Antioxidant Potential of Pollen Polyphenols in Mitigating Environmental Stress in Honeybees (Apis mellifera)
Abstract
1. Introduction
2. Implications of Oxidative Stress in Honeybees
2.1. Biochemical Basis of Oxidative Stress in Honeybees
2.2. Environmental Stressors Affecting Honeybees
2.3. Consequences on Physiology, Immunity, and Honeybee Colony Health
3. Antioxidants in Honeybee Diet—Key Compounds and Their Sources
3.1. Role in Honeybee Metabolism
3.2. Mechanisms of Antioxidative Action
3.3. Vitamins with Antioxidant Properties
3.4. Dietary Sources and Their Bioavailability
3.5. Role in Honeybee Immune Support and Detoxification
4. Impact of Climate Change on Pollen Antioxidants Availability
4.1. Impact of Global Warming on Floral Diversity and Pollen Abundance
4.2. Changes in Pollen Composition Affecting Its Antioxidant Levels
4.3. Potential Consequences for Honeybee Nutrition and Overall Vitality
5. The Role of Dietary Antioxidants in Honeybee Immunity
5.1. Enhancement of Immune Responses Through Dietary Antioxidants
5.2. Influence on Honeybee Resistance to Diseases
5.3. Synergistic Effects of Different Antioxidants on Immune Function
6. Antioxidants and Honeybee Resilience to Environmental Stressors
6.1. Protection Against Pesticide-Induced Oxidative Stress
6.2. Role in Mitigating Stress from Climate Change and Habitat Loss
6.3. Effects on Adult Bees’ Longevity and Colony Survival
7. Knowledge Gaps and Future Research Directions
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li-Byarlay, H.; Huang, M.H.; Simone-Finstrom, M.; Strand, M.K.; Tarpy, D.R.; Rueppell, O. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage. Exp. Gerontol. 2016, 83, 15–21. [Google Scholar] [CrossRef]
- Simone-Finstrom, M.; Li-Byarlay, H.; Huang, M.-H.; Strand, M.K.; Rueppell, O.; Tarpy, D.R. Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees. Sci. Rep. 2016, 6, 32023. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 5th ed.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Kunat-Budzyńska, M.; Łabuć, E.; Ptaszyńska, A.A. Changes in enzymatic activity and oxidative stress in honeybees kept in the apiary and laboratory conditions during the course of nosemosis. PLoS ONE 2025, 20, e0317384. [Google Scholar] [CrossRef] [PubMed]
- Chouikh, A.; Chenguel, A.; Ali, A.B. Understanding the Role of Free Radicals, Oxidative Stress, and Antioxidants: A Comprehensive Review. Lett. Appl. NanoBioScience 2025, 14, 66. [Google Scholar]
- Di Pasquale, G.; Salignon, M.; Le Conte, Y.; Belzunces, L.P.; Decourtye, A.; Kretzschmar, A.; Suchail, S.; Brunet, J.-L.; Alaux, C. Influence of Pollen Nutrition on Honey Bee Health: Do Pollen Quality and Diversity Matter? PLoS ONE 2013, 8, e72016. [Google Scholar] [CrossRef] [PubMed]
- Barascou, L.; Sene, D.; Barraud, A.; Michez, D.; Lefebvre, V.; Medrzycki, P.; Di Prisco, G.; Strobl, V.; Yañez, O.; Neumann, P.; et al. Pollen nutrition fosters honeybee tolerance to pesticides. R. Soc. Open Sci. 2021, 8, 210818. [Google Scholar] [CrossRef]
- Mao, W.; Schuler, M.A.; Berenbaum, M.R. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proc. Natl. Acad. Sci. USA 2013, 110, 8842–8846. [Google Scholar] [CrossRef]
- Tlak Gajger, I.; Pavlović, I.; Bojić, M.; Kosalec, I.; Srečec, S.; Vlainić, T.; Vlainić, J. The Components Responsible for the Antimicrobial Activity of Propolis from Continental and Mediterranean Regions in Croatia. Czech J. Food Sci. 2017, 35, 376–385. [Google Scholar] [CrossRef]
- Tlak Gajger, I.; Dar, S.A. Plant allelochemicals as sources of insecticides. Insects 2021, 12, 189. [Google Scholar] [CrossRef]
- Rodríguez-Pólit, C.; Gonzalez-Pastor, R.; Heredia-Moya, J.; Carrera-Pacheco, S.E.; Castillo-Solis, F.; Vallejo-Imbaquingo, R.; Barba-Ostria, C.; Guamán, L.P. Chemical properties and biological activity of bee pollen. Molecules 2023, 28, 7768. [Google Scholar] [CrossRef]
- Tesfaye, O. Comparative Analysis of Bee Pollen Antioxidant Properties from Western Oromia, Ethiopia. Austin J. Nutr. Metab. 2024, 11, 1134. [Google Scholar]
- Altiner, D.D.; Altunatmaz, S.S.; Sabuncu, M.; Aksu, F.; Şahan, Y. In-vitro bioaccessibility of antioxidant properties of bee pollen in Turkey. Food Sci. Technol. 2021, 41, 133–141. [Google Scholar] [CrossRef]
- Goulson, D.; Nicholls, E.; Botías, C.; Rotheray, E.L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 2015, 347, 1255957. [Google Scholar] [CrossRef]
- Williams, J.B.; Roberts, S.P.; Elekonich, M.M. Age and natural metabolically-intensive behavior affect oxidative stress and antioxidant mechanisms. Exp. Gerontol. 2008, 43, 538–549. [Google Scholar] [CrossRef]
- Alburaki, M.; Smith, K.D.; Adamczyk, J.; Karim, S. Interplay between selenium, selenoprotein genes, and oxidative stress in honey bee Apis mellifera L. J. Insect Physiol. 2019, 117, 103891. [Google Scholar] [CrossRef] [PubMed]
- Corona, M.; Robinson, G.E. Genes of the antioxidant system of the honey bee: Annotation and phylogeny. Insect Mol. Biol. 2006, 15, 687–701. [Google Scholar] [CrossRef]
- Cervoni, M.S.; Cardoso-Júnior, C.A.M.; Craveiro, G.; Souza, A.D.O.; Alberici, L.C.; Hartfelder, K. Mitochondrial capacity, oxidative damage and hypoxia gene expression are associated with age-related division of labor in honey bee (Apis mellifera L.) workers. J. Exp. Biol. 2017, 220, 4035–4046. [Google Scholar] [CrossRef]
- Margotta, J.W.; Roberts, S.P.; Elekonich, M.M. Effects of Flight Activity and Age on Oxidative Damage in the Honey Bee, Apis mellifera. J. Exp. Biol. 2018, 221, jeb183228. [Google Scholar] [CrossRef]
- Strachecka, A.; Staniszewska, P.; Olszewski, K.; Bryś, M.S.; Stec, W.; Bartoń, M. The antioxidant system was unexpectedly strongly suppressed in Apis mellifera worker bees emerged from larvae reared on combs adulterated with paraffin or stearin. Sci. Rep. 2025, 15, 20363. [Google Scholar] [CrossRef]
- Bryś, M.S.; Olszewski, K.; Bartoń, M.; Strachecka, A. Changes in the Activities of Antioxidant Enzymes in the Fat Body and Hemolymph of Apis mellifera L. Due to Pollen Monodiets. Antioxidants 2025, 14, 69. [Google Scholar] [CrossRef] [PubMed]
