.; Zhao, C.; Liu, W.; Rao, L. Genetically Edited Cascade Nanozymes for Cancer Immunotherapy. ACS Nano 2024, 18, 12295. [Google Scholar] [CrossRef] [PubMed]
Mechanism | Description | References |
---|---|---|
DNA Damage and Mutagenesis | ROS induce formation of 8-oxo-dG, leading to G→T transversion mutations | [23,33,46,47,48,49,50,51] |
Tumor Cell Proliferation and Survival | ROS modulate signaling pathways (e.g., MAPK) that support tumor growth | [30,33,34,37,38,39,40,41,42,43,57,58,59,60,61,62,63,64] |
Hypoxia-Driven ROS Production | Hypoxia increases ROS via HIF-1α signaling, promoting migration and invasion | [68,69] |
Immune Evasion | Oxidative stress promotes M2-like macrophage infiltration and suppresses NK cell activity | [75] |
Therapy Resistance | ROS contribute to selection of resistant glioma stem cells; antioxidant adaptation confers resistance | [65,92,93] |
Redox Imbalance and Metabolic Reprogramming | Oxidative stress upregulates glycolytic enzymes and DNA repair proteins (e.g., PKM2, APE1) | [84] |
ROS-Induced Cell Motility | Elevated ROS enhance glioma cell motility and mitochondrial activity | [91] |
Target | Function in GBM | Effect of Modulation | References |
---|---|---|---|
GPx1 | Antioxidant enzyme detoxifying H2O2 under hypoxic conditions | Depletion increases apoptosis and reduces tumor growth | [69] |
SOD3 | Regulates macrophage phenotype in TME | Inhibition reduces M2-like macrophage polarization | [75] |
TXNDC12 | Maintains redox homeostasis and supports tumor cell proliferation | Knockdown induces oxidative stress and reduces tumor growth | [103] |
NUDT1 | Controls mitochondrial ROS and prevents lipid peroxidation | Knockdown impairs mitochondrial function and induces cell death | [107] |
C/EBPβ | Transcriptionally activates NQO1 and GSTP1 | Knockdown increases ROS, reducing proliferation | [123] |
POLR2J | Regulates oxidative stress and unfolded protein response | Silencing enhances vorinostat cytotoxicity | [125] |
ALDH1L2 | Maintains NADPH levels and antioxidant capacity | Knockout increases ROS and oxidative imbalance | [126] |
Pathway or Target | Role in GBM | Therapeutic Implication | References |
---|---|---|---|
HIF-1α/SERPINE1 axis | Activated under hypoxia via ROS, enhances invasion and EMT | Targeting ROS or HIF-1α may disrupt hypoxia-driven malignancy | [68] |
SP/NK1R pathway | Promotes ROS generation and inhibits antioxidant systems | Aprepitant (NK1R antagonist) reduces ROS and induces cell death | [80,81,82,83] |
Thioredoxin and Glutaredoxin systems | Major redox regulatory enzymes affected by SP signaling | Restoration enhances antioxidant capacity | [81,82] |
APE1/PKM2/ENPP2 crosstalk | ROS-induced expression promotes DNA repair and glycolysis | May contribute to invasion and therapy resistance | [84] |
GGCT/Pyroglutamic acid | Linked to glutathione metabolism and protein aggregation in resistant cells | Marker of oxidative stress-related drug resistance | [92] |
CMA (Chaperone-Mediated Autophagy) | Triggered by ROS; absent in resistant GBM cells | Enhancing oxidative stress restores sensitivity to TMZ | [93] |
C/EBPβ–NQO1/GSTP1 axis | Regulates expression of antioxidant enzymes in GBM | Targeting transcriptional regulation of antioxidant genes | [123] |
iNOS/NO pathway | Protects GBM cells from PDT-induced ROS damage | Inhibition enhances ROS-based photodynamic therapy | [127] |
