Box–Behnken Design Optimization of Green Extraction from Tomato Aerial Parts and Axillary Shoots for Enhanced Recovery of Rutin and Complementary Bioactive Compounds
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Plant Material Extraction Methods
2.2.1. Ultrasound Assisted Extraction (UAE)
2.2.2. Microwave Assisted Extraction (MAE)
2.2.3. Cascade Extraction
2.3. BBD Experimental Design
2.3.1. Experimental Design for Optimization of Bioactive Compounds Recovery from Aerial and Axillary Shoots Tomato Waste
2.3.2. Validation of the BBD Model
2.4. Determination of the Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
2.5. Rutin Content Quantification by UPLC
2.6. Antioxidant Activity Evaluation by DPPH Assay
2.7. Identification and Quantification of Primary and Secondary Metabolites from Optimized Extracts
2.8. Identification and Quantification of Micro and Macro-Nutrients from Optimized Extracts
2.9. Statistical Analysis
3. Results
3.1. BBD Model Optimization
3.2. The Influence of the Independent Variables on the Studied Responses
3.3. Validation of the Optimized Models
3.4. Extracts Characterization Obtained Under Optimized Parameters
3.4.1. Identification and Quantification of Primary Metabolites
3.4.2. Identification and Quantification of Secondary Metabolites
3.4.3. Mineral Profile of Extracts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Comission. EU Fruit and Vegetables Production. Available online: https://agridata.ec.europa.eu/extensions/DashboardFruitAndVeg/FruitandVegetableProduction.html (accessed on 17 June 2025).
- FAOSTAT. Food and Agriculture Organization of the United Nations. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 17 June 2025).
- Alkoaik, F.N.; Abdel-Ghany, A.M.; Rashwan, M.A.; Fulleros, R.B.; Ibrahim, M.N. Energy Analysis of a Rotary Drum Bioreactor for Composting Tomato Plant Residues. Energies 2018, 11, 449. [Google Scholar] [CrossRef]
- Camarena-Martínez, S.; Martinez-Martinez, J.H.; Saldaña-Robles, A.; Nuñez-Palenius, H.G.; Costilla-Salazar, R.; Valdez-Vazquez, I.; Lovanh, N.; Ruiz-Aguilar, G.M.L. Effects of experimental parameters on methane production and volatile solids removal from tomato and pepper plant wastes. BioResources 2020, 15, 4763–4780. [Google Scholar] [CrossRef]
- de Almeida, L.G.; Cardoso, A.I.I.; Candian, J.S.; Grassi Filho, H.; Sartori, M.M.P. Growth and macronutrient accumulation in tomato cultivated in an organic system. Hortic. Bras. 2023, 41, e2532. [Google Scholar] [CrossRef]
- Ayala-Cortés, A.; Arancibia-Bulnes, C.A.; Villafán-Vidales, H.I.; Lobato-Peralta, D.R.; Martínez-Casillas, D.C.; Cuentas-Gallegos, A.K. Solar pyrolysis of agave and tomato pruning wastes: Insights of the effect of pyrolysis operation parameters on the physicochemical properties of biochar. AIP Conf. Proc. 2019, 2126, 180001. [Google Scholar]
- Memici, M.; Ekinci, K. Pyrolysis of tomato harvest waste as a function of temperature and duration: Characteristics, production energy, and carbon dioxide emission in field conditions. Soil Tillage Res. 2020, 202, 104652. [Google Scholar] [CrossRef]
- Arab, M.; Bahramian, B.; Schindeler, A.; Valtchev, P.; Dehghani, F.; McConchie, R. Extraction of phytochemicals from tomato leaf waste using subcritical carbon dioxide. Innov. Food Sci. Emerg. Technol. 2019, 57, 102204. [Google Scholar] [CrossRef]
- Junker-Frohn, L.V.; Lück, M.; Schmittgen, S.; Wensing, J.; Carraresi, L.; Thiele, B.; Groher, T.; Reimer, J.J.; Bröring, S.; Noga, G.; et al. Tomato’s green gold: Bioeconomy potential of residual tomato leaf biomass as a novel source for the secondary metabolite rutin. ACS Omega 2019, 4, 19071–19080. [Google Scholar] [CrossRef] [PubMed]
- Almeida, P.V.; Rodrigues, R.P.; Gaspar, M.C.; Braga, M.E.M.; Quina, M.J. Integrated management of residues from tomato production: Recovery of value-added compounds and biogas production in the biorefinery context. J. Environ. Manag. 2021, 299, 113505. [Google Scholar] [CrossRef] [PubMed]
- Bascón-Villegas, I.; Espinosa, E.; Sánchez, R.; Tarrés, Q.; Pérez-Rodríguez, F.; Rodríguez, A. Horticultural Plant Residues as New Source for Lignocellulose Nanofibers Isolation: Application on the Recycling Paperboard Process. Molecules 2020, 25, 3275. [Google Scholar] [CrossRef]
