(Oxidopyridyl)Porphyrins of Different Lipophilicity: Photophysical Properties, ROS Production and Phototoxicity on Melanoma Cells Under CoCl2-Induced Hypoxia
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis
2.1.1. General
2.1.2. Preparation of N-Methylated Pyridiniumporphyrins (TMPyP3 with an Alkyl Chain) and Their Unmethylated/Unoxidised Precursors (TPyP3 with an Alkyl Chain)
2.1.3. General Procedure for the Synthesis of (Oxidopyridyl)Porphyrins
2.2. Spectroscopy Studies
2.3. Reactive Oxygen Species (ROS) and Singlet Oxygen (1O2) Measurements
2.4. Lipophilicity
2.5. Light Sources
2.6. In Vitro Studies
2.6.1. Reagents and Chemicals
2.6.2. Cell Lines and Culturing Conditions
2.6.3. Hypoxia Induction with CoCl2 and Western Blot Analysis
2.6.4. Cellular Uptake, Localisation and (Photo)Cytotoxicity Assays
2.7. Statistical Analysis
3. Results and Discussion
3.1. Synthesis of (Oxidopyridyl)Porphyrins
3.2. Spectroscopic Properties of (Oxidopyridyl)Porphyrins
λabs/nm (ε/× 103 M−1cm−1) | λFL/nm | ΦFL * | ||||||
---|---|---|---|---|---|---|---|---|
Soret (B) | Qy (1-0) | Qy (0-0) | Qx (1-0) | Qx (0-0) | Q(0,0) | Q(0,1) | ||
TOPyP3-CH3 | 416 (346.9) | 510 (18.2) | 545 (5.2) | 588 (5.8) | 645 (1.9) | 648 | 713 | 0.050 ± 0.002 |
TOPyP3-C9H19 | 417 (296.4) | 512 (15.4) | 548 (5.1) | 588 (4.9) | 645 (1.5) | 648 | 713 | / |
TOPyP3-C13H27 | 417 (364.6) | 512 (19.3) | 547 (5.8) | 588 (6.0) | 646 (2.0) | 648 | 713 | / |
TOPyP3-C17H31 | 417 (275.4) | 512 (15.0) | 547 (4.3) | 587 (4.5) | 646 (1.6) | 648 | 713 | 0.047 ± 0.002 |
Singlet Excited and Triplet Excited State Properties
3.3. ROS and Singlet Oxygen Production
3.4. Lipophilicity of (Oxidopyridyl)Porphyrins Compared to N-Methylated Pyridiniumporphyrins
(Oxidopyridyl)Porphyrins | cLogP | N-Methylated Porphyrins | cLogP |
---|---|---|---|
TOPyP3-CH3 | 2.52 | TMPyP3-CH3 | −1.60 |
TOPyP3-C9H19 | 4.08 | TMPyP3-C9H19 | −0.02 |
TOPyP3-C13H27 | 4.95 | TMPyP3-C13H27 | 1.01 |
TOPyP3-C17H35 | 5.72 | TMPyP3-C17H35 | 1.90 |
3.5. Cellular Uptake of (Oxidopyridyl)Porphyrins
3.6. Localisation of (Oxidopyridyl)Porphyrins in MeWo Cells
3.7. (Photo)Cytotoxicity of (Oxidopyridyl)Porphyrins in Normoxia and CoCl2-Induced Hypoxia
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic Therapy for Cancer. Nat. Rev. Cancer 2003, 3, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Correia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics 2021, 13, 1332. [Google Scholar] [CrossRef]
- Chen, Z.; Han, F.; Du, Y.; Shi, H.; Zhou, W. Hypoxic Microenvironment in Cancer: Molecular Mechanisms and Therapeutic Interventions. Signal Transduct. Target Ther. 2023, 8, 70. [Google Scholar] [CrossRef]
- Ke, Q.; Costa, M. Hypoxia-Inducible Factor-1 (HIF-1). Mol. Pharmacol. 2006, 70, 1469–1480. [Google Scholar] [CrossRef]
- Masoud, G.N.; Li, W. HIF-1α Pathway: Role, Regulation and Intervention for Cancer Therapy. Acta Pharm. Sin. B 2015, 5, 378–389. [Google Scholar] [CrossRef]
- Loftus, S.K.; Baxter, L.L.; Cronin, J.C.; Fufa, T.D.; Program, N.C.S.; Pavan, W.J. Hypoxia-Induced HIF1α Targets in Melanocytes Reveal a Molecular Profile Associated with Poor Melanoma Prognosis. Pigment Cell Melanoma Res. 2017, 30, 339–352. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, L.; Li, X.-F. Targeting Hypoxia: Hypoxia-Activated Prodrugs in Cancer Therapy. Front. Oncol. 2021, 11, 700407. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Meng, X.; Lu, H.; Chang, H.; Dong, H.; Zhang, X. Light-Triggered Theranostic Liposomes for Tumor Diagnosis and Combined Photodynamic and Hypoxia-Activated Prodrug Therapy. Biomaterials 2018, 185, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Hunter, F.W.; Wouters, B.G.; Wilson, W.R. Hypoxia-Activated Prodrugs: Paths Forward in the Era of Personalised Medicine. Br. J. Cancer 2016, 114, 1071–1077. [Google Scholar] [CrossRef]
- Monro, S.; Colón, K.L.; Yin, H.; Roque, J.; Konda, P.; Gujar, S.; Thummel, R.P.; Lilge, L.; Cameron, C.G.; McFarland, S.A. Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433. Chem. Rev. 2019, 119, 797–828. [Google Scholar] [CrossRef] [PubMed]
- Alzeibak, R.; Mishchenko, T.A.; Shilyagina, N.Y.; Balalaeva, I.V.; Vedunova, M.V.; Krysko, D. V Targeting Immunogenic Cancer Cell Death by Photodynamic Therapy: Past, Present and Future. J. Immunother. Cancer 2021, 9, e001926. [Google Scholar] [CrossRef] [PubMed]
- Robertson, B.M.; Fane, M.E.; Weeraratna, A.T.; Rebecca, V.W. Determinants of Resistance and Response to Melanoma Therapy. Nat. Cancer 2024, 5, 964–982. [Google Scholar] [CrossRef]
- Becker, A.L.; Indra, A.K. Oxidative Stress in Melanoma: Beneficial Antioxidant and Pro-Oxidant Therapeutic Strategies. Cancers 2