Elucidating Key Components and Mechanisms Underlying the Synergistic Anti-Type 2 Diabetes Effect of Morus alba L. and Siraitia grosvenorii Combination: An Integrated In Vitro Enzymology, Untargeted Metabolomics, and Network Pharmacology Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Measurement of α-Amylase and α-Glucosidase Inhibitory Activity
2.3. Combination Index (CI) Calculation
2.4. Evaluation of Antioxidant Activities
2.5. Metabolomics Analysis
2.6. MLSG Treatment of T2DM Target Acquisition
2.7. Construction of Protein–Protein Interaction (PPI) Network
2.8. Construction of “Component–Core Target–Signaling Pathway” Network
2.9. GO Enrichment and KEGG Pathway Analysis
2.10. Molecular Docking and ADMET Analysis
2.11. Molecular Dynamics Simulations (MDS)
2.12. Statistical Analysis
3. Results
3.1. Antioxidant Activity and Enzyme Inhibition of ML, SG, and MLSG
3.2. Substance Analysis of ML, SG, and MLSG
3.3. Multivariate Statistical Analysis
3.4. Screening of Differentially Abundant Metabolites
3.5. Target Prediction of MLSG Against T2DM
3.6. Protein–Protein Interaction (PPI) Network Analysis
3.7. GO and KEGG Enrichment Analysis of Potential T2DM Targets in MLSG
3.8. Analysis of the “Component–Core Target–Signaling Pathway” Network
3.9. Analysis of Molecular Docking and ADMET Analysis
3.10. Molecular Dynamics Simulations Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ML | Morus alba L. (Mulberry leaf) |
SG | Siraitia grosvenorii (Monk fruit) |
T2DM | Type 2 diabetes mellitus |
MLSG | Mulberry leaf and Siraitia grosvenorii combination |
STAT3 | Signal transducer and activator of transcription 3 |
AKT1 | RAC-alpha serine/threonine-protein kinase |
PIK3CA | Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha |
EGFR | Epidermal growth factor receptor |
MAPK1 | Mitogen-activated protein kinase 1 |
DNJ | 1-Deoxynojirimycin |
HFD | High-fat diet |
CI | Combination index |
PPI | Protein–protein interaction |
ADMET | Absorption, distribution, metabolism, excretion, toxicity |
MDS | Molecular dynamics simulations |
DAMs | Differentially abundant metabolites |
BP | Biological processes |
CC | Cellular component |
MF | Molecular function |
References
- IDF Diabetes Atlas Reports & Publications|IDF Atlas. Available online: https://diabetesatlas.org/resources/idf-diabetes-atlas-reports/ (accessed on 3 July 2025).
- Baker, C.; Retzik-Stahr, C.; Singh, V.; Plomondon, R.; Anderson, V.; Rasouli, N. Should Metformin Remain the First-Line Therapy for Treatment of Type 2 Diabetes? Ther. Adv. Endocrinol. Metab. 2021, 12, 2042018820980225. [Google Scholar] [CrossRef]
- Psaty, B.M.; Furberg, C.D. Rosiglitazone and Cardiovascular Risk. N. Engl. J. Med. 2007, 356, 2522–2524. [Google Scholar] [CrossRef]
- Fei, Z.; Xu, Y.; Zhang, G.; Liu, Y.; Li, H.; Chen, L. Natural Products with Potential Hypoglycemic Activity in T2DM: 2019–2023. Phytochemistry 2024, 223, 114130. [Google Scholar] [CrossRef]