- Migdał, P.; Murawska, A.; Strachecka, A.; Bieńkowski, P.; Roman, A. Changes in the Honeybee Antioxidant System after 12 h of Exposure to Electromagnetic Field Frequency of 50 Hz and Variable Intensity. Insects 2020, 11, 713. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, X.; Yang, Y.; Yang, D.; Zhao, B.; Wang, X.; Jiang, G. Neonicotinoids: Mechanisms of systemic toxicity based on oxidative stress-mitochondrial damage. Arch. Toxicol. 2022, 96, 1493–1520. [Google Scholar] [CrossRef]
- Chakrabarti, P.; Rana, S.; Smith, B.; Sarkar, S.; Basu, P. Pesticide-induced oxidative stress in laboratory and field populations of native honey bees along intensive agricultural landscapes in two Eastern Indian states. Apidologie 2015, 46, 107–129. [Google Scholar] [CrossRef]
- Alburaki, M.; Steckel, S.J.; Williams, M.T.; Skinner, J.A.; Tarpy, D.R.; Meikle, W.G.; Adamczyk, J.J. Agricultural landscape and pesticide effects on honey bee (Hymenoptera: Apidae) biological traits. J. Econ. Entomol. 2017, 110, 835–847. [Google Scholar] [CrossRef]
- Bryden, J.; Gill, R.J.; Mitton, R.A.; Raine, N.E.; Jansen, V.A. Chronic sublethal stress causes bee colony failure. Ecol. Lett. 2013, 16, 1463–1469. [Google Scholar] [CrossRef]
- Dussaubat, C.; Brunet, J.-L.; Higes, M.; Colbourne, J.K.; López, J.; Choi, J.H.; Martin-Hernández, R.; Botías, C.; Cousin, M.; McDonnell, C.; et al. Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee (Apis mellifera) midgut. PLoS ONE 2012, 7, e37017. [Google Scholar] [CrossRef]
- Dainat, B.; Evans, J.D.; Chen, Y.P.; Gauthier, L.; Neumann, P. Deformed wing virus and Varroa destructor reduce the life span of winter honeybees. Appl. Environ. Microbiol. 2012, 78, 981–987. [Google Scholar] [CrossRef]
- Alaux, C.; Ducloz, F.; Crauser, D.; Le Conte, Y. Diet effects on honeybee immunocompetence. Biol. Lett. 2010, 6, 562–565. [Google Scholar] [CrossRef] [PubMed]
- Kozii, I.V.; Barnsley, S.; Silva, M.C.B.d.; Wood, S.C.; Klein, C.D.; Mattos, Í.M.d.; Simko, E. Reproductive fitness of honey bee queens exposed to thiamethoxam during development. Vet. Pathol. 2021, 58, 1107–1118. [Google Scholar] [CrossRef] [PubMed]
- Tlak Gajger, I.; Sakač, M.; Gregorc, A. Impact of Thiamethoxam on Honey Bee Queen (Apis mellifera) Reproductive Morphology and Physiology. Bull. Environ. Contam. Toxicol. 2017, 99, 297–302. [Google Scholar] [CrossRef]
- Danner, N.; Keller, A.; Härtel, S.; Steffan-Dewenter, I. Honey bee foraging ecology: Season but not landscape diversity shapes the amount and diversity of collected pollen. PLoS ONE 2017, 12, e0183716. [Google Scholar] [CrossRef]
- Donkersley, P.; Rhodes, G.; Pickup, R.W.; Jones, K.C.; Wilson, K. Nutritional composition of honey bee food stores vary with floral composition. Oecologia 2017, 185, 749–761. [Google Scholar] [CrossRef] [PubMed]
- Piot, N.; Schweiger, O.; Meeus, I.; Yanez, O.; Straub, L.; Villamar-Bouza, L.; De La Rua, P.; Jara, L.; Ruiz, C.; Malmstrom, M.; et al. Honey Bees and Climate Explain Viral Prevalence in Wild Bee Communities on the Continental Scale. Sci. Rep. 2022, 12, 1904. [Google Scholar] [CrossRef]
- Vilić, M.; Žura Žaja, I.; Tkalec, M.; Tucak, P.; Malarić, K.; Popara, N.; Žura, N.; Pašić, S.; Tlak Gajger, I. Oxidative Stress Response of Honey Bee Colonies (Apis mellifera L.) during Long-Term Exposure at a Frequency of 900 MHz under Field Conditions. Insects 2024, 15, 372. [Google Scholar] [CrossRef]
- Vilić, M.; Žura Žaja, I.; Tkalec, M.; Štambuk, A.; Šrut, M.; Klobučar, G.; Malarić, K.; Tucak, P.; Pašić, S.; Tlak Gajger, I. Effects of a radio frequency electromagnetic field on honey bee larvae (Apis mellifera) differ in relation to the experimental study design. Vet. Arhiv 2021, 91, 427–435. [Google Scholar] [CrossRef]
- Vilic, M.; Tlak Gajger, I.; Tucak, P.; Stambuk, A.; Srut, M.; Klobucar, G.; Malaric, K.; Zura Zaja, I.; Pavelic, A.; Manger, M.; et al. Effects of short-term exposure to mobile phone radiofrequency (900 MHz) on the oxidative response and genotoxicity in honey bee larvae. J. Apic. Res. 2017, 56, 430–438. [Google Scholar] [CrossRef]
- Annoscia, D.; Nazzi, F.; Frizzera, D.; Sablon, L.; Sulotto, F.; Cervo, R.; Rinkevich, F.; Dainat, B. Elucidating the mechanisms underlying the beneficial health effects of dietary pollen on honey bees (Apis mellifera) infested by Varroa mite ectoparasites. Sci. Rep. 2017, 7, 6258. [Google Scholar] [CrossRef]
- Yazlovytska, L.S.; Karavan, V.V.; Domaciuk, M.; Panchuk, I.I.; Borsuk, G.; Volkov, R.A. Increased survival of honey bees consuming pollen and beebread is associated with elevated biomarkers of oxidative stress. Front. Ecol. Evol. 2023, 11, 1098350. [Google Scholar] [CrossRef]
- Li, X.-M.; Wu, S.-F.; Wang, Z.-H.; Zhang, Y.; Xu, B.-H. Effects of Three Different Bee Pollen on Digestion, Immunity, Antioxidant Capacity, and Gut Microbes in Apis mellifera. Insects 2025, 16, 505. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.J.; Liao, L.-H.; Berenbaum, M.R. Biphasic concentration-dependent interaction between imidacloprid and dietary phytochemicals in honey bees (Apis mellifera). PLoS ONE 2018, 13, e0206625. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.-H.; Siegfried, B.D.; Berenbaum, M.R. Increase in longevity and amelioration of pesticide toxicity by natural levels of dietary phytochemicals in the honey bee, Apis mellifera. PLoS ONE 2020, 15, e0243364. [Google Scholar] [CrossRef]
- Hýbl, M.; Mráz, P.; Šipoš, J.; Hoštičková, I.; Bohatá, A.; Čurn, V.; Kopec, T. Polyphenols as Food Supplement Improved Food Consumption and Longevity of Honey Bees (Apis mellifera) Intoxicated by Pesticide Thiacloprid. Insects 2021, 12, 572. [Google Scholar] [CrossRef]
- Rzepecka-Stojko, A.; Stojko, J.; Kurek-Górecka, A.; Górecki, M.; Kabała-Dzik, A.; Kubina, R.; Stojko, E. Polyphenols from bee pollen: Structure, absorption, metabolism and biological activity. Molecules 2015, 20, 21732–21749. [Google Scholar] [CrossRef] [PubMed]
- Bridi, R.; Echeverría, J.; Larena, A.; Nuñez Pizarro, P.; Atala, E.; De Camargo, A.C.; Montenegro, G. Honeybee pollen from southern Chile: Phenolic profile, antioxidant capacity, bioaccessibility, and inhibition of DNA damage. Front. Pharmacol. 2022, 13, 775219. [Google Scholar] [CrossRef]
- Tlak Gajger, I.; Mutinelli, F. Impact of Environmental Factors and Management Practices on Bee Health. Insects 2024, 15, 996. [Google Scholar] [CrossRef]