- Covino, C.; Sorrentino, A.; Di Pierro, P.; Roscigno, G.; Vece, A.P.; Masi, P. Lignocellulosic fibres from enzyme-treated tomato plants: Characterisation and application in paperboard manufacturing. Int. J. Biol. Macromol. 2020, 161, 787–796. [Google Scholar] [CrossRef]
- Moreno, A.D.; Duque, A.; González, A.; Ballesteros, I.; Negro, M.J. Valorization of Greenhouse Horticulture Waste from a Biorefinery Perspective. Foods 2021, 10, 814. [Google Scholar] [CrossRef]
- Salam, U.; Ullah, S.; Tang, Z.H.; Elateeq, A.A.; Khan, Y.; Khan, J.; Khan, A.; Ali, S. Plant metabolomics: An overview of the role of primary and secondary metabolites against different environmental stress factors. Life 2023, 13, 706. [Google Scholar] [CrossRef]
- Prelac, M.; Palčić, I.; Cvitan, D.; Anđelini, D.; Repajić, M.; Ćurko, J.; Kovačević, T.K.; Goreta Ban, S.; Užila, Z.; Ban, D.; et al. From Waste to Green: Water-Based Extraction of Polyphenols from Onion Peel and Their Adsorption on Biochar from Grapevine Pruning Residues. Antioxidants 2023, 12, 1697. [Google Scholar] [CrossRef] [PubMed]
- Prelac, M.; Major, N.; Cvitan, D.; Anđelini, D.; Repajić, M.; Ćurko, J.; Kovačević, T.K.; Goreta Ban, S.; Užila, Z.; Ban, D.; et al. Valorization of Olive Leaf Polyphenols by Green Extraction and Selective Adsorption on Biochar Derived from Grapevine Pruning Residues. Antioxidants 2024, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Añibarro-Ortega, M.; Pinela, J.; Ćirić, A.; Martins, V.; Rocha, F.; Soković, M.D.; Ferreira, I.C.F.R. Valorisation of table tomato crop by-products: Phenolic profiles and in vitro antioxidant and antimicrobial activities. Food Bioprod. Process. 2020, 124, 307–319. [Google Scholar] [CrossRef]
- Ganjayi, M.S.; Sankaran, K.R.; Meriga, B.; Bhatia, R.; Sharma, S.; Kondepudi, K.K. Astragalin and rutin restore gut microbiota dysbiosis, alleviate obesity and insulin resistance in high-fat diet-fed C57BL/6J mice. Food Sci. Hum. Wellness 2024, 13, 3256–3265. [Google Scholar] [CrossRef]
- Zou, Z.; Zhang, F.; Pan, Z.; Xu, J.; Li, X.; Sun, X.; Wang, X.; Qin, F.; Abulizi, A.; Chen, Q.; et al. Assessing the therapeutic potential of rutin in alleviating symptoms of inflammatory bowel disease: A meta-analysis. Front. Pharmacol. 2025, 16, 1539469. [Google Scholar] [CrossRef]
- Choi, S.S.; Park, H.R.; Lee, K.A. A Comparative Study of Rutin and Rutin Glycoside: Antioxidant Activity, Anti-Inflammatory Effect, Effect on Platelet Aggregation and Blood Coagulation. Antioxidants 2021, 10, 1696. [Google Scholar] [CrossRef] [PubMed]
- Caparica, R.; Júlio, A.; Araújo, M.E.M.; Baby, A.R.; Fonte, P.; Costa, J.G.; Santos de Almeida, T. Anticancer Activity of Rutin and Its Combination with Ionic Liquids on Renal Cells. Biomolecules 2020, 10, 233. [Google Scholar] [CrossRef]
- Singh, R.; Singh, P.; Pandey, V.K.; Dash, K.K.; Ashish; Mukarram, S.A.; Harsányi, E.; Kovács, B. Microwave-Assisted Phytochemical Extraction from Walnut Hull and Process Optimization Using Box–Behnken Design (BBD). Processes 2023, 11, 1243. [Google Scholar] [CrossRef]
- Mehra, S.; Kandari, A.; Sharma, S.; Kumar, V.; Bisht, B.; Joshi, S.; Tomar, S.; Ahmad, W.; Dobhal, A.; Kumar, S. Numerical optimization of microwave heating on bioactive components and quality characteristics of buransh (Rhododendron arboretum) flower squash by using response surface methodology (BBD). Syst. Microbiol. Biomanuf. 2024, 4, 215–222. [Google Scholar] [CrossRef]
- Baltacıoğlu, H.; Baltacıoğlu, C.; Okur, I.; Tanrıvermiş, A.; Yalıç, M. Optimization of microwave-assisted extraction of phenolic compounds from tomato: Characterization by FTIR and HPLC and comparison with conventional solvent extraction. Vib. Spectrosc. 2021, 113, 103204. [Google Scholar] [CrossRef]
- Solaberrieta, I.; Mellinas, C.; Jiménez, A.; Garrigós, M.C. Recovery of Antioxidants from Tomato Seed Industrial Wastes by Microwave-Assisted and Ultrasound-Assisted Extraction. Foods 2022, 11, 3068. [Google Scholar] [CrossRef]
- Major, N.; Išić, N.; Kovačević, T.K.; Anđelini, M.; Ban, D.; Prelac, M.; Palčić, I.; Goreta Ban, S. Size Does Matter: The Influence of Bulb Size on the Phytochemical and Nutritional Profile of the Sweet Onion Landrace “Premanturska Kapula” (Allium cepa L.). Antioxidants 2023, 12, 1596. [Google Scholar] [CrossRef]