- Liu, S.-Z.; Deng, Y.-X.; Chen, B.; Zhang, X.-J.; Shi, Q.-Z.; Qiu, X.-M. Antihyperglycemic Effect of the Traditional Chinese Scutellaria-Coptis Herb Couple and Its Main Components in Streptozotocin-Induced Diabetic Rats. J. Ethnopharmacol. 2013, 145, 490–498. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, D.; Li, L.; Geng, X.; Wang, M.; Wang, Z.; Wang, Y.; Hu, J.; Gao, J.; Cheng, X. Improving Effect of the Composite Granules of Bitter Melon and Mulberry Leaf on Lipid-Glucose Metabolism and Abnormal Intestinal Mucosal Barrier in High-Fat Diet-Induced Obese Rats. Sci. Technol. Food Ind. 2021, 42, 337–342. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, Q.; Xing, X.; Yuan, T.; Li, P. Clinical Research Progress on β-Cell Dysfunction in T2DM Development in the Chinese Population. Rev. Endocr. Metab. Disord. 2025, 26, 31–53. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Chai, T.; Xu, H.; Du, H.-Y.; Jiang, Y. Mulberry Leaf Multi-Components Exert Hypoglycemic Effects through Regulation of the PI-3K/Akt Insulin Signaling Pathway in Type 2 Diabetic Rats. J. Ethnopharmacol. 2024, 319, 117307. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Nakayama, J.; Ikeuchi, T.; Ito, M.; Kimura, T.; Kojima, K.; Takita, T.; Yasukawa, K. Kinetic Analysis of Inhibition of α-Glucosidase by Leaf Powder from Morus Australis and Its Component Iminosugars. Biosci. Biotechnol. Biochem. 2020, 84, 2149–2156. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Gan, T.; Huang, Y.; Bao, L.; Liu, S.; Cui, X.; Wang, H.; Jiao, F.; Zhang, M.; Su, C.; et al. Anti-Inflammatory Activity of Mulberry Leaf Flavonoids In Vitro and In Vivo. Int. J. Mol. Sci. 2022, 23, 7694. [Google Scholar] [CrossRef]
- Liu, H.; Qi, X.; Yu, K.; Lu, A.; Lin, K.; Zhu, J.; Zhang, M.; Sun, Z. AMPK Activation Is Involved in Hypoglycemic and Hypolipidemic Activities of Mogroside-Rich Extract from Siraitia grosvenorii (Swingle) Fruits on High-Fat Diet/Streptozotocin-Induced Diabetic Mice. Food Funct. 2019, 10, 151–162. [Google Scholar] [CrossRef]
- Wang, S.; Cui, K.; Liu, J.; Hu, J.; Yan, K.; Xiao, P.; Lu, Y.; Yang, X.; Liang, X. Mogroside-Rich Extract From Siraitia Grosvenorii Fruits Ameliorates High-Fat Diet-Induced Obesity Associated With the Modulation of Gut Microbiota in Mice. Front. Nutr. 2022, 9, 870394. [Google Scholar] [CrossRef]
- Souza, L.P.; Saleh, A.; Federico, S.; Alisdair, R.F. Ultra-High-Performance Liquid Chromatography High-Resolution Mass Spectrometry Variants for Metabolomics Research. Nat. Methods 2021, 18, 733–746. Available online: https://www.nature.com/articles/s41592-021-01116-4#citeas (accessed on 12 August 2025). [CrossRef]
- Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H. Network Pharmacology: Curing Causal Mechanisms Instead of Treating Symptoms. Trends Pharmacol. Sci. 2022, 43, 136–150. [Google Scholar] [CrossRef]
- Yang, C.; Chen, E.A.; Zhang, Y. Protein–Ligand Docking in the Machine-Learning Era. Molecules 2022, 27, 4568. [Google Scholar] [CrossRef]
- Sun, Y.; Cao, Q.; Huang, Y.; Lu, T.; Ma, H.; Chen, X. Mechanistic Study on the Inhibition of α-Amylase and α-Glucosidase Using the Extract of Ultrasound-Treated Coffee Leaves. J. Sci. Food Agric. 2024, 104, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.-C. The Combination Index (CI < 1) as the Definition of Synergism and of Synergy Claims. Synergy 2018, 7, 49–50. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, J.; Chen, R.; Xiao, L.; Wu, X.; Hu, L.; Li, Z.; Wang, Y.; Zhu, M.; Liu, Z.; et al. Comparison of the Fungal Community, Chemical Composition, Antioxidant Activity, and Taste Characteristics of Fu Brick Tea in Different Regions of China. Front. Nutr. 2022, 9, 900138. [Google Scholar] [CrossRef]