- Li, G.; Zhao, H.; Liu, Z.; Wang, H.; Xu, B.; Guo, X. The Wisdom of Honeybee Defenses Against Environmental Stresses. Front. Microbiol. 2018, 9, 722. [Google Scholar] [CrossRef]
- Serra Bonvehí, J.; Soliva Torrentó, M.; Centelles Lorente, E. Evaluation of polyphenolic and flavonoid compounds in honeybee-collected pollen produced in Spain. J. Agric. Food Chem. 2001, 49, 1848–1853. [Google Scholar] [CrossRef] [PubMed]
- El-Seedi, H.R.; Ahmed, H.R.; El-Wahed, A.A.A.; Saeed, A.; Algethami, A.F.; Attia, N.F.; Wang, K. Bee stressors from an immunological perspective and strategies to improve bee health. Vet. Sci. 2022, 9, 199. [Google Scholar] [CrossRef]
- Tahir, F.; Goblirsch, M.; Adamczyk, J.; Karim, S.; Alburaki, M. Honey bee Apis mellifera L. responses to oxidative stress induced by pharmacological and pesticidal compounds. Front. Bee Sci. 2023, 1, 1275862. [Google Scholar] [CrossRef]
- Klein, A.M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Why bees are so vulnerable to environmental stressors: Linking stressor-induced neural impairments to colony decline. Trends Ecol. Evol. 2016, 31, 735–736. [Google Scholar] [CrossRef]
- Morimoto, T.; Kojima, Y.; Toki, T.; Komeda, Y.; Yoshiyama, M.; Kimura, K.; Nirasawa, K.; Kadowaki, T. The habitat disruption induces immune-suppression and oxidative stress in honey bees. Ecol. Evol. 2011, 1, 201–217. [Google Scholar] [CrossRef]
- Farooqui, T. Oxidative stress and age-related olfactory memory impairment in the honeybee Apis mellifera. Front. Genet. 2014, 5, 60. [Google Scholar] [CrossRef] [PubMed]
- Münch, D.; Amdam, G.V. Chronic inflammation and oxidative stress in honey bees: Winter bees exhibit enhanced oxidative-stress tolerance and negligible senescence. Genome Biol. Evol. 2016, 8, 495–506. [Google Scholar] [CrossRef]
- James, R.R.; Xu, J. Mechanisms by which pesticides affect insect immunity. J. Invertebr. Pathol. 2012, 109, 175–182. [Google Scholar] [CrossRef]
- Chmiel, J.A.; Daisley, B.A.; Pitek, A.P.; Thompson, G.J.; Reid, G. Understanding the effects of sublethal pesticide exposure on honey bees: A role for probiotics as mediators of environmental stress. Front. Ecol. Evol. 2020, 8, 22. [Google Scholar] [CrossRef]
- vanEngelsdorp, D.; Evans, J.D.; Saegerman, C.; Mullin, C.; Haubruge, E.; Nguyen, B.K.; Frazier, M.; Frazier, J.; Cox-Foster, D.; Chen, Y.; et al. Colony collapse disorder: A descriptive study. PLoS ONE 2009, 4, e6481. [Google Scholar] [CrossRef] [PubMed]
- Perry, C.J.; Søvik, E.; Myerscough, M.R.; Barron, A.B. Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Biol. Open 2015, 4, 27–35. [Google Scholar] [CrossRef]
- Tlak Gajger, I.; Vilić, M.; Tucak, P.; Malarić, K. Effect of electromagnetic field on some behaviour modality of honeybee colonies (Apis mellifera) in field conditions. J. Anim. Vet. Adv. 2019, 18, 61–64. [Google Scholar] [CrossRef]
- Farjan, M.; Dmitryjuk, M.; Lipiński, Z.; Biernat-Łopieńska, E.; Żółtowska, K. Supplementation of the Honey Bee Diet with Vitamin C: The Effect on the Antioxidative System of Apis mellifera carnica Brood at Different Stages. J. Apic. Res. 2012, 51, 263–270. [Google Scholar] [CrossRef]
- Smith, S.M.; Nager, R.G.; Costantini, D. Meta-analysis indicates that oxidative stress is both a constraint on and a cost of growth. Ecol. Evol. 2016, 6, 2833–2842. [Google Scholar] [CrossRef]
- Jansen, E.; Ruskovska, T. Serum Biomarkers of (Anti)Oxidant Status for Epidemiological Studies. Int. J. Mol. Sci. 2015, 16, 27378–27390. [Google Scholar] [CrossRef]
- Majoroš, A.; Tlak Gajger, I.; Smodiš Škerl, M.I. Prehrambeni stres pčelinjih zajednica (Apis mellifera L.): Uzroci, učinci i mjere sprječavanja gubitaka. Vet. Stanica 2022, 53, 461–474. [Google Scholar] [CrossRef]
- Liao, L.H.; Wu, W.Y.; Dad, A.; Berenbaum, M.R. Fungicide suppression of flight performance in the honeybee (Apis mellifera) and its amelioration by quercetin. Proc. R. Soc. B 2019, 286, 20192041. [Google Scholar] [CrossRef]
- Tlak Gajger, I.; Vlainić, J. Antioxidant Activity of Honey Bee Products. Antioxidants 2025, 14, 64. [Google Scholar] [CrossRef]
- Özcan, M.; Aljuhaimi, F.; Babiker, E.E.; Uslu, N.; Ceylan, D.; Ghafoor, K. Determination of antioxidant activity, phenolic compound, mineral contents and fatty acid compositions of bee pollen grains collected from different locations. J. Apic. Sci. 2019, 63, 69–79. [Google Scholar] [CrossRef]
- Gerçek, Y.C.; Çelik, S.; Bayram, S. Screening of plant pollen sources, polyphenolic compounds, fatty acids and antioxidant/antimicrobial activity from bee pollen. Molecules 2021, 27, 117. [Google Scholar] [CrossRef] [PubMed]
- Araújo, J.; Chambó, É.D.; Costa, M.A.P.; Cavalcante da Silva, S.M.P.; de Carvalho, C.A.L.; Estevinho, L.M. Chemical composition and biological activities of mono- and heterofloral bee pollen of different geographical origins. Int. J. Mol. Sci. 2017, 18, 921. [Google Scholar] [CrossRef]
- Negri, G.; Teixeira, É.; Alves, M.L.T.M.F.; Moreti, A.; Otsuk, I.; Borguini, R. Hydroxycinnamic acid amide derivatives, phenolic compounds and antioxidant activities of extracts of pollen samples from Southeast Brazil. J. Agric. Food Chem. 2011, 59, 5516–5522. [Google Scholar] [CrossRef]
- Boulfous, N.; Belattar, H.; Ambra, R.; Pastore, G.; Ghorab, A. Botanical origin, phytochemical profile, and antioxidant activity of bee pollen from the Mila region, Algeria. Antioxidants 2025, 14, 291. [Google Scholar] [CrossRef]
- Denisow, B.; Denisow-Pietrzyk, M. Biological and therapeutic properties of bee pollen: A review. J. Sci. Food Agric. 2016, 96, 4303–4309. [Google Scholar] [CrossRef]
- Aylanc, V.; Larbi, S.; Calhelha, R.C.; Barros, L.; Rezouga, F.; Rodríguez-Flores, M.; Ferreira, I.C.F.R. Evaluation of antioxidant and anticancer activity of mono- and polyfloral Moroccan bee pollen by characterizing phenolic and volatile compounds. Molecules 2023, 28, 835. [Google Scholar] [CrossRef] [PubMed]
- El Ghouizi, A.; El Menyiy, N.; Falcão, S.I.; Vilas-Boas, M.; Lyoussi, B. Chemical composition, antioxidant activity, and diuretic effect of Moroccan fresh bee pollen in rats. Vet. World 2020, 13, 1251–1261. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Wang, J.; Li, J.; Yang, W. Polyphenol profile and antioxidant, antityrosinase, and anti-melanogenesis activities of ethanol extract of bee pollen. Pharmaceuticals 2024, 17, 1634. [Google Scholar] [CrossRef]