- Polić Pasković, M.; Herak Ćustić, M.; Lukić, I.; Marcelić, Š.; Žurga, P.; Vidović, N.; Major, N.; Goreta Ban, S.; Pecina, M.; Ražov, J.; et al. Foliar Nutrition Strategies for Enhancing Phenolic and Amino Acid Content in Olive Leaves. Plants 2024, 13, 3514. [Google Scholar] [CrossRef] [PubMed]
- Palčić, I.; Anđelini, D.; Prelac, M.; Pasković, I.; Černe, M.; Major, N.; Goreta Ban, S.; Užila, Z.; Bubola, M.; Ban, D.; et al. Influence of Biochar Foliar Application on Malvazija Istarska Grapevine Physiology. Sustainability 2025, 17, 5947. [Google Scholar] [CrossRef]
- Brahmi, F.; Mateos-Aparicio, I.; Garcia-Alonso, A.; Abaci, N.; Saoudi, S.; Smail-Benazzouz, L.; Guemghar-Haddadi, H.; Madani, K.; Boulekbache-Makhlouf, L. Optimization of Conventional Extraction Parameters for Recovering Phenolic Compounds from Potato (Solanum tuberosum L.) Peels and Their Application as an Antioxidant in Yogurt Formulation. Antioxidants 2022, 11, 1401. [Google Scholar] [CrossRef]
- Taha, M.; Dimitrov, K.; Samaillie, J.; Caux, B.; Sahpaz, S.; Blanchemain, N.; West, C.; Rivière, C. Optimizing the Extraction of Bioactive Compounds (Polyphenols, Lipids, and Alpha-Tocopherol) from Almond Okara to Unlock Its Potential as Functional Food. Foods 2024, 13, 2828. [Google Scholar] [CrossRef]
- Bhadange, Y.A.; Carpenter, J.; Saharan, V.K. A Comprehensive Review on Advanced Extraction Techniques for Retrieving Bioactive Components from Natural Sources. ACS Omega 2024, 9, 31274–31297. [Google Scholar] [CrossRef]
- Prado, R.M.; Caione, G. Plant Analysis. In Plant Science; Lichtfouse, E., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Ferreira, A.K.C.; Dias, N.S.; Sousa Junior, F.S.; Ferreira, D.A.C.; Fernandes, C.S.; Leite, T.S. Composting of household organic waste and its effects on growth and mineral composition of cherry tomato. Rev. Ambient. Água 2018, 13, e2141. [Google Scholar] [CrossRef]
- Atilgan, A.; Rolbiecki, R.; Saltuk, B.; Jagosz, B.; Arslan, F.; Erdal, I.; Aktas, H. Deficit Irrigation Stabilizes Fruit Yield and Alters Leaf Macro and Micronutrient Concentration in Tomato Cultivation in Greenhouses: A Case Study in Turkey. Agronomy 2022, 12, 2950. [Google Scholar] [CrossRef]
- Chew, S.K.; Teoh, W.H.; Hong, S.L.; Yusoff, R. Rutin extraction from female Carica papaya Linn. using ultrasound and microwave-assisted extractive methods: Optimization and extraction efficiencies. Heliyon 2023, 9, e20260. [Google Scholar] [CrossRef]
- Chahyadi, A.; Elfahmi. The influence of extraction methods on rutin yield of cassava leaves (Manihot esculenta Crantz). Saudi Pharm. J. 2020, 28, 1466–1473. [Google Scholar] [CrossRef]
- Wang, W.; Xiao, S.-Q.; Li, L.-Y.; Gai, Q.-Y. Deep Eutectic Solvent-Based Microwave-Assisted Extraction for the Extraction of Seven Main Flavonoids from Ribes mandshuricum (Maxim.) Kom. Leaves. Separations 2023, 10, 191. [Google Scholar] [CrossRef]
- Samanta, R.; Ghosh, M. Optimization of Microwave-assisted Extraction Technique for Flavonoids and Phenolics from the Leaves of Oroxylum indicum (L.) Kurtz Using Taguchi L9 Orthogonal Design. Pharmacogn. Mag. 2023, 19, 97–104. [Google Scholar] [CrossRef]
- Elez Garofulić, I.; Repajić, M.; Zorić, Z.; Jurendić, T.; Dragović-Uzelac, V. Evaluation of Microwave- and Ultrasound-Assisted Extraction Techniques for Revalorization of Black Chokeberry (Aronia melanocarpa) Fruit Pomace Anthocyanins. Sustainability 2023, 15, 7047. [Google Scholar] [CrossRef]
- Pedisić, S.; Čulina, P.; Pavlešić, T.; Vahčić, N.; Elez Garofulić, I.; Zorić, Z.; Dragović-Uzelac, V.; Repajić, M. Efficiency of Microwave and Ultrasound-Assisted Extraction as a Green Tool for Polyphenolic Isolation from Monofloral Honeys. Processes 2023, 11, 3141. [Google Scholar] [CrossRef]
- Azaroual, L.; Liazid, A.; Mansouri, F.E.; Brigui, J.; Ruíz-Rodriguez, A.; Barbero, G.F.; Palma, M. Optimization of the Microwave-Assisted Extraction of Simple Phenolic Compounds from Grape Skins and Seeds. Agronomy 2021, 11, 1527. [Google Scholar] [CrossRef]
- Vo, T.P.; Nguyen, N.T.U.; Le, V.H.; Phan, T.H.; Nguyen, T.H.Y.; Nguyen, D.Q. Optimizing Ultrasonic-Assisted and Microwave-Assisted Extraction Processes to Recover Phenolics and Flavonoids from Passion Fruit Peels. ACS Omega 2023, 8, 33870–33882. [Google Scholar] [CrossRef]