- Xiao, Y.; Xing, G.; Rui, X.; Li, W.; Chen, X.; Jiang, M.; Dong, M. Enhancement of the Antioxidant Capacity of Chickpeas by Solid State Fermentation with Cordyceps Militaris SN-18. J. Funct. Foods 2014, 10, 210–222. [Google Scholar] [CrossRef]
- Bai, L.; Zhou, H.; Xu, R.; Zhao, Y.; Chinnaswamy, K.; McEachern, D.; Chen, J.; Yang, C.-Y.; Liu, Z.; Wang, M.; et al. A Potent and Selective Small-Molecule Degrader of STAT3 Achieves Complete Tumor Regression In Vivo. Cancer Cell 2019, 36, 498–511.e17. [Google Scholar] [CrossRef]
- Wilhoit, T.; Patrick, J.M.; May, M.B. Alpelisib: A Novel Therapy for Patients With PIK3CA-Mutated Metastatic Breast Cancer. J. Adv. Pract. Oncol. 2020, 11, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Jing, Z.-T.; Liu, W.; Xue, C.-R.; Wu, S.-X.; Chen, W.-N.; Lin, X.-J.; Lin, X. AKT Activator SC79 Protects Hepatocytes from TNF-α-Mediated Apoptosis and Alleviates d-Gal/LPS-Induced Liver Injury. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 316, G387–G396. [Google Scholar] [CrossRef]
- Takenaka, T.; Nakai, S.; Katayama, M.; Hirano, M.; Ueno, N.; Noguchi, K.; Takatani-Nakase, T.; Fujii, I.; Kobayashi, S.S.; Nakase, I. Effects of Gefitinib Treatment on Cellular Uptake of Extracellular Vesicles in EGFR-Mutant Non-Small Cell Lung Cancer Cells. Int. J. Pharm. 2019, 572, 118762. [Google Scholar] [CrossRef]
- Morris, E.J.; Jha, S.; Restaino, C.R.; Dayananth, P.; Zhu, H.; Cooper, A.; Carr, D.; Deng, Y.; Jin, W.; Black, S.; et al. Discovery of a Novel ERK Inhibitor with Activity in Models of Acquired Resistance to BRAF and MEK Inhibitors. Cancer Discov. 2013, 3, 742–750. [Google Scholar] [CrossRef]
- Kohnke, B.; Kutzner, C.; Grubmüller, H. A GPU-Accelerated Fast Multipole Method for GROMACS: Performance and Accuracy. J. Chem. Theory Comput. 2020, 16, 6938–6949. [Google Scholar] [CrossRef]
- Kumari, R.; Kumar, R.; Open Source Drug Discovery Consortium; Lynn, A. G_mmpbsa—A GROMACS Tool for High-Throughput MM-PBSA Calculations. J. Chem. Inf. Model. 2014, 54, 1951–1962. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, H.; Li, N.; Chen, J.; Xu, H.; Wang, Y.; Liang, Q. Network Pharmacology, a Promising Approach to Reveal the Pharmacology Mechanism of Chinese Medicine Formula. J. Ethnopharmacol. 2023, 309, 116306. [Google Scholar] [CrossRef]
- Lima, J.E.B.F.; Moreira, N.C.S.; Sakamoto-Hojo, E.T. Mechanisms Underlying the Pathophysiology of Type 2 Diabetes: From Risk Factors to Oxidative Stress, Metabolic Dysfunction, and Hyperglycemia. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2022, 874–875, 503437. [Google Scholar] [CrossRef]