- Kim, S.; Jo, Y.H.; Liu, Q.; Ahn, J.; Hong, I.; Han, S.; Kim, S. Optimization of extraction condition of bee pollen using response surface methodology: Correlation between anti-melanogenesis, antioxidant activity, and phenolic content. Molecules 2015, 20, 19764–19774. [Google Scholar] [CrossRef]
- Campos, M.G.; Frigerio, C.; Lopes, J.; Bogdanov, S. Bees collect pollen that typically contains significantly higher concentrations of polyphenols than nectar—A diversity driven by floral origin. J. Apiprod. Apimed. Sci. 2010, 2, 131–144. [Google Scholar] [CrossRef]
- Aylanc, V.; Ertosun, S.; Russo-Almeida, P.; Falcão, S.; Vilas-Boas, M. Performance of green and conventional techniques for the optimal extraction of bioactive compounds in bee pollen. Int. J. Food Sci. Technol. 2022, 57, 3490–3502. [Google Scholar] [CrossRef]
- Anjum, S.I.; Ullah, A.; Gohar, F.; Raza, G.; Khan, M.I.; Hameed, M.; Ali, A.; Chen, C.-C.; Tlak Gajger, I. Bee pollen as a food and feed supplement and a therapeutic remedy: Recent trends in nanotechnology. Front. Nutr. 2024, 11, 1371672. [Google Scholar] [CrossRef]
- Mărgăoan, R.; Mărghitaş, L.A.; Dezmirean, D.S.; Dulf, F.V.; Bunea, A.; Socaci, S.; Bobiş, O. Predominant and secondary pollen botanical origins influence the carotenoid and fatty acid profile in fresh honeybee-collected pollen. J. Agric. Food Chem. 2014, 62, 6306–6316. [Google Scholar] [CrossRef]
- Mărgăoan, R.; Özkök, A.; Keskin, Ş.; Mayda, N.; Urcan, A.C.; Cornea-Cipcigan, M. Bee collected pollen as a value-added product rich in bioactive compounds and unsaturated fatty acids: A comparative study from Turkey and Romania. LWT 2021, 149, 111925. [Google Scholar] [CrossRef]
- Mosić, M.; Trifković, J.; Vovk, I.; Gašić, U.; Tešić, Ž.; Šikoparija, B.; Milojković-Opsenica, D. Phenolic composition influences the health-promoting potential of bee-pollen. Biomolecules 2019, 9, 783. [Google Scholar] [CrossRef] [PubMed]
- Feás, X.; Vázquez Tato, M.P.; Estevinho, L.M.; Seijas, J.A.; Iglesias, A. Nectar and bee collected pollen: Phenolic composition and antioxidant properties. Molecules 2012, 17, 8359–8377. [Google Scholar] [CrossRef]
- Nakajima, Y.; Tsuruma, K.; Shimazawa, M.; Mishima, S.; Hara, H. Comparison of bee products based on assays of antioxidant capacities. BMC Complement. Altern. Med. 2009, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Kostić, A.Ž.; Milinčić, D.D.; Fata, A.; Nedić, N.; Stanojević, S.P.; Tešić, Ž.L.; Pešić, M.B. Polyphenolic profile and antioxidant properties of bee collected sunflower (Helianthus annuus L.) pollen. LWT–Food Sci. Technol. 2019, 112, 108244. [Google Scholar] [CrossRef]
- LeBlanc, B.W.; Davis, O.K.; Boue, S.; DeLucca, A.; Deeby, T. Antioxidant activity of Sonoran Desert bee pollen. Food Chem. 2009, 115, 1299–1305. [Google Scholar] [CrossRef]
- Brodschneider, R.; Crailsheim, K. Nutrition and health in honey bees. Apidologie 2010, 41, 278–294. [Google Scholar] [CrossRef]
- Vidkjær, N.H.; Laursen, B.B.; Kryger, P. Phytochemical profiles of honey bees (Apis mellifera) and their larvae differ from the composition of their pollen diet. R. Soc. Open Sci. 2024, 11, 231654. [Google Scholar] [CrossRef]
- Moreira, I.R.; Souza, G.D.F.; Astolfi, A.; Lippi, I.C.C.; Scheffer, J.L.; Arruda, R.A.; de Oliveira Orsi, R. The Impact of Pesticides on the Antioxidant System of Apis Mellifera Bees-A Systematic Review. Sociobiology 2025, 72, e10894. [Google Scholar] [CrossRef]
- Wu, H.; Ji, C.; Wang, R.; Gao, L.; Luo, W.; Liu, J. Dietary Quercetin Regulates Gut Microbiome Diversity and Abundance in Apis cerana (Hymenoptera Apidae). Insects 2025, 16, 20. [Google Scholar] [CrossRef] [PubMed]
- Tlak Gajger, I.; Nejedli, S.; Cvetnić, L. Influence of probiotic feed supplement on Nosema spp. infection level and the gut microbiota of adult honeybees (Apis mellifera L.). Microorganisms 2023, 11, 610. [Google Scholar] [CrossRef] [PubMed]
- Marinova, M.; Tchorbanov, B. Preparation of antioxidant enzymatic hydrolysates from honeybee-collected pollen using plant enzymes. Enzyme Res. 2010, 2010, 473298. [Google Scholar] [CrossRef]
- Lawag, I.; Yoo, O.; Lim, L.; Hammer, K.; Locher, C. Optimisation of bee pollen extraction to maximise extractable antioxidant constituents. Antioxidants 2021, 10, 1113. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Aitfella Lahlou, R.; Alves, G.; García-Viguera, C.; Moreno, D.A.; Silva, L.R. Potential activity of Abrantes pollen extract: Biochemical and cellular model studies. Foods 2021, 10, 2804. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Bento, C.; Nunes, A.R.; Simões, M.; Alves, G.; Silva, L.R. Multitarget protection of Pterospartum tridentatum phenolic-rich extracts against a wide range of free radical species, antidiabetic activity and effects on human colon carcinoma (Caco-2) cells. J. Food Sci. 2020, 85, 4377–4388. [Google Scholar] [CrossRef]
- Bava, R.; Castagna, F.; Lupia, C.; Poerio, G.; Liguori, G.; Lombardi, R.; Britti, D. Hive products: Composition, pharmacological properties, and therapeutic applications. Pharmaceuticals 2024, 17, 646. [Google Scholar] [CrossRef]
- Oyarzún, J.E.; Andía, M.; Uribe, S.; Núñez Pizarro, P.; Núñez, G.; Montenegro, G. Honeybee pollen extracts reduce oxidative stress and steatosis in hepatic cells. Molecules 2020, 26, 6. [Google Scholar] [CrossRef]
- Gámbaro, A.; Miraballes, M.; Urruzola, N.; Kniazev, M.; Dauber, C.; Romero, M. Physicochemical composition and bioactive properties of Uruguayan bee pollen from different botanical sources. Foods 2025, 14, 1689. [Google Scholar] [CrossRef]
- Zou, Y.; Hu, J.; Huang, W.; Zhu, L.; Shao, M.; Dordoe, C. The botanical origin and antioxidant, anti-BACE1 and antiproliferative properties of bee pollen from different regions of South Korea. BMC Complement. Med. Ther. 2020, 20, 236. [Google Scholar] [CrossRef]
- Tutun, H.; Kaya, M.; Usluer, M.S.; Kahraman, H. Bee pollen: Its antioxidant activity. Uludağ Arıcılık Derg. 2021, 21, 119–131. [Google Scholar] [CrossRef]
- Oliveira, R.G.; Jain, S.; Freitas, L.; Araújo, E.D. Phenolic compound, nutritional and antioxidant profile of pollen collected by the genus Melipona in North Eastern Brazil. Braz. J. Food Technol. 2019, 22, e2018079. [Google Scholar] [CrossRef]