- El Adnany, E.M.; Elhadiri, N.; Mourjane, A.; Ouhammou, M.; Hidar, N.; Jaouad, A.; Bitar, K.; Mahrouz, M. Impact and Optimization of the Conditions of Extraction of Phenolic Compounds and Antioxidant Activity of Olive Leaves (Moroccan Picholine) Using Response Surface Methodology. Separations 2023, 10, 326. [Google Scholar] [CrossRef]
- Febriani, H.; Lubis, M.F.; Sumaiyah; Hasibuan, P.A.Z.; Syahputra, R.A.; Astyka, R.; Juwita, N.A. Optimization of microwave-assisted extraction to obtain a polyphenol-rich crude extract from duku (Lansium domesticum Corr.) leaf and the correlation with antioxidant and cytotoxic activities. Kuwait J. Sci. 2025, 52, 100315. [Google Scholar] [CrossRef]
- Lopez-Zaplana, A.; Yepes-Molina, L.; Garcia-Ibañez, P.; Garcia-Hernandez, J.P.; Carvajal, M. The impact of semi-transparent solar panels on tomato and broccoli growth. Adv. Energy Sustain. Res. 2024, 5, 2300175. [Google Scholar] [CrossRef]
- Liese, H.W.; Valkenburg, T.A.A.; America, A.H.P.; Scholten, E.; Bruins, M.E. Toxin removal during protein extraction from tomato leaves. Innov. Food Sci. Emerg. Technol. 2023, 88, 103454. [Google Scholar] [CrossRef]
- Yu, Y.; Kleuter, M.; Taghian Dinani, S.; Trindade, L.M.; van der Goot, A.J. The role of plant age and leaf position on protein extraction and phenolic compounds removal from tomato (Solanum lycopersicum) leaves using food-grade solvents. Food Chem. 2023, 406, 135072. [Google Scholar] [CrossRef]
- Wawoczny, A.; Wilk, J.; Shyntum, D.; Shakibania, S.; Krukiewicz, K.; Gibas, J.; Machulik, M.; Płonka, J.; Bajkacz, S.; Dudek, G.; et al. Valorization of waste tomato leaves with natural deep eutectic solvents. Food Chem. 2025, 472, 142884. [Google Scholar] [CrossRef]
- Röhlen-Schmittgen, S.; Ellenberger, J.; Groher, T.; Hunsche, M. Boosting leaf contents of rutin and solanesol in bio-waste of Solanum lycopersicum. Plant Physiol. Biochem. 2020, 155, 888–897. [Google Scholar] [CrossRef]
- Kim, D.S.; Kwack, Y.; Lee, J.H.; Chun, C. Antimicrobial Activity of Various Parts of Tomato Plants Varied with Different Solvent Extracts. Plant Pathol. J. 2019, 35, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Huang, B.; Qin, Y.; Qiao, B.; Ren, M.; Cao, L.; Zhang, Y.; Han, M. Dietary supplementation with proanthocyanidins and rutin alleviates the symptoms of type 2 diabetes mice and regulates gut microbiota. Front. Microbiol. 2024, 15, 1513935. [Google Scholar] [CrossRef]
- Sguizzato, M.; Ferrara, F.; Sisto, M.; Drechsler, M.; Gallerani, E.; Nicoli, F.; Cortesi, R. Rutin-containing cyclodextrin nanosystems: A possible strategy for dietary supplementation in diabetics. J. Drug Deliv. Sci. Technol. 2025, 110, 107065. [Google Scholar] [CrossRef]
- Siti, H.N.; Jalil, J.; Asmadi, A.Y.; Kamisah, Y. Roles of rutin in cardiac remodeling. J. Funct. Foods 2020, 64, 103606. [Google Scholar] [CrossRef]
- Meng, X.L.; Yu, M.M.; Liu, Y.C.; Gao, Y.L.; Chen, X.S.; Shou, S.T.; Chai, Y.F. Rutin Inhibits Cardiac Apoptosis and Prevents Sepsis-Induced Cardiomyopathy. Front. Physiol. 2022, 13, 834077. [Google Scholar] [CrossRef]
- Yan, X.; Zhai, Y.; Zhou, W.; Qiao, Y.; Guan, L.; Liu, H.; Jiang, J.; Peng, L. Intestinal Flora Mediates Antiobesity Effect of Rutin in High-Fat-Diet Mice. Mol. Nutr. Food Res. 2022, 66, e2100948. [Google Scholar] [CrossRef]
- Jang, H.; Han, S.C.; Lee, J.; Shin, H.Y.; Hwang, J.H.; Ha, J.H. Anti-inflammatory effects of rutin in lipopolysaccharide-stimulated canine macrophage cells. Nutr. Res. Pract. 2025, 19, 143–153. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.; Sim, W.; Kim, J.H.; Choi, C.; Jeon, J. Discovering the anti-cancer phytochemical rutin against breast cancer through the methodical platform based on traditional medicinal knowledge. BMB Rep. 2023, 56, 594–599. [Google Scholar] [CrossRef]
- Cai, C.; Cheng, W.; Shi, T.; Liao, Y.; Zhou, M.; Liao, Z. Rutin alleviates colon lesions and regulates gut microbiota in diabetic mice. Sci. Rep. 2023, 13, 4897. [Google Scholar] [CrossRef] [PubMed]
- Guan, P.; Yu, H.; Wang, S.; Sun, J.; Chai, X.; Sun, X.; Qi, X.; Zhang, R.; Jiao, Y.; Li, Z.; et al. Dietary rutin alleviated the damage by cold stress on inflammation reaction, tight junction protein, and intestinal microbial flora in the mice intestine. J. Nutr. Biochem. 2024, 130, 109658. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Keesman, K.J.; Yogev, U.; Gross, A. Onsite anaerobic treatment of tomato plant waste as a renewable source of energy and biofertilizer under desert conditions. Bioresour. Technol. Rep. 2022, 20, 101274. [Google Scholar] [CrossRef]