Antioxidant | Cellular Effects | Molecular Pathway Targets | Cellular Process Targets | Oxidative Stress Targets | References |
---|---|---|---|---|---|
Carotenoids–general | Cell cycle regulation, angiogenesis inhibition | Akt/PI3K/mTOR, PPAR, Wnt, NF-κB | cyclin/CDK, VEGF, MMPs | ↑ ROS production | [149,150,151] |
Astaxanthin | Reduced invasiveness | - | ↓ MMP-2 expression, ↓ MMP-9 activity | - | [154] |
Lycopene | Mitochondrial dysfunction | ↑ ERK activation | ↑ p53 expression | ↑ ROS | [161,162] |
Crocetin | Reduced invasiveness | ↓ RhoA, inhibits AKT signaling | ↓ MMP-9 | - | [166] |
Zeaxanthin | ↑ Apoptosis, disrupted oncogenic signaling | - | ↑ cleaved PARP, ↑ Caspase 3, ↓ VEGFR2 kinase | - | [169] |
Catalase (CAT) | ↓ Proliferation, ↑ resistance to TMZ/radiotherapy | - | ↓ CAT in nucleus/mitochondria | ↓ H2O2 levels | [129,145,146,147] |
Coenzyme Q10 | ↓ Invasiveness, ↑ sensitivity to TMZ, potential cell death at high concentrations | - | ATP production via electron transport, preserves GFAP network | ↓ ROS (low conc.), pro-oxidant (high conc.) | [170,171,172,174,175,176,177] |
Curcumin | ↓ Proliferation, ↑ apoptosis, ↓ invasion, ↓ GSC viability, G2/M arrest, ↑ autophagy | PI3K/Akt, MAPK, JAK/STAT, Shh, NF-κB, STAT3, Nrf2/HO-1 | Rb, p53, BCL-2, LC3B-II, p62, ENO1, MMP2, PRKD2 | ↑ ROS | [178,179,180,181,182,183,184,185,187,188,189,190,191,192] |
Quercetin | ↓ Viability, ↑ apoptosis, ↓ migration/invasion, ↓ proliferation, ↓ tumor growth | GSK3β/β-catenin/ZEB1, p-STAT3, Rac1 | Caspases, cleaved PARP, E-cadherin, N-cadherin, vimentin, Ki67, Axl, p66Shc | ↑ ROS, ↑ SOD expression, ↓ ROS (via Rac1) | [199,200,201,202,203] |
Fisetin | ↑ Apoptosis, ↑ DNA damage, ↓ therapy-induced senescence | Nrf2–KEAP1 complex | ↓ acHMGB1, ↑ TFEB, ↑ p53, ↓ DNA repair, ↑ γH2AX | - | [206,207] |
Rutin | ↓ Viability, ↓ proliferation, ↓ migration, microglial chemotaxis | STAT3 | miRNA-125b, IL-6/IL-10, TNF, CCL2/5, CX3CL1, HBGF, IGF, GDNF | - | [208,209] |
Hydrolized Rutin | ↓ Proliferation, ↓ mitosis/necrosis, ↓ glioma grade | p53-independent mechanism | Cell cycle inhibition | - | [210] |
Apigenin | ↓ Viability, ↑ apoptosis, G2/M arrest, ↓ colony formation, ↓ migration | ↓ p-AKT, ↓ p-mTOR, NF-κB p65 | PARP cleavage, ↓ Bcl-xL, Bax, t-Bid, caspase-8/-9/-3, HIF-1α, GLUT-1/3, PKM2 | ↓ lactic acid | [212,213,214] |
Acacetin | G2/M arrest, ↑ apoptosis (sub-G1) | - | ↑ p21, ↓ Cyclin-A1/B1, ↓ Cdk-1 | ↑ ROS | [215] |
Irigenin | G2/M arrest, ↓ proliferation, ↓ migration, ↓ tumor growth | ↓ β-catenin signaling | ↓ YAP | - | [216] |
Kaempferol | ↓ Viability, ↑ autophagy, ↑ pyroptosis, G2/M arrest, ↓ migration/invasion | ↓ p-EGFR, ↓ p-SRC, ↓ p-STAT3 | ↑ gasdermin E, ↓ neurosphere formation | ↑ ROS, ↓ mitochondrial potential | [217,218,219] |
2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one | ↓ Cell viability | mTOR binding | - | - | [220] |
5-hydroxy-3′,4′,6,7-tetramethoxyflavone | G0/G1 arrest, ↓ migration | - | - | - | [221] |
Epigallocatechin gallate | ↓ Proliferation, ↑ apoptosis, G1 arrest, ↓ migration/invasion | PI3K/AKT/mTOR | ↓ GLUT1/4, ↓ PKM2, ↓ LDHV, ↑ Caspase-3, ↓ BCL-2, ↓ MMP-2/9, ↓ uPA/uPAR | - | [223,224,225] |
Epicatechin | - | MDM2–p53 interaction inhibition | - | - | [226] |
Chrysin | ↓ Proliferation, ↓ migration/invasion, ↑ apoptosis | ↓ p-ERK1/2 (MAPK), ↓ Nrf2 | ↓ HO-1, ↓ NQO-1 | - | [227,228] |