- Procházková, D.; Boušová, I.; Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011, 82, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Ozgen, S.; Kilinc, O.K.; Selamoğlu, Z. Antioxidant activity of quercetin: A mechanistic review. Turk. J. Agric. Food Sci. Technol. 2016, 4, 1134–1138. [Google Scholar] [CrossRef]
- Ardalani, H.; Vidkjær, N.H.; Kryger, P.; Fiehn, O.; Fomsgaard, I.S. Metabolomics unveils the influence of dietary phytochemicals on residual pesticide concentrations in honey bees. Environ. Int. 2021, 152, 106503. [Google Scholar] [CrossRef]
- Ardalani, H.; Vidkjær, N.H.; Laursen, B.B.; Kryger, P.; Fomsgaard, I.S. Dietary quercetin impacts the concentration of pesticides in honey bees. Chemosphere 2021, 262, 127848. [Google Scholar] [CrossRef]
- Perron, N.R.; Brumaghim, J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 2009, 53, 75–100. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef]
- Del Casino, C.; Conti, V.; Licata, S.; Cai, G.; Cantore, A.; Ricci, C.; Del Duca, S. Mitigation of UV-B radiation stress in tobacco pollen by expression of the tardigrade damage suppressor protein (Dsup). Cells 2024, 13, 840. [Google Scholar] [CrossRef]
- Muhlemann, J.K.; Younts, T.L.B.; Muday, G.K. Flavonols control pollen tube growth and integrity by regulating ROS homeostasis during high-temperature stress. Proc. Natl. Acad. Sci. USA 2018, 115, E11188–E11197. [Google Scholar] [CrossRef]
- Parcheta, M.; Świsłocka, R.; Orzechowska, S.; Akimowicz, M.; Choińska, R.; Lewandowski, W. Recent developments in effective antioxidants: The structure and antioxidant properties. Materials 2021, 14, 1984. [Google Scholar] [CrossRef]
- Sultana, N.; Reza, M.E.; Alam, M.N.; Siddiquee, M.N.A.; Islam, M.S.; Rahman, M.A.; Rahman, M.M. Evaluating the efficiency of supplementary feeding as a management strategy for enhancing honeybee (Apis mellifera L.) colony growth and productivity. Front. Bee Sci. 2024, 2, 1386799. [Google Scholar] [CrossRef]
- Braglia, C.; Rudelli, C.; Tinti, A.; Porrini, C.; Biró, P.; Mutinelli, F.; Bortolotti, L. Unravelling pollen diet and microbiome influence on honey bee health. Sci. Rep. 2025, 15, 13474. [Google Scholar] [CrossRef]
- Al-Kahtani, S.; Taha, E.K.A. Seasonal variations in nutritional composition of honeybee pollen loads. J. Kans. Entomol. Soc. 2021, 93, 105–112. [Google Scholar] [CrossRef]
- Iorizzo, M.; Letizia, F.; Ganassi, S.; Testa, B.; Petrarca, S.; Albanese, G.; Di Criscio, D.; De Cristofaro, A. Recent Advances in the Biocontrol of Nosemosis in Honey Bees (Apis mellifera L.). J. Fungi 2022, 8, 424. [Google Scholar] [CrossRef]
- Pascual, G.; Silva, D.; Vargas, M.; Aranda, M.; Cañumir, J.A.; López, M.D. Dietary Supplement of Grape Wastes Enhances Honeybee Immune System and Reduces Deformed Wing Virus (DWV) Load. Antioxidants 2023, 12, 54. [Google Scholar] [CrossRef]
- Settele, J.; Bishop, J.; Potts, S.G. Climate change impacts on pollination. Nat. Plants 2016, 2, 16092. [Google Scholar] [CrossRef]
- DeGrandi-Hoffman, G.; Corby-Harris, V.; Carroll, M.; Toth, A.L.; Gage, S.; Watkins de Jong, E.; Graham, H.; Chambers, M.; Meador, C.; Obernesser, B. The Importance of Time and Place: Nutrient Composition and Utilization of Seasonal Pollens by European Honey Bees (Apis mellifera L.). Insects 2021, 12, 235. [Google Scholar] [CrossRef]
- Jones, L.; Brennan, G.L.; Lowe, A.; Creer, S.; Ford, C.R.; de Vere, N. Shifts in honeybee foraging reveal historical changes in floral resources. Commun. Biol. 2021, 4, 37. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, T.-L.; Hu, C.-G.; Zhang, J.-Z. The Role of Drought and Temperature Stress in the Regulation of Flowering Time in Annuals and Perennials. Agronomy 2023, 13, 3034. [Google Scholar] [CrossRef]
- Walters, J.; Zavalnitskaya, J.; Isaacs, R.; Szendrei, Z. Heat of the moment: Extreme heat poses a risk to bee–plant interactions and crop yields. Curr. Opin. Insect Sci. 2022, 52, 100927. [Google Scholar] [CrossRef] [PubMed]
- Borghi, M.; Perez de Souza, L.; Yoshida, T.; Fernie, A.R. Flowers and climate change: A metabolic perspective. New Phytol. 2019, 224, 1425–1441. [Google Scholar] [CrossRef] [PubMed]
- Descamps, C.; Quinet, M.; Jacquemart, A.L. The effects of drought on plant–pollinator interactions: What to expect? Environ. Exp. Bot. 2021, 182, 104297. [Google Scholar] [CrossRef]
- Rering, C.C.; Franco, J.G.; Yeater, K.M.; Mallinger, R.E. Drought stress alters floral volatiles and reduces floral rewards, pollinator activity, and seed set in a global plant. Ecosphere 2020, 11, e03254. [Google Scholar] [CrossRef]
- Simanonok, M.P.; Otto, C.R.; Smart, M.D. Do the quality and quantity of honey bee-collected pollen vary across an agricultural land-use gradient? Environ. Entomol. 2020, 49, 189–196. [Google Scholar] [CrossRef]
- Yadav, P.; Lata, M. Toxicological effect of environmental pollution on honeybees. Ecol. Environ. Conserv. 2023, 29, 583–588. [Google Scholar] [CrossRef]
- Fatrcov-Ramkov, K.; Nkov, J. Bee Pollen Nutritional and Toxicological Aspects. Arch. Ecotoxicol. 2019, 1, 41–47. [Google Scholar] [CrossRef]
- Nicewicz, Ł.; Bednarek, A.; Kafel, A.; Nakonieczny, M. Set of stress biomarkers as a practical tool in the assessment of multistress effect using honeybees from urban and rural areas as a model organism: A pilot study. Environ. Sci. Pollut. Res. 2020, 28, 9084–9096. [Google Scholar] [CrossRef]
- Castelli, L.; Branchiccela, B.; Garrido, M.; Invernizzi, C.; Porrini, M.; Romero, H.; Antúnez, K. Impact of nutritional stress on honeybee gut microbiota, immunity, and Nosema ceranae infection. Microb. Ecol. 2020, 80, 908–919. [Google Scholar] [CrossRef] [PubMed]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Vaudo, A.D.; Tooker, J.F.; Grozinger, C.M.; Patch, H.M. Bee nutrition and floral resource restoration. Curr. Opin. Insect Sci. 2015, 10, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Becher, M.A.; Grimm, V.; Thorbek, P.; Horn, J.; Kennedy, P.J.; Osborne, J.L. BEEHAVE: A systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure. J. Appl. Ecol. 2014, 51, 470–482. [Google Scholar] [CrossRef] [PubMed]