- Sanjuan-Delmás, D.; Josa, A.; Muñoz, P.; Gassó, S.; Rieradevall, J.; Gabarrell, X. Applying nutrient dynamics to adjust the nutrient-water balance in hydroponic crops: A case study with open hydroponic tomato crops from Barcelona. Sci. Hortic. 2020, 261, 108908. [Google Scholar] [CrossRef]
- Hurtado-Navarro, M.; Garcia-Ibañez, P.; Pascual, J.A.; Carvajal, M. Interaction of beneficial microorganisms and phenolic compounds in hydroponically cultivated tomato plants. Plant Physiol. Biochem. 2025, 222, 109793. [Google Scholar] [CrossRef] [PubMed]
- Velli, P.; Manolikaki, I.; Diamadopoulos, E. Effect of biochar produced from sewage sludge on tomato (Solanum lycopersicum L.) growth, soil chemical properties and heavy metal concentrations. J. Environ. Manag. 2021, 297, 113325. [Google Scholar] [CrossRef]
Independent Variables | Unit | Level | Independent Variables | Unit | Level | ||||
---|---|---|---|---|---|---|---|---|---|
−1 | 0 | +1 | −1 | 0 | +1 | ||||
MAE | UAE | ||||||||
A—Temperature | °C | 70 | 98 | 125 | A—Solvent concentration | % (v/v) | 50 | 75 | 100 |
B—Solvent concentration | % (v/v) | 50 | 75 | 100 | B—Solvent to plant ratio | mL/g | 20 | 30 | 40 |
C—Solvent to plant ratio | mL/g | 20 | 30 | 40 | C—Temperature | °C | 40 | 55 | 70 |
Responses | Source | Sequential p-Value | R2 | Adjusted R2 | Predicted R2 | Adeq. Precision | Model F-value | Mean | C.V. (%) |
---|---|---|---|---|---|---|---|---|---|
UAE of aerial parts of tomato waste (UAEap) | |||||||||
TPC | Quadratic | <0.0001 | 0.9971 | 0.9933 | 0.9807 | 44.2159 | 265.25 | 6106.75 | 2.16 |
TFC | 0.9972 | 0.9935 | 0.9547 | 52.0388 | 273.10 | 1672.24 | 1.92 | ||
DPPH | 0.9924 | 0.9827 | 0.8845 | 35.3925 | 101.80 | 80.84 | 2.50 | ||
Rutin | 0.9972 | 0.9937 | 0.9559 | 51.8733 | 280.41 | 4625.48 | 2.48 | ||
UAE of axillary shoots of tomato waste (UAEas) | |||||||||
TPC | Quadratic | <0.0001 | 0.9982 | 0.9959 | 0.9800 | 68.6910 | 435.73 | 8304.62 | 2.27 |
TFC | 0.9958 | 0.9904 | 0.9325 | 53.4503 | 183.63 | 2045.08 | 2.24 | ||
DPPH | 0.9981 | 0.9958 | 0.9785 | 77.9718 | 418.84 | 88.12 | 0.16 | ||
Rutin | 0.9916 | 0.9809 | 0.8663 | 34.2462 | 92.14 | 5674.95 | 3.14 | ||
MAE of aerial parts of tomato waste (MAEap) | |||||||||
TPC | Quadratic | <0.0001 | 0.9867 | 0.9697 | 0.8072 | 20.3893 | 314.89 | 4702.95 | 4.70 |
TFC | <0.0001 | 0.9963 | 0.9915 | 0.9404 | 57.3852 | 207.84 | 1347.22 | 1.58 | |
DPPH | 0.0316 | 0.9898 | 0.9767 | 0.8590 | 30.9132 | 75.65 | 81.27 | 1.28 | |
Rutin | <0.0001 | 0.9907 | 0.9787 | 0.8512 | 26.5370 | 82.71 | 4854.51 | 3.40 | |
MAE of axillary shoots of tomato waste (MAEas) | |||||||||
TPC | Quadratic | <0.0001 | 0.9877 | 0.9719 | 0.8078 | 23.3696 | 62.54 | 6730.53 | 3.73 |
TFC | 0.0002 | 0.9928 | 0.9836 | 0.8855 | 42.2760 | 107.63 | 2196.13 | 3.37 | |
DPPH | 0.0037 | 0.9806 | 0.9556 | 0.9372 | 18.7854 | 39.26 | 89.65 | 0.45 | |
Rutin | <0.0001 | 0.9914 | 0.9804 | 0.8631 | 35.7872 | 89.94 | 6380.13 | 2.74 |
Extraction Method | Optimal Extraction Parameters | Desirability Function | ||
---|---|---|---|---|
A | B | C | ||
UAEap | 70% | 36 | 56 °C | 0.968 |
UAEas | 65% | 40 | 70 °C | 0.867 |
MAEap | 79 °C | 39 | 78% | 0.821 |
MAEas | 125 °C | 39 | 73% | 0.858 |
Sample Response | UAEap | UAEas | MAEap | MAEas | |
---|---|---|---|---|---|
TPC (mg GAE/kg) | Predicted | 7684.54 | 12,267.00 | 5539.06 | 7851.48 |
Experimental | 7684.95 ± 2.23 | 12,269.40 ± 11.54 | 5539.89 ± 0.98 | 7853.15 ± 7.28 | |
p-value | 0.8881 | 0.8737 | 0.8944 | 0.8609 | |
TFC (mg QE/kg) | Predicted | 2250.11 | 3057.93 | 1805.74 | 3503.00 |
Experimental | 2251.64 ± 1.87 | 3058.12 ± 2.15 | 1807.93 ± 0.65 | 3504.11 ± 2.78 | |
p-value | 0.5520 | 0.9460 | 0.1001 | 0.7625 | |
DPPH (%) | Predicted | 86.995 | 87.778 | 85.174 | 89.133 |
Experimental | 87.023 ± 1.43 | 87.997 ± 0.61 | 85.853 ± 1.17 | 89.605 ± 0.86 | |
p-value | 0.9880 | 0.7853 | 0.6651 | 0.6814 | |
Rutin content (mg/kg) | Predicted | 6646.03 | 8082.02 | 5745.95 | 8455.66 |
Experimental | 6647.15 ± 4.46 | 8083.24 ± 5.29 | 5746.07 ± 3.70 | 8455.85 ± 6.33 | |
p-value | 0.8480 | 0.8602 | 0.9801 | 0.9816 |
Sample Code | Plant Material | Extraction Time | Solvent to Plant Ratio | Solvent Concentration (%) |
---|---|---|---|---|