- Ren, J.; Yang, L.; Qiu, S.; Zhang, A.-H.; Wang, X.-J. Efficacy Evaluation, Active Ingredients, and Multitarget Exploration of Herbal Medicine. Trends Endocrinol. Metab. 2023, 34, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Ding, G.; Ren, S.; Xi, J.; Liu, K. The Bioavailability, Absorption, Metabolism, and Regulation of Glucolipid Metabolism Disorders by Quercetin and Its Important Glycosides: A Review. Food Chem. 2024, 458, 140262. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.-J.; Li, Y.; Cao, Q.-H.; Wu, H.-X.; Tang, X.-Y.; Gao, X.-H.; Yu, J.-Q.; Chen, Z.; Yang, Y. In Vitro and in Vivo Evidence That Quercetin Protects against Diabetes and Its Complications: A Systematic Review of the Literature. Biomed. Pharmacother. 2019, 109, 1085–1099. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Tong, J.; Li, J.; Ding, H. Quercetin Analogs as α-Glucosidase Inhibitors with Antidiabetic Activity. Food Biosci. 2024, 58, 103713. [Google Scholar] [CrossRef]
- Meng, Q.; Qi, X.; Chao, Y.; Chen, Q.; Cheng, P.; Yu, X.; Kuai, M.; Wu, J.; Li, W.; Zhang, Q.; et al. IRS1/PI3K/AKT Pathway Signal Involved in the Regulation of Glycolipid Metabolic Abnormalities by Mulberry (Morus alba L.) Leaf Extracts in 3T3-L1 Adipocytes. Chin. Med. 2020, 15, 1. [Google Scholar] [CrossRef]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and Anti-Inflammatory Activities of Quercetin and Its Derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Choi, M.S.; Jung, U.J.; Yeo, J.; Kim, M.J.; Lee, M.K. Genistein and Daidzein Prevent Diabetes Onset by Elevating Insulin Level and Altering Hepatic Gluconeogenic and Lipogenic Enzyme Activities in Non-Obese Diabetic (NOD) Mice. Diabetes Metab. Res. Rev. 2008, 24, 74–81. [Google Scholar] [CrossRef]
- Roy, M.; Sen, S.; Chakraborti, A.S. Action of Pelargonidin on Hyperglycemia and Oxidative Damage in Diabetic Rats: Implication for Glycation-Induced Hemoglobin Modification. Life Sci. 2008, 82, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Huang, K.; Tong, T. Efficacy and Mechanisms of Oleuropein in Mitigating Diabetes and Diabetes Complications. J. Agric. Food Chem. 2021, 69, 6145–6155. [Google Scholar] [CrossRef]
- Yin, Y.; He, J.; Fang, Y.; Wei, M.; Zhang, W. Andrographolide as a Multi-Target Therapeutic Agent in Diabetic Nephropathy: Insights into STAT3/PI3K/Akt Pathway Modulation. Biomol. Ther. 2025, 33, 529–543. [Google Scholar] [CrossRef] [PubMed]
- Hassan, T. Antidiabetic Potential of Perillyl Alcohol, a Monoterpene on High-Fat Diet Low-Dose Streptozotocin-Induced Diabetes in Experimental Rats. Asian J. Pharm. Clin. Res. 2019, 12, 223–228. [Google Scholar] [CrossRef]
- Xiao, H.; Sun, X.; Liu, R.; Chen, Z.; Lin, Z.; Yang, Y.; Zhang, M.; Liu, P.; Quan, S.; Huang, H. Gentiopicroside Activates the Bile Acid Receptor Gpbar1 (TGR5) to Repress NF-kappaB Pathway and Ameliorate Diabetic Nephropathy. Pharmacol. Res. 2020, 151, 104559. [Google Scholar] [CrossRef]
- Oboh, G.; Agunloye, O.M.; Adefegha, S.A.; Akinyemi, A.J.; Ademiluyi, A.O. Caffeic and Chlorogenic Acids Inhibit Key Enzymes Linked to Type 2 Diabetes (In Vitro): A Comparative Study. J. Basic Clin. Physiol. Pharmacol. 2015, 26, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Wang, J.; Takano, H.; Xu, Z.; Nishiwaki, H.; Yonekura, L.; Yang, R.; Tamura, H. Rosmarinic Acid and Its Ester Derivatives for Enhancing Antibacterial, α-Glucosidase Inhibitory, and Lipid Accumulation Suppression Activities. J. Food Biochem. 2019, 43, e12719. [Google Scholar] [CrossRef] [PubMed]