- Tlak Gajger, I.; Ribaric, J.; Matak, M.; Svecnjak, L.; Kozaric, Z.; Nejedli, S.; Smodis Skerl, I.M. Zeolite clinoptilolite as a dietary supplement and remedy for honeybee (Apis mellifera L.) colonies. Vet. Med. 2015, 60, 696–705. [Google Scholar] [CrossRef]
- Tlak Gajger, I.; Ribarić, J.; Smodiš Škerl, M.; Vlainić, J.; Sikirić, P. Stable gastric pentadecapeptide BPC 157 in honeybee (Apis mellifera) therapy, to control Nosema ceranae invasions in apiary conditions. J. Vet. Pharmacol. Ther. 2018, 41, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Tlak Gajger, I.; Vlainić, J.; Šoštarić, P.; Prešern, J.; Bubnič, J.; Smodiš Škerl, M.I. Effects on some therapeutical, biochemical, and immunological parameters of honey bee (Apis mellifera) exposed to probiotic treatments, in field and laboratory conditions. Insects 2020, 11, 638. [Google Scholar] [CrossRef]
- Tlak Gajger, I.; Smodiš Škerl, M.I.; Šoštarić, P.; Šuran, J.; Sikirić, P.; Vlainić, J. Physiological and immunological status of adult honeybees (Apis mellifera) fed sugar syrup supplemented with pentadecapeptide BPC 157. Biology 2021, 10, 891. [Google Scholar] [CrossRef]
- Traynor, K.S.; Mondet, F.; de Miranda, J.R.; Techer, M.; Kowallik, V.; Oddie, M.A.; McAfee, A. Varroa destructor: A complex parasite, crippling honey bees worldwide. Trends Parasitol. 2020, 36, 592–606. [Google Scholar] [CrossRef] [PubMed]
- Alaux, C.; Allier, F.; Decourtye, A.; Odoux, J.F.; Tamic, T.; Chabirand, M.; Canard, B.; Trivellone, V.; Le Conte, Y. A ‘Landscape physiology’ approach for assessing bee health highlights the benefits of floral landscape enrichment and semi-natural habitats. Sci. Rep. 2017, 7, 40568. [Google Scholar] [CrossRef]
- Martinello, M.; Mutinelli, F. Antioxidant Activity in Bee Products: A Review. Antioxidants 2021, 10, 71. [Google Scholar] [CrossRef]
- Nascimento, A.M.C.B.; Luz, G.E. Bee pollen properties: Uses and potential pharmacological applications—A review. J. Anal. Pharm. Res. 2018, 7, 513–515. [Google Scholar] [CrossRef]
- Martelli, F.; Zhongyuan, Z.; Wang, J.; Wong, C.O.; Karagas, N.E.; Roessner, U.; Belfield, E.J. Low doses of the neonicotinoid insecticide imidacloprid induce ROS triggering neurological and metabolic impairments in Drosophila. Proc. Natl. Acad. Sci. USA 2020, 117, 25840–25850. [Google Scholar] [CrossRef]
- Powner, M.B.; Salt, T.E.; Hogg, C.; Jeffery, G. Improving mitochondrial function protects bumblebees from neonicotinoid pesticides. PLoS ONE 2016, 11, e0166531. [Google Scholar] [CrossRef]
- Bava, R.; Castagna, F.; Ruga, S.; Caminiti, R.; Nucera, S.; Bulotta, R.M.; Naccari, C.; Britti, D.; Mollace, V.; Palma, E. Protective Role of Bergamot Polyphenolic Fraction (BPF) against Deltamethrin Toxicity in Honeybees (Apis mellifera). Animals 2023, 13, 3764. [Google Scholar] [CrossRef] [PubMed]
- Fukuto, T.R. Mechanism of action of organophosphorus and carbamate insecticides. Environ. Health Perspect. 1990, 87, 245–254. [Google Scholar] [CrossRef]
- Aroniadou-Anderjaska, V.; Figueiredo, T.H.; de Araujo Furtado, M.; Pidoplichko, V.I.; Braga, M.F.M. Mechanisms of Organophosphate Toxicity and the Role of Acetylcholinesterase Inhibition. Toxics 2023, 11, 866. [Google Scholar] [CrossRef]
- Muñoz, J.P.; Soto-Jiménez, D.; Brito, A.; Quezada-Romegialli, C. Glyphosate-Based Herbicides and Their Potential Impact on the Microbiota of Social Bees. Toxics 2025, 13, 551. [Google Scholar] [CrossRef] [PubMed]
- Pal, E.; Almasri, H.; Paris, L.; Diogon, M.; Pioz, M.; Cousin, M.; Sené, D.; Tchamitchian, S.; Tavares, D.A.; Delbac, F.; et al. Toxicity of the Pesticides Imidacloprid, Difenoconazole and Glyphosate Alone and in Binary and Ternary Mixtures to Winter Honey Bees: Effects on Survival and Antioxidative Defenses. Toxics 2022, 10, 104. [Google Scholar] [CrossRef]
- Schmehl, D.R.; Teal, P.E.; Frazier, J.L.; Grozinger, C.M. Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera). J. Insect Physiol. 2014, 71, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Chelucci, E.; Chiellini, C.; Cavallero, A.; Gabriele, M. Bio-functional activities of Tuscan bee pollen. Antioxidants 2023, 12, 115. [Google Scholar] [CrossRef]
- Komosińska-Vassev, K.; Olczyk, P.; Kaźmierczak, J.; Mencner, Ł.; Olczyk, K. Bee pollen: Chemical composition and therapeutic application. Evid. -Based Complement. Altern. Med. 2015, 2015, 297425. [Google Scholar] [CrossRef]
- dos Santos, L.N.C.; Malta, S.M.; Franco, R.; Silva, H.C.G.; Silva, M.H.; Rodrigues, T.S.; Silva, T.M. Antioxidant and anti-Alzheimer’s potential of Tetragonisca angustula (Jataí) stingless bee pollen. Sci. Rep. 2024, 14, 308. [Google Scholar] [CrossRef]
- Stebuliauskaitė, R.; Liaudanskas, M.; Žvikas, V.; Čeksterytė, V.; Sutkevičienė, N.; Sorkytė, Š. Changes in ascorbic acid, phenolic compound content, and antioxidant activity in vitro in bee pollen depending on storage conditions: Impact of drying and freezing. Antioxidants 2025, 14, 462. [Google Scholar] [CrossRef]
- Rzepecka-Stojko, A.; Stojko, J.; Jasik, K.; Buszman, E. Anti-atherogenic activity of polyphenol-rich extract from bee pollen. Nutrients 2017, 9, 1369. [Google Scholar] [CrossRef]
- Fleming, J.C.; Schmehl, D.R.; Ellis, J.D. Characterizing the impact of commercial pollen substitute diets on the level of Nosema spp. in honey bees (Apis mellifera L.). PLoS ONE 2015, 10, e0132014. [Google Scholar] [CrossRef] [PubMed]
- Di Pasquale, G.; Alaux, C.; Le Conte, Y.; Odoux, J.F.; Pioz, M.; Vaissière, B.E.; Belzunces, L.P.; Decourtye, A. Variations in the availability of pollen resources affect honey bee health. PLoS ONE 2016, 11, e0162818. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, N.M.; Glavinic, U.; Ristanic, M.; Vejnovic, B.; Ilic, T.; Stevanovic, J.; Stanimirovic, Z. Effects of Plant-Based Supplement on Oxidative Stress of Honey Bees (Apis mellifera) Infected with Nosema ceranae. Animals 2023, 13, 3543. [Google Scholar] [CrossRef]
- Topal, E.; Mărgăoan, R.; Bay, V.; Takma, Ç.; Yücel, B.; Oskay, D.; Düz, G.; Acar, S.; Kösoğlu, M. The Effect of Supplementary Feeding with Different Pollens in Autumn on Colony Development under Natural Environment and In Vitro Lifespan of Honey Bees. Insects 2022, 13, 588. [Google Scholar] [CrossRef]
- Smart, M.; Pettis, J.; Rice, N.; Browning, Z.; Spivak, M. Linking Measures of Colony and Individual Honey Bee Health to Survival among Apiaries Exposed to Varying Agricultural Land Use. PLoS ONE 2016, 11, e0152685. [Google Scholar] [CrossRef]