C1ap | Aerial parts | 3 × 10 min pulses alternated with 2 × 15 min rest UAE + 1 h MAE | 39 | 78 |
C1as | Axillary shoots | 39 | 73 | |
C2ap | Aerial parts | 3 × 5 min pulses alternated with 2 × 7.5 min rest UAE + 40 min MAE | 39 | 78 |
C2as | Axillary shoots | 39 | 73 |
Primary Metabolite | Extract (mg/g Dried Extract) | |||||||
---|---|---|---|---|---|---|---|---|
MAEap | UAEap | MAEas | UAEas | C1ap | C2ap | C1as | C2as | |
Amino Acids | ||||||||
Serine | 0.260 ± 0.009 b | 0.129 ± 0.004 c | 0.294 ± 0.037 b | 0.281 ± 0.004 b | 0.123 ± 0.001 c | 0.163 ± 0.009 c | 0.138 ± 0.001 c | 0.374 ± 0.004 a |
Glycine | 0.045 ± 0.004 c | 0.041 ± 0.000 cd | 0.056 ± 0.003 b | 0.043 ± 0.002 cd | 0.034 ± 0.003 de | 0.026 ± 0.003 e | 0.082 ± 0.003 a | 0.056 ± 0.003 b |
Aspartic acid | 3.547 ± 0.155 b | 5.065 ± 0.170 a | 1.402 ± 0.012 d | 3.164 ± 0.034 bc | 4.727 ± 0.072 a | 4.661 ± 0.599 a | 2.916 ± 0.084 bc | 2.512 ± 0.116 c |
Glutamine | 0.146 ± 0.015 c | nd | 1.671 ± 0.047 b | 2.455 ± 0.115 a | 0.141 ± 0.006 c | 0.129 ± 0.017 c | 0.139 ± 0.006 c | 2.367 ± 0.065 a |
Sarcosine | 0.580 ± 0.003 b | 0.878 ± 0.010 b | 2.517 ± 0.237 a | 0.882 ± 0.010 b | 0.784 ± 0.017 b | 2.454 ± 0.062 a | 0.827 ± 0.006 b | 2.332 ± 0.025 a |
Alanine | 0.422 ± 0.030 b | 0.431 ± 0.006 b | 0.468 ± 0.057 ab | 0.536 ± 0.044 ab | 0.463 ± 0.018 ab | 0.444 ± 0.032 b | 0.501 ± 0.022 ab | 0.589 ± 0.007 a |
Threonine | 0.804 ± 0.027 ab | 0.667 ± 0.020 d | 0.731 ± 0.010 c | 0.740± 0.008 bc | 0.655 ± 0.021 d | 0.659 ± 0.038 d | 0.653 ± 0.020 d | 0.827 ± 0.006 a |
Glutamic acid | 2.289 ± 0.137 a | 1.460 ± 0.032 c | 0.666 ± 0.028 d | 1.806 ± 0.073 b | 1.496 ± 0.015 c | 2.105 ± 0.090 a | 0.831 ± 0.036 d | 1.532 ± 0.002 c |
Lysine | 0.503 ± 0.012 c | 0.427 ± 0.000 d | 0.642 ± 0.021 b | 0.718 ± 0.007 a | 0.040 ± 0.004 f | 0.345 ± 0.000 e | 0.645 ± 0.013 b | 0.723 ± 0.009 a |
Proline | 0.618 ± 0.010 c | 0.630 ± 0.007 c | 0.706± 0.005 ab | 0.675± 0.001 bc | 0.521 ± 0.023 d | 0.494 ± 0.013 d | 0.641 ± 0.028 c | 0.762 ± 0.000 a |
Histidine | 0.787 ± 0.011 a | 0.692± 0.004 c | 0.542 ± 0.000 d | 0.767± 0.003 ab | 0.746 ± 0.025 ab | 0.739 ± 0.017 ab | 0.405 ± 0.018 e | 0.729 ± 0.020 bc |
2-Aminobutyric acid | 0.200 ± 0.001 b | nd | 0.182 ± 0.001 c | 0.262 ± 0.001 a | nd | nd | 0.188 ± 0.003 c | 0.201 ± 0.003 b |
Arginine | 0.064 ± 0.000 d | 0.064 ± 0.002 d | 0.892 ± 0.029 c | 1.252 ± 0.027 a | 0.054 ± 0.001 d | 0.050 ± 0.004 d | 0.892 ± 0.017 c | 1.167 ± 0.032 b |
Dimethylglycine | 0.330 ± 0.011 c | 0.136 ± 0.009 d | 1.998 ± 0.000 a | 1.998 ± 0.071 a | 0.271 ± 0.008 c | 0.332 ± 0.012 c | 0.519 ± 0.010 b | 0.479 ± 0.029 b |
Valine | 2.091 ± 0.007 d | 1.580 ± 0.025 e | 2.522 ± 0.101 c | 3.468 ± 0.052 b | 1.261 ± 0.024 f | 1.334 ± 0.000 ef | 1.385 ± 0.001 ef | 3.964 ± 0.235 a |
Isoleucine | 1.160 ± 0.001 b | 1.032 ± 0.027 c | 1.208 ± 0.008 b | 1.310 ± 0.009 a | 0.979 ± 0.027 c | 1.011 ± 0.026 c | 1.132 ± 0.022 b | 1.208 ± 0.025 b |
Leucine | 0.908 ± 0.032 c | 0.750 ± 0.025 d | 1.167 ± 0.025 b | 1.431 ± 0.043 a | 0.723 ± 0.019 d | 0.688 ± 0.001 d | 1.082 ± 0.027 b | 1.363 ± 0.034 a |
Phenylalanine | 1.306 ± 0.030 d | 0.997 ± 0.002 e | 1.634 ± 0.022 c | 2.576 ± 0.022 a | 1.117 ± 0.044 e | 1.164 ± 0.031 de | 1.778 ± 0.022 c | 2.323 ± 0.121 b |
Tryptophan | 4.449 ± 0.066 c | 3.517 ± 0.156 d | 3.674 ± 0.019 d | 5.395 ± 0.148 a | 3.402 ± 0.103 d | 4.772 ± 0.011 bc | 3.686 ± 0.130 d | 4.884 ± 0.066 b |
Vitamins | ||||||||
Vitamin E | 39.947 ± 0.101 e | 27.886 ± 0.580 f | 55.166 ± 1.213 c | 49.496 ± 1.940 d | 30.136 ± 1.260 f | 29.979 ± 0.029 f | 70.129 ± 0.437 a | 62.593 ± 2.097 b |
Organic Acids | ||||||||
Quinic acid | 29.899 ± 0.505 c | nd | 85.129 ± 3.458 b | 75.241 ± 0.152 b | nd | nd | 127.257 ± 0.000 a | 130.876 ± 10.466 a |
Malic acid | 58.927 ± 3.209 a | 48.926 ± 0.662 c | 55.748 ± 1.297 ac | 54.828 ± 1.882 ac | 58.541 ± 0.756 a | 58.219 ± 1.184 ab | 52.746 ± 4.143 ac | 50.074 ± 1.707 bc |
Citric acid | 5.875 ± 0.000 d | 14.069 ± 0.886 c | 11.865 ± 0.878 c | 36.053 ± 1.408 a | nd | 11.713 ± 0.002 c | 13.366 ± 0.542 c | 27.706 ± 0.863 b |
Plant hormones | ||||||||
Indole-3-acetic acid | 1.057 ± 0.058 d | 1.012 ± 0.005 d | 2.177 ± 0.087 c | 2.948 ± 0.074 a | nd | nd | 2.137 ± 0.077 c | 2.580 ± 0.102 b |
Nucleobases | ||||||||
Cytosine | 0.194 ± 0.003 a | 0.107 ± 0.003 e | 0.084 ± 0.002 f | 0.118 ± 0.004 d | 0.139 ± 0.003 c | 0.166 ± 0.006 b | 0.070 ± 0.000 g | 0.099 ± 0.004 e |