- Vinayagam, R.; Xu, B. 7, 8-Dihydroxycoumarin (Daphnetin) Protects INS-1 Pancreatic β-Cells against Streptozotocin-Induced Apoptosis. Phytomedicine 2017, 24, 119–126. [Google Scholar] [CrossRef]
- Naowaboot, J.; Somparn, N.; Saentaweesuk, S.; Pannangpetch, P. Umbelliferone Improves an Impaired Glucose and Lipid Metabolism in High-Fat Diet/Streptozotocin-Induced Type 2 Diabetic Rats. Phytother. Res. 2015, 29, 1388–1395. [Google Scholar] [CrossRef]
- Wang, H.; Shen, Y.; Zhao, L.; Ye, Y. 1-Deoxynojirimycin and Its Derivatives: A Mini Review of the Literature. Curr. Med. Chem. 2021, 28, 628–643. [Google Scholar] [CrossRef]
- Zhou, T.; Song, G.; Tian, D.; Liu, Q.; Shen, J.; Yang, X.; Zhao, P. Nuciferine Relieves Type 2 Diabetes Mellitus via Enhancing GLUT4 Expression and Translocation. Food Sci. Hum. Wellness 2023, 12, 2040–2051. [Google Scholar] [CrossRef]
- Wang, P.; Su, C.; Feng, H.; Chen, X.; Dong, Y.; Rao, Y.; Ren, Y.; Yang, J.; Shi, J.; Tian, J.; et al. Curcumin Regulates Insulin Pathways and Glucose Metabolism in the Brains of APPswe/PS1dE9 Mice. Int. J. Immunopathol. Pharmacol. 2017, 30, 25–43. [Google Scholar] [CrossRef]
- Rivera-Mancía, S.; Trujillo, J.; Chaverri, J.P. Utility of Curcumin for the Treatment of Diabetes Mellitus: Evidence from Preclinical and Clinical Studies. J. Nutr. Intermed. Metab. 2018, 14, 29–41. [Google Scholar] [CrossRef]
- Khan, A.N.; Singh, R.; Bhattacharya, A.; Chakravarti, R.; Roy, S.; Ravichandiran, V.; Ghosh, D. A Short Review on Glucogallin and Its Pharmacological Activities. Mini Rev. Med. Chem. 2022, 22, 2820–2830. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Zhang, Y.; Shi, L.; Li, L.; Zhang, D.; Gong, Z.; Wu, Q. Activation and Modulation of the AGEs-RAGE Axis: Implications for Inflammatory Pathologies and Therapeutic Interventions—A Review. Pharmacol. Res. 2024, 206, 107282. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Liu, G.; Guo, J.; Su, Z. The PI3K/AKT Pathway in Obesity and Type 2 Diabetes. Int. J. Biol. Sci. 2018, 14, 1483–1496. [Google Scholar] [CrossRef] [PubMed]
- Girgis, C.M.; Cheng, K.; Scott, C.H.; Gunton, J.E. Novel Links between HIFs, Type 2 Diabetes, and Metabolic Syndrome. Trends Endocrinol. Metab. 2012, 23, 372–380. [Google Scholar] [CrossRef] [PubMed]
ML | SG | MLSG | Acarbose | |
---|---|---|---|---|
α-AmylaseIC50 (mg/mL) | 34.75 ± 1.43 a | 18.34 ± 0.86 b | 14.06 ± 0.55 c | 0.066 ± 0.088 d |
CI α-Amylase | / | / | 0.58 < 1 | / |
α-GlucosidaseIC50 (mg/mL) | 0.11 ± 0.1 b | 0.31 ± 0.12 a | 0.02 ± 0.001 c | 0.000146 ± 0.00085 d |
CI α-Glucosidase | / | / | 0.12 < 1 | / |
DPPH (mg VCE/g d.w.) | 1.94 ± 0.05 a | 0.78 ± 0.03 c | 1.45 ± 0.02 b | / |
ABTS (mg VCE/g d.w.) | 0.89 ± 0.03 b | 0.55 ± 0.07 c | 1.04 ± 0.07 a | / |
RP (mg VCE/g d.w.) | 1.68 ± 0.04 b | 1.51 ± 0.05 c | 2.28 ± 0.02 a | / |
FRAP (mg FeSO4/g d.w.) | 6.35 ± 0.14 b | 3.63 ± 0.22 c | 6.92 ± 0.06 a | / |
ID | Sample | Compounds | Class | mz | rt/s | ppm | Formula | Pos/Neg | Precursor |