- Morrison, B.; Newburn, L.R.; Fitch, G. Food as Medicine: A Review of Plant Secondary Metabolites from Pollen, Nectar, and Resin with Health Benefits for Bees. Insects 2025, 16, 414. [Google Scholar] [CrossRef]
- Hoover, S.E.; Ovinge, L.P. Pollen collection, honey production, and pollination services: Managing honey bees in an agricultural setting. J. Econ. Entomol. 2018, 111, 1509–1516. [Google Scholar] [CrossRef]
- Tlak Gajger, I.; Mañes, A.M.; Formato, G.; Mortarino, M.; Toporcak, J. Veterinarians and beekeeping: What roles, expectations and future perspectives?-A review paper. Vet. Arh. 2021, 91, 437–443. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Trusheva, B. The phytochemistry of the honeybee. Phytochemistry 2018, 155, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kacemi, R.; Campos, M.G. Translational research on bee pollen as a source of nutrients: A scoping review from bench to real world. Nutrients 2023, 15, 2413. [Google Scholar] [CrossRef]
- Aurori, C.M.; Buttstedt, A.; Dezmirean, D.S.; Mărghitaş, L.A.; Moritz, R.F.A.; Erler, S. What is the main driver of ageing in long-lived winter honeybees: Antioxidant enzymes, innate immunity, or vitellogenin? J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 633–639. [Google Scholar] [CrossRef]
- Berenbaum, M.R.; Johnson, R.M. Xenobiotic detoxification pathways in honey bees. Curr. Opin. Insect Sci. 2015, 10, 51–58. [Google Scholar] [CrossRef]
- Engel, P.; Martinson, V.G.; Moran, N.A. Functional diversity within the simple gut microbiota of the honey bee. Proc. Natl. Acad. Sci. USA 2012, 109, 11002–11007. [Google Scholar] [CrossRef] [PubMed]
- Korayem, A.M.; Khodairy, M.M.; Abdel-Aal, A.A.; El-Sonbaty, A.A. The protective strategy of antioxidant enzymes against hydrogen peroxide in honey bee, Apis mellifera during two different seasons. J. Biol. Earth Sci. 2012, 2, B93–B109. [Google Scholar]
- Roth, A.; Vleurinck, C.; Netschitailo, O.; Bauer, V.; Otte, M.; Kaftanoglu, O.; Page, R.E.; Beye, M. A Genetic Switch for Worker Nutrition-Mediated Traits in Honeybees. PLoS Biol. 2019, 17, e3000171. [Google Scholar] [CrossRef]
- Seehuus, S.C.; Norberg, K.; Gimsa, U.; Krekling, T.; Amdam, G.V. Reproductive Protein Protects Functionally Sterile Honey Bee Workers from Oxidative Stress. Proc. Natl. Acad. Sci. USA 2006, 103, 962–967. [Google Scholar] [CrossRef]
- Tosi, S.; Nieh, J.C.; Sgolastra, F.; Cabbri, R.; Medrzycki, P.; Di Prisco, G.; Porrini, C.; Dainese, M.; Nanetti, A.; Bosca, F.; et al. Long-Term Field-Realistic Exposure to a Next-Generation Pesticide, Flupyradifurone, Impairs Honey Bee Behaviour and Survival. Commun. Biol. 2021, 4, 805. [Google Scholar] [CrossRef]
- Skye, S.M.; Zhu, W.; Romano, K.A.; Guo, C.-J.; Wang, Z.; Jia, X.; Fu, X.; Hicks, K.A.; Wang, Z.; Hazen, S.L. Microbial Transplantation with Human Gut Commensals Containing CutC Is Sufficient to Transmit Enhanced Platelet Reactivity and Thrombosis. Potential. Circ. Res. 2018, 123, 1164–1176. [Google Scholar] [CrossRef] [PubMed]
- Taouzinet, L.; Djaoudene, O.; Fatmi, S.; Bouiche, C.; Amrane-Abider, M.; Bougherra, H.; Rezgui, F.; Madani, K. Trends of Nanoencapsulation Strategy for Natural Compounds in the Food Industry. Processes 2023, 11, 1459. [Google Scholar] [CrossRef]
- Pateiro, M.; Gómez, B.; Munekata, P.E.S.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Lorenzo, J.M. Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products. Molecules 2021, 26, 1547. [Google Scholar] [CrossRef] [PubMed]
- Lammari, N.; Louaer, O.; Meniai, A.H.; Elaissari, A. Encapsulation of Essential Oils via Nanoprecipitation Process: Overview, Progress, Challenges and Prospects. Pharmaceutics 2020, 12, 431. [Google Scholar] [CrossRef] [PubMed]
Direct ROS Assay | Enzyme Activity (SOD/CAT/etc.) | Oxidative Damage Markers | Gene/Protein Expression | Link to Polyphenol/Pollen | Observed Health Outcome | Ref-(s) |
---|---|---|---|---|---|---|
no | GST (activity), P450, vitellogenin (expression) | no | yes | yes | not specified | [37] |
no | SOD, CAT, GST, GPx | no | no | yes (pollen blends compared) | survival, pesticide clearance | [7] |
no | no | no | yes (by pollen type) | yes | none—enzymatic levels only | [21] |
TBARS, protein carbonyls | CAT | TBARS, carbonyls | yes (transcriptomics) | yes (fractionated pollen) | survival, overwintering | [38] |
not specified | antioxidant capacity | not specified | lysozyme (protein) | no (pollen present; not polyphenol-focused) | survival | [39] |
no | not detailed | no | some detox gene upregulation | limited | survival, longevity, digestion, immunity | [40,41,42,43] |
Category | Effect | Mechanism/Description | Ref-(s) |
---|---|---|---|
molecular level | ↑ ROS | overproduction of O2−, H2O2, OH· during mitochondrial respiration | [3,15] |
lipid peroxidation | oxidative degradation of membrane lipids → cell damage | [60] | |
protein oxidation | oxidative modification of amino acids; impaired enzyme function | [24] | |
DNA damage | strand breaks, base modifications may impair gene expression | [61,62] | |
cellular response | antioxidant enzyme activation | upregulation of SOD, CAT, GPx to detoxify ROS | [17] |
depletion of non-enzymatic antioxidants | GSH, vitamin C, vitamin E are used to neutralize ROS | [24] | |
neural function | cognitive impairment | ROS damage to neurons → navigation and learning deficits | [51] |
neurodegeneration | structural brain damage in foragers exposed to pesticides | [60] | |
immune function | suppressed immunity | reduced hemocyte function and antimicrobial peptides | [55] |
↑ susceptibility to pathogens | Nosema spp. and viruses proliferate under oxidative stress | [29,57] | |
impaired immune gene expression | disrupted expression of immune-related genes (e.g., defensins) | [57] | |
reproduction | queen fertility decline | exposure to thiamethoxam is linked to oxidative stress in the ovaries | [31] |
queen replacement | behavioral response to declining queen performance | [59] | |
metabolism and longevity | accelerated aging | especially in winter bees; shorter lifespan due to ROS accumulation | [54] |
↑ metabolic load in foragers | foraging increases ROS via mitochondrial respiration | [15] | |