Alkaloids | ||||||||
Histamine | 0.342 ± 0.019 a | 0.163 ± 0.006 c | 0.174 ± 0.008 c | 0.307 ± 0.020 a | 0.326 ± 0.002 a | 0.250 ± 0.008 b | nd | 0.245 ± 0.008 b |
Quaternary ammonium compound | ||||||||
Choline | 1.078 ± 0.011 e | 0.486 ± 0.016 f | 1.256 ± 0.000 d | 1.647 ± 0.026 a | 0.331 ± 0.014 g | nd | 1.320 ± 0.000 c | 1.502 ± 0.027 b |
Secondary Metabolite | Extract (mg/g Dried Extract) | |||||||
---|---|---|---|---|---|---|---|---|
MAEap | UAEap | MAEas | UAEas | C1ap | C2ap | C1as | C2as | |
Lignans | ||||||||
Coniferyl alcohol | 0.111 ± 0.004 a | nd | 0.061 ± 0.002 c | nd | 0.032 ± 0.000 e | 0.032 ± 0.000 e | 0.083 ± 0.002 b | 0.043 ± 0.002 d |
Coumarins | ||||||||
Esculin | 0.006 ± 0.000 a | 0.003 ± 0.000 b | nd | nd | 0.004 ± 0.000 b | 0.004 ± 0.000 b | nd | nd |
Esculetin | 0.035 ± 0.001 d | nd | 0.056 ± 0.000 c | 0.036 ± 0.001 d | nd | nd | 0.094 ± 0.001 a | 0.088 ± 0.001 b |
Flavones | ||||||||
Baicalin | 0.012 ± 0.001 a | 0.004 ± 0.000 d | 0.010 ± 0.001 b | 0.005 ± 0.000 c | 0.003 ± 0.000 de | 0.002 ± 0.000 e | 0.002 ± 0.000 e | 0.002 ± 0.000 e |
Anthocyanins | ||||||||
Malvidin | 18.069 ± 0.519 a | 15.195 ± 0.485 b | 6.528 ± 0.282 f | 9.503 ± 0.073 d | 12.676 ± 0.301 c | 18.946 ± 0.263 a | 7.498 ± 0.305 ef | 8.726 ± 0.341 de |
Flavonols | ||||||||
Rutin | 17.863 ± 0.046 b | 14.773 ± 0.026 c | 16.470 ± 0.182 bd | 17.429 ± 0.107 b | 14.849± 0.104 cd | 21.122 ± 0.766 a | 16.558 ± 0.504 b | 14.988 ± 0.599 c |
Isorquercitroside | 0.094 ± 0.001 d | 0.039 ± 0.004 f | 0.143 ± 0.006 bc | 0.194 ± 0.004 a | 0.079 ± 0.000 e | 0.092 ± 0.004 d | 0.154 ± 0.001 b | 0.139 ± 0.004 c |
Kaempferol-7-O-glucoside | nd | nd | 0.005 ± 0.000 b | 0.006 ± 0.000 a | nd | nd | 0.005 ± 0.000 b | 0.004 ± 0.000 c |
Kaempferol-7-O-neohesperidine | 2.127 ± 0.058 c | 1.738 ± 0.037 c | 15.595 ± 0.504 a | 15.966 ± 0.603 a | 0.983 ± 0.692 c | 2.185 ± 0.044 c | 9.054 ± 6.400 b | 12.424 ± 0.230 ab |
Rhoifolin | 0.004 ± 0.000 ab | nd | 0.004 ± 0.000 a | 0.004 ± 0.000 bc | 0.004 ± 0.000 c | 0.004 ± 0.000 bc | 0.004 ± 0.000 c | 0.004 ± 0.000 c |
Spiraeoside | nd | 0.010 ± 0.001 e | nd | 0.026 ± 0.001 a | 0.008 ± 0.000 e | 0.014 ± 0.000 d | 0.024 ± 0.000 b | 0.022 ± 0.001 c |
Kaempferol-3-O-glucoside | nd | nd | 0.035 ± 0.000 ab | 0.037 ± 0.001 a | nd | nd | 0.032 ± 0.001 b | 0.033 ± 0.001 ab |
Camelliaside A | 0.227 ± 0.007 d | 0.139 ± 0.000 d | 1.748 ± 0.011 ab | 1.801 ± 0.067 a | 0.144 ± 0.001 d | 0.192 ± 0.003 d | 1.277 ± 0.068 c | 1.630 ± 0.041 b |
Isorhamnetin-3-O-rutinoside | 0.056 ± 0.003 a | 0.044 ± 0.002 b | 0.046 ± 0.002 b | 0.042 ± 0.002 bc | 0.034 ± 0.001 d | 0.037 ± 0.000 cd | 0.036 ± 0.001 d | 0.043 ± 0.001 bc |
Phenolic Acids | ||||||||
Protocatehuic acid | 0.041 ± 0.000 ce | 0.064 ± 0.000 a | 0.040 ± 0.003 de | 0.037 ± 0.000 e | 0.046 ± 0.001 bc | 0.045 ± 0.001 bcd | 0.044 ± 0.003 cd | 0.050 ± 0.000 b |
Vanillic acid-4-O-glucoside | 0.101 ± 0.001 a | 0.084 ± 0.001 b | 0.005 ± 0.000 c | 0.003 ± 0.000 c | 0.082 ± 0.001 b | 0.104 ± 0.003 a | 0.003 ± 0.000 c | 0.003 ± 0.000 c |
Gentisic acid | 0.041 ± 0.001 cd | 0.059 ± 0.002 a | 0.041 ± 0.001 cd | 0.039 ± 0.000 d | 0.046 ± 0.001 bc | 0.051 ± 0.003 b | 0.042 ± 0.000 cd | 0.045 ± 0.001 c |
Neochlorogenic acid | 1.206 ± 0.011 c | 0.644 ± 0.010 e | 1.116 ± 0.003 c | 1.863 ± 0.028 ab | 0.834 ± 0.031 d | 0.682 ± 0.001 e | 1.906 ± 0.055 a | 1.803 ± 0.031 b |
4-Hydroxybenzoic acid | 0.018 ± 0.001 e | 0.012 ± 0.000 fg | 0.034 ± 0.002 c | 0.028 ± 0.001 d | 0.014 ± 0.000 f | 0.011 ± 0.001 g | 0.056 ± 0.001 a | 0.043 ± 0.000 b |
Chlorogenic acid | 2.662 ± 0.100 d | 1.925 ± 0.065 e | 11.380 ± 0.352 c | 13.850 ± 0.250 a | 1.994 ± 0.066 de | 2.045 ± 0.094 de | 12.418 ± 0.313 b | 12.841 ± 0.398 b |
Cryptochlorogenic acid | 0.368 ± 0.009 d | 0.239 ± 0.010 e | 1.746 ± 0.008 b | 1.039 ± 0.023 c | 0.264 ± 0.003 de | 0.244 ± 0.007 de | 3.292 ± 0.039 a | 1.739 ± 0.078 b |
Caffeic acid | 0.022 ± 0.001 e | nd | 0.175 ± 0.001 c | 0.139 ± 0.005 d | nd | nd | 0.305 ± 0.005 a | 0.201 ± 0.000 b |
Ferulic acid | 0.027 ± 0.000 a | nd | 0.023 ± 0.000 b | nd | nd | nd | 0.024 ± 0.001 b | 0.024 ± 0.000 b |
Salicyclic acid | 0.044 ± 0.001 d | 0.018 ± 0.001 f | 0.086 ± 0.000 a | 0.076 ± 0.002 b | 0.023 ± 0.001 ef | 0.026 ± 0.000 e | 0.073 ± 0.002 b | 0.064 ± 0.003 c |