---|---|---|---|---|---|---|---|---|---|
1 | ML | Liquidambaric acid | Terpenoids | 477.33 | 336.3 | 1.263 | C30H46O3 | pos | [M+Na]+ |
2 | ML | Daphnetin | Phenylpropanoids | 179.03 | 206.5 | 0.089 | C9H6O4 | pos | [M+H]+ |
3 | ML | Oleuropein | Terpenoids | 521.16 | 339.6 | 3.951 | C25H32O13 | neg | [M-H2O-H]− |
4 | ML | Carnosic_acid | Others | 315.25 | 343.9 | 2.132 | C20H28O4 | pos | [M-H2O+H]+ |
5 | ML | Perillyl alcohol | Prenol lipids | 153.12 | 237.9 | 1.208 | C10H16O | pos | [M+H]+ |
6 | ML | 1-Deoxynojirimycin | Alkaloids | 144.06 | 54.8 | 1.996 | C6H13NO4 | neg | [M-H2O-H]− |
7 | ML | Allivicin | Flavonoids | 611.15 | 244.7 | 4.998 | C27H30O16 | pos | [M+H]+ |
8 | ML | Dehydrozingerone | Cinnamic acids and derivatives | 175.14 | 293.5 | 0.105 | C11H12O3 | pos | [M-H2O+H]+ |
9 | ML | Skimmin | Phenylpropanoids | 325.09 | 218.1 | 0.954 | C15H16O8 | pos | [M+H]+ |
10 | ML | Gentiopicrin | Terpenoids | 417.10 | 221.2 | 0.109 | C16H20O9 | neg | [M+HCO3]− |
11 | ML | Chlorogenic acid | Organooxygen compounds | 117.02 | 42.3 | 1.121 | C4H6O4 | neg | [M-H]− |
12 | SG | Nuciferine | Alkaloids | 296.15 | 234.6 | 4.596 | C19H21NO2 | pos | [M+H]+ |
13 | SG | Rosmarinic acid | Cinnamic acids and derivatives | 383.18 | 151.6 | 2.047 | C18H16O8 | pos | [M+Na]+ |
14 | SG | Fraxin | Phenylpropanoids | 369.08 | 219.2 | 1.67 | C16H18O10 | neg | [M-H]− |
15 | SG | trans-Cinnamic acid | Phenylpropanoids | 166.08 | 348.3 | 1.519 | C9H8O2 | pos | [M+NH4]+ |
16 | SG | Ginsenoside A2 | Prenol lipids | 801.50 | 332.4 | 1.175 | C42H72O14 | pos | [M+H]+ |
17 | ML+SG | beta-Glucogallin | Tannins | 331.06 | 74 | 1.713 | C13H16O10 | neg | [M-H]− |
18 | ML+SG | Umbelliferone | Coumarins and derivatives | 180.06 | 234.4 | 4.343 | C9H6O3 | pos | [M+NH4]+ |
19 | ML+SG | Curcumin | Diarylheptanoids | 369.12 | 273 | 1.906 | C21H20O6 | pos | [M+H]+ |
20 | ML+SG | Caffeic acid | Cinnamic acids and derivatives | 163.04 | 392.5 | 1.032 | C9H8O4 | pos | [M-H2O+H]+ |
21 | ML+SG | Daidzein | Isoflavonoids | 272.09 | 358.7 | 0.115 | C15H10O4 | pos | [M+NH4]+ |
22 | ML+SG | Quercetin 7-glucoside | Flavonoids | 465.10 | 288 | 1.179 | C21H20O12 | pos | [M+H]+ |
23 | ML+SG | Panasenoside | Flavonoids | 609.14 | 272.7 | 2.465 | C27H30O16 | neg | [M-H]− |
24 | ML+SG | Isoquercitrin | Flavonoids | 463.08 | 280.9 | 4.309 | C21H20O12 | neg | [M-H]− |
25 | MLSG | Pelargonidin | Flavonoids | 255.06 | 327.9 | 1.639 | [C15H11O5]+ | pos | [M-OH+H]+ |
26 | MLSG | Andrographolide | Terpenoids | 351.25 | 416.1 | 2.64 | C20H30O5 | pos | [M+H]+ |
No. | Name | Degree | Betweenness | Closeness | |
---|---|---|---|---|---|
Targets | 1 | SRC | 34 | 2026.20 | 0.1469 |
Targets | 2 | STAT3 | 31 | 3294.25 | 0.1514 |
Targets | 3 | PIK3R1 | 28 | 821.50 | 0.1430 |
Targets | 4 | AKT1 | 28 | 3279.53 | 0.1512 |
Targets | 5 | PIK3CA | 27 | 404.13 | 0.1418 |
Targets | 6 | HSP90AA1 | 27 | 2980.88 | 0.1497 |
Targets | 7 | PIK3CB | 25 | 271.29 | 0.1400 |
Targets | 8 | EGFR | 25 | 2270.09 | 0.1488 |
Targets | 9 | ESR1 | 24 | 2139.25 | 0.1496 |
Targets | 10 | MAPK1 | 23 | 1219.73 | 0.1476 |
STAT3 (PDB:6njs) | PIK3CA (PDB:4jps) | AKT1 (PDB:3o96) | EGFR (PDB:1m17) | MAPK1 (PDB:6ges) | |