colony-level effects | disrupted division of labor | leads to precocious foraging; it weakens the colony’s age structure | [58] |
reduced brood production | nutritional and physiological stress impairs brood care | [57] | |
lower honey yield | impaired foraging and navigation → reduced nectar collection | [33] | |
colony mortality | combined effects of oxidative stress, pathogens, and poor nutrition | [14,57] | |
environmental triggers | pesticides (e.g., neonicotinoids) | imidacloprid, thiamethoxam increase ROS, suppress antioxidants | [24,60] |
pathogens (DWV, ABPV, Nosema spp.) | induce host ROS and weaken antioxidant systems | [27,29] | |
nutritional stress | lack of diverse pollen leads to antioxidant deficiency | [33,63] | |
high temperature/climate change | enhances ROS production; disrupts bee physiology | [14] | |
RF-EMFs (radiofrequency electromagnetic fields) | transport and hive movement increase oxidative load | [36,37] | |
induce oxidative biomarkers in bee tissues | [35] | ||
protective role of diet | pollen-derived polyphenols | antioxidant activity reduces ROS, supports detoxification | [64,65] |
vitamin C and E supplementation | enhance resilience against pesticide-induced oxidative stress | [24] | |
floral diversity | pollen sources improve antioxidant enzyme expression | [33] |
Polyphenol Source/Characterization | Pollen as an Experimental Variable | Stressor(s) Tested | Antioxidant/Redox Endpoints | Health/Outcome Endpoints | Link(s) | Ref-(s) |
---|---|---|---|---|---|---|
+ pollen quantified for p-coumaric acid | + two distinct pollen blends; measured phenolics | pesticides (azoxystrobin, sulfoxaflor) | GST, P450 gene expression, vitellogenin (expression only); no direct redox damage assays | none directly measured | (−) direct redox damage assays | [37] |
+ monofloral pollens (rapeseed, phacelia, etc.); phenolic/flavonoid content noted | + 6 monofloral pollens vs. sugar-only | nutritional stress (monodiet) | SOD, CAT, GST, GPx (activity) in hemolymph/fat body | survival, pesticide clearance | + polyphenol composition-dependent resilience | [7] |
+ pollen fractionated (apolar vs. polar) | + pollen vs. sugar | V. destructor, DWV | None beyond enzymatic shifts | none beyond enzymatic levels | (weak) no classic stressor link, but polyphenol-diet effect observed | [21] |
not quantified; pollen and bee bread diets | + rapeseed/willow pollen and bee bread vs. controls | none applied directly | TBARS, protein carbonyls, CAT activity, lysozyme | survival (lab/field), overwintering, gene expression changes | (weak) survival benefit lost with apolar fraction removal; no redox markers | [38] |
+ detailed for 3 pollen types, polyphenol content compared | + maize, lotus, sunflower pollen | none applied directly | no mechanistic linkage to polyphenols; more diet-induced redox status | digestion, immunity, gut microbiota | (−) polyphenol-focused | [39] |
(−) pure compounds (e.g., quercetin, p-coumaric acid) at pollen-level doses | (−) compounds in artificial diets, not pollen | pesticides (imidacloprid, propiconazole, thiacloprid, boscalid) | detox gene upregulation (CYP, GST); no ROS/damage metrics | survival, longevity, food intake, performance | limited: antioxidant effect presumed, no in vivo polyphenol pollen link | [40,41,42,43] |
Research Area | Knowledge Gap/Challenge | Future Direction | Ref-(s) |
---|---|---|---|
dose–response relationships | undefined optimal intake, efficacy thresholds, and potential toxicity of antioxidants | controlled dose trials using multiple biomarkers and stressors | [6,134,166] |
developmental and caste-specific needs | limited data on stage- and caste-specific antioxidant demands (larvae, queens, drones) | formulation of life-stage-targeted antioxidant diets | [17,167] |
compound interactions | unclear whether combinations of antioxidants are synergistic or antagonistic | systematic evaluation of common polyphenol/flavonoid interactions | [15,163] |
real-world multifactorial stress models | laboratory studies often isolate a single stressor; field-relevant complexity is missing | seasonal field studies simulating pesticide–pathogen–nutrition–climate combinations | [90,133,168] |
bioavailability and metabolism | poor understanding of absorption, transformation, and excretion of dietary antioxidants | use of isotope-labeled compounds and LC-MS/MS profiling | [4,169] |
role of microbiota | the gut microbiota interaction with antioxidant metabolism is not well characterized | germ-free bee studies; microbiome-targeted diet design | [164] |
standardization of methods | inconsistent biomarkers and oxidative stress assays limit comparability | development of validated standardized testing protocols and field kits | [165] |
delivery technologies | antioxidants may degrade, taste bad, or be poorly absorbed | nanoencapsulation, slow-release formulations, pH-stable carriers | [170,171,172] |
socioeconomic and practical adoption | lack of cost-effectiveness data and field-scale validation | participatory research with beekeepers; practical feeding protocols | [86] |
precision nutrition and genetics | unknown variability in antioxidant metabolism across colonies or strains | breeding programs selecting enhanced redox resistance traits | [2,17] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tlak Gajger, I.; Cvetkovikj, A. Antioxidant Potential of Pollen Polyphenols in Mitigating Environmental Stress in Honeybees (Apis mellifera). Antioxidants 2025, 14, 1086. https://doi.org/10.3390/antiox14091086
Tlak Gajger I, Cvetkovikj A. Antioxidant Potential of Pollen Polyphenols in Mitigating Environmental Stress in Honeybees (Apis mellifera). Antioxidants. 2025; 14(9):1086. https://doi.org/10.3390/antiox14091086
Chicago/Turabian StyleTlak Gajger, Ivana, and Aleksandar Cvetkovikj. 2025. "Antioxidant Potential of Pollen Polyphenols in Mitigating Environmental Stress in Honeybees (Apis mellifera)" Antioxidants 14, no. 9: 1086. https://doi.org/10.3390/antiox14091086
APA StyleTlak Gajger, I., & Cvetkovikj, A. (2025). Antioxidant Potential of Pollen Polyphenols in Mitigating Environmental Stress in Honeybees (Apis mellifera). Antioxidants, 14(9), 1086. https://doi.org/10.3390/antiox14091086