Caftaric acid | 0.007 ± 0.000 c | 0.008 ± 0.000 c | 0.009 ± 0.000 b | 0.007 ± 0.000 c | 0.012 ± 0.000 a | 0.012 ± 0.001 a | 0.012 ± 0.000 a | 0.008 ± 0.000 c |
Element | MAEap | UAEap | MAEas | UAEas | C1ap | C2ap | C1as | C2as |
---|---|---|---|---|---|---|---|---|
Beneficial elements (mg/kg dried extract) | ||||||||
Al | 2.457 ± 0.187 cd | 2.147 ± 0.140 d | 5.257 ± 0.343 b | 2.826 ± 0.170 c | 6.479 ± 0.000 a | 2.265 ± 0.000 cd | 5.350 ± 0.111 b | 5.808 ± 0.000 b |
Li | 8.038 ± 0.057 a | 8.007± 0.029 ab | 7.584 ± 0.110 c | 7.714 ± 0.013 bc | 7.972 ± 0.222 ab | 7.885 ± 0.082 ab | 7.709 ± 0.023 bc | 7.825 ± 0.130 ac |
Si | 38.143 ± 1.445 c | 29.109 ± 1.313 d | 11.883 ± 0.636 ef | 4.747 ± 0.541 g | 54.544 ± 1.342 b | 60.238 ± 2.231 a | 14.183 ± 0.245 e | 7.436 ± 0.059 fg |
Micronutrients (mg/kg dried extract) | ||||||||
B | 46.019 ± 1.126 c | 56.290 ± 0.403 a | 22.344 ± 0.496 e | 12.261 ± 0.448 f | 51.877 ± 0.217 b | 52.007 ± 0.009 b | 27.060 ± 0.386 d | 23.616 ± 0.593 e |
Cu | 15.635 ± 0.160 b | 22.204 ± 0.944 a | 9.193 ± 0.164 d | 21.494 ± 0.587 a | 22.293 ± 0.367 a | 20.640 ± 0.183 a | 12.670 ± 0.306 c | 13.402 ± 0.572 c |
Fe | 0.996 ± 0.000 d | 1.501 ± 0.048 d | 9.318 ± 0.626 b | 3.733 ± 0.176 c | 5.113 ± 0.251 c | 1.537 ± 0.000 d | 12.993 ± 0.592 a | 9.577 ± 0.581 b |
Mn | 4.644 ± 0.083 d | 17.904 ± 0.756 a | 3.009 ± 0.121 e | 18.672 ± 0.385 a | 5.286 ± 0.244 cd | 5.808 ± 0.171 cd | 6.000 ± 0.116 c | 7.354 ± 0.259 b |
Mo | 7.733 ± 0.099 a | 7.908 ± 0.076 a | 7.719 ± 0.103 a | 7.776 ± 0.009 a | 7.734 ± 0.183 a | 7.844 ± 0.113 a | 7.742 ± 0.023 a | 7.858 ± 0.150 a |
Se | 1.930 ± 0.149 d | 2.753 ± 0.019 ab | 2.900 ± 0.113 a | 2.387 ± 0.034 bc | 2.624 ± 0.027 ac | 2.292 ± 0.210 cd | 2.424 ± 0.126 bc | 2.885 ± 0.018 a |
Zn | 35.989 ± 0.360 d | 42.466 ± 1.439 d | 67.645 ± 0.286 c | 105.393 ± 2.901 a | 43.968 ± 1.352 d | 45.292 ± 1.946 d | 84.504 ± 2.125 b | 94.880 ± 9.544 ab |
Macronutrients (g/kg dried extract) | ||||||||
Ca | 0.195 ± 0.003 c | 0.713 ± 0.021 a | 0.149 ± 0.009 d | 0.014 ± 0.003 f | 0.281 ± 0.010 b | 0.315 ± 0.003 b | 0.107 ± 0.001 de | 0.081 ± 0.005 e |
K | 74.658 ± 0.402 ab | 77.979 ± 3.729 a | 58.024 ± 0.521 c | 70.623 ± 1.445 b | 71.150 ± 2.553 b | 73.681± 0.983 ab | 57.389 ± 0.355 c | 55.960 ± 1.245 c |
Mg | 0.796 ± 0.012 e | 1.832 ± 0.064 b | 1.517 ± 0.049 c | 3.622 ± 0.072 a | 0.912 ± 0.045 de | 0.998 ± 0.042 d | 1.411 ± 0.017 c | 1.456 ± 0.042 c |
Na | 1.131 ± 0.017 c | 1.320 ± 0.004 b | 0.580 ± 0.005 e | 0.670 ± 0.006 d | 1.302 ± 0.009 b | 1.360 ± 0.016 a | 0.583 ± 0.003 e | 0.543 ± 0.010 f |
P | 2.065 ± 0.034 e | 3.491 ± 0.019 c | 4.150 ± 0.035 b | 7.369 ± 0.055 a | 2.248 ± 0.030 d | 2.408 ± 0.021 d | 4.138 ± 0.078 b | 4.166 ± 0.051 b |
S | 0.981 ± 0.020 f | 1.691 ± 0.025 e | 1.874 ± 0.031 d | 3.386 ± 0.064 a | 1.035 ± 0.034 f | 1.072 ± 0.011 f | 2.611 ± 0.039 b | 2.320 ± 0.047 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcu Spinu, S.; Dragoi Cudalbeanu, M.; Major, N.; Goreta Ban, S.; Palčić, I.; Ortan, A.; Rosu, P.M.; Babeanu, N.E. Box–Behnken Design Optimization of Green Extraction from Tomato Aerial Parts and Axillary Shoots for Enhanced Recovery of Rutin and Complementary Bioactive Compounds. Antioxidants 2025, 14, 1062. https://doi.org/10.3390/antiox14091062
Marcu Spinu S, Dragoi Cudalbeanu M, Major N, Goreta Ban S, Palčić I, Ortan A, Rosu PM, Babeanu NE. Box–Behnken Design Optimization of Green Extraction from Tomato Aerial Parts and Axillary Shoots for Enhanced Recovery of Rutin and Complementary Bioactive Compounds. Antioxidants. 2025; 14(9):1062. https://doi.org/10.3390/antiox14091062
Chicago/Turabian StyleMarcu Spinu, Simona, Mihaela Dragoi Cudalbeanu, Nikola Major, Smiljana Goreta Ban, Igor Palčić, Alina Ortan, Petronela Mihaela Rosu, and Narcisa Elena Babeanu. 2025. "Box–Behnken Design Optimization of Green Extraction from Tomato Aerial Parts and Axillary Shoots for Enhanced Recovery of Rutin and Complementary Bioactive Compounds" Antioxidants 14, no. 9: 1062. https://doi.org/10.3390/antiox14091062
APA StyleMarcu Spinu, S., Dragoi Cudalbeanu, M., Major, N., Goreta Ban, S., Palčić, I., Ortan, A., Rosu, P. M., & Babeanu, N. E. (2025). Box–Behnken Design Optimization of Green Extraction from Tomato Aerial Parts and Axillary Shoots for Enhanced Recovery of Rutin and Complementary Bioactive Compounds. Antioxidants, 14(9), 1062. https://doi.org/10.3390/antiox14091062