---|---|---|---|---|---|
Pelargonidin | −7.3 | −6.6 | −9.0 | −7.4 | −7.4 |
Dehydrozingerone | −5.7 | −6.9 | −5.1 | −6.0 | −5.0 |
Liquidambaric acid | −7.7 | −9.9 | −7.5 | −8.9 | −8.8 |
Daphnetin | −6.0 | −6.8 | −6.3 | −6.6 | −6.0 |
Curcumin | −7.5 | −8.4 | −7.2 | −7.4 | −8.7 |
Caffeic acid | −6.1 | −7.0 | −6.6 | −5.5 | −5.0 |
Umbelliferone | −5.9 | −7.1 | −6.4 | −6.0 | −6.0 |
Daidzein | −7.2 | −8.0 | −9.4 | −7.2 | −7.8 |
Nuciferine | −6.8 | −8.4 | −10.8 | −8.7 | −8.7 |
Andrographolide | −6.9 | −9.7 | −9.4 | −7.9 | −8.5 |
Classical ligands | −7.4 | −10.3 | −7.8 | −8.0 | −8.8 |
Energy Component (Kcal/mol) | AKT1- SC79 | PIK3CA-Alpelisib | AKT1-Andrographolide | AKT1-Daidzein | AKT1-Nuciferine | AKT1-Pelargonidin | PIK3CA-Liquidambaric Acid | PIK3CA-Andrographolide |
---|---|---|---|---|---|---|---|---|
ΔVDWAALS | −40.05 | −48.22 | −44.79 | −32.94 | −47.55 | −28.90 | −45.03 | −29.62 |
ΔEEL | −12.63 | −32.93 | −27.02 | −5.93 | −18.40 | −80.38 | −31.38 | −7.85 |
ΔEPB | 33.16 | 47.74 | 48.37 | 32.23 | 40.78 | 85.42 | 42.61 | 23.51 |
ΔENPOLAR | −4.12 | −4.79 | −4.22 | −3.46 | −3.83 | −3.40 | −4.64 | −3.30 |
ΔEDISPER | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
ΔGGAS | −52.68 | −81.15 | −71.81 | −38.87 | −65.95 | −109.29 | −76.41 | −37.46 |
ΔGSOLV | 29.04 | 42.95 | 44.14 | 28.77 | 36.96 | 82.02 | 37.97 | 20.21 |
ΔTOTAL | −23.64 | −38.20 | −27.67 | −10.10 | −28.99 | −27.27 | −38.44 | −17.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, F.; Su, S.; Song, R.; Li, Y.; Zou, L.; Li, Z.; Xiao, Y.; Hou, A.; Li, K.; Wang, Y. Elucidating Key Components and Mechanisms Underlying the Synergistic Anti-Type 2 Diabetes Effect of Morus alba L. and Siraitia grosvenorii Combination: An Integrated In Vitro Enzymology, Untargeted Metabolomics, and Network Pharmacology Approach. Antioxidants 2025, 14, 1065. https://doi.org/10.3390/antiox14091065
He F, Su S, Song R, Li Y, Zou L, Li Z, Xiao Y, Hou A, Li K, Wang Y. Elucidating Key Components and Mechanisms Underlying the Synergistic Anti-Type 2 Diabetes Effect of Morus alba L. and Siraitia grosvenorii Combination: An Integrated In Vitro Enzymology, Untargeted Metabolomics, and Network Pharmacology Approach. Antioxidants. 2025; 14(9):1065. https://doi.org/10.3390/antiox14091065
Chicago/Turabian StyleHe, Fang, Shenglan Su, Ruihan Song, Yan Li, Luyan Zou, Zongjun Li, Yu Xiao, Aixiang Hou, Ke Li, and Yuanliang Wang. 2025. "Elucidating Key Components and Mechanisms Underlying the Synergistic Anti-Type 2 Diabetes Effect of Morus alba L. and Siraitia grosvenorii Combination: An Integrated In Vitro Enzymology, Untargeted Metabolomics, and Network Pharmacology Approach" Antioxidants 14, no. 9: 1065. https://doi.org/10.3390/antiox14091065
APA StyleHe, F., Su, S., Song, R., Li, Y., Zou, L., Li, Z., Xiao, Y., Hou, A., Li, K., & Wang, Y. (2025). Elucidating Key Components and Mechanisms Underlying the Synergistic Anti-Type 2 Diabetes Effect of Morus alba L. and Siraitia grosvenorii Combination: An Integrated In Vitro Enzymology, Untargeted Metabolomics, and Network Pharmacology Approach. Antioxidants, 14(9), 1065. https://doi.org/10.3390/antiox14091065