Xanthohumol | ↑ apoptosis | PI3K/Akt–GSK3β–FBW7, ↑ p-ERK1/2, ↑ p-p38 MAPK | ↓ HK2, ↓ c-Myc, ↓ Bcl-2, ↑ caspase-3/9, ↑ PARP cleavage | ↑ ROS | [229,230] |
Hispidulin | ↑ apoptosis, inhibits TMZ-induced autophagy, ↑ TMZ sensitivity | - | ↑ Bax, ↑ cleaved caspase-3/9, ↓ Bcl-2 | - | [231] |
Silibinin | ↓ Proliferation, ↓ invasion, ↓ stemness, ↑ apoptosis, ↑ autophagy | PI3K, FoxM1, ↓ p-mTOR | ↓ SLC1A5, ↓ YAP, caspase-3, PARP cleavage | - | [232,233] |
Glutathione | ↑ Cytotoxicity (when depleted), ↑ drug resistance, ↓ tumor growth | TERT–FOXO1–GCLC axis, cGAS–STING activation | ↑ GS in mesenchymal GBM, ↑ GSR, ↑ GPX2 | Neutralizes ROS, ↓ GSH (with auranofin), ↑ GSH synthesis | [135,136,137,138,139,140,141,142] |
Resveratrol | ↓ Viability, ↓ migration/invasion, ↑ apoptosis, G1 arrest, ↓ tumor growth | ↓ NLRP3, ↓ JAK2/STAT3, ↓ AMPK–YAP, ↓ STAT3 | ↑ Bax, ↓ Bcl-2, ↑ Caspase-9, ↑ Pak2, ↓ MGMT, ↓ survivin, ↓ Ki-67, ↓ PD-L1 | ↑ ROS, ↓ SOD2, ↓ catalase | [238,239,240,241,242,243,244,245,246] |
Rosmarinic Acid | ↓ Tumor volume, ↓ invasion into normal brain tissue, ↑ apoptosis, ↓ proliferation, ↑ survival rates | - | - | ↓ SOD activity, ↓ CAT activity, modulation of oxidative stress pathways | [248] |
Sinularin | ↑ Apoptosis, mitochondrial dysfunction, ↓ mitochondrial respiration capacity | - | ↑ cleaved caspase 9, ↑ cleaved caspase 3, ↑ cleaved PARP | ↑ ROS generation, ↓ SOD1/2, ↓ thioredoxin, compromised antioxidant defense | [250] |
SOD3 | Poor prognosis, ↓ immunosuppression (when knocked down) | M2-like macrophage transformation | - | ↑ SOD3 expression | [75] |
SOD2 | Protects TMZ-resistant cells, ↓ ferroptosis | CYBB/Nrf2/SOD2 axis | - | ↑ in mesenchymal GBM, protects from ROS/ferroptosis | [144] |
Vitamin A | ↓ Stemness, ↑ differentiation, ↑ apoptosis, G1/S arrest, ↓ invasion/migration | ERK1/2 | ↓ CD133, ↓ Sox2, ↑ GFAP, ↑ Bax:Bcl-2 ratio, ↑ cytochrome c, ↑ caspase-3, ↑ p27^kip1, ↓ CDK2, ↓ MMP-2/9 | - | [253] |
Vitamin E | ↓ Proliferation, pre-G1 arrest, ↑ apoptosis, ↓ adhesion | PKC | ↓ cyclin D1/E, ↑ Bax, ↑ TRAIL, ↑ caspase-3/8, ↑ cytochrome c, ↑ integrin, ↓ MDR1 | ↓ GSH, ↓ ROS, restores GSH levels | [253,259,260,261] |
Vitamin C | ↑ Ferroptosis, ↓ tumor growth, ↓ GSC self-renewal, ↑ TMZ/radiation sensitivity, ↑ autophagy | ↑ p-Akt then ↓ Akt, ↑ JNK, ↓ HIF pathway, ↑ TET activity | ↑ 5hmC, ↓ 5mC, ↑ H3K36me3, NSD1 promoter demethylation | ↑ ROS, ↑ ferroptosis (with ferric iron) | [266,267,268,269,270] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowacka, A.; Śniegocki, M.; Ziółkowska, E. Oxidative Stress and Antioxidants in Glioblastoma: Mechanisms of Action, Therapeutic Effects and Future Directions. Antioxidants 2025, 14, 1121. https://doi.org/10.3390/antiox14091121
Nowacka A, Śniegocki M, Ziółkowska E. Oxidative Stress and Antioxidants in Glioblastoma: Mechanisms of Action, Therapeutic Effects and Future Directions. Antioxidants. 2025; 14(9):1121. https://doi.org/10.3390/antiox14091121
Chicago/Turabian StyleNowacka, Agnieszka, Maciej Śniegocki, and Ewa Ziółkowska. 2025. "Oxidative Stress and Antioxidants in Glioblastoma: Mechanisms of Action, Therapeutic Effects and Future Directions" Antioxidants 14, no. 9: 1121. https://doi.org/10.3390/antiox14091121
APA StyleNowacka, A., Śniegocki, M., & Ziółkowska, E. (2025). Oxidative Stress and Antioxidants in Glioblastoma: Mechanisms of Action, Therapeutic Effects and Future Directions. Antioxidants, 14(9), 1121. https://doi.org/10.3390/antiox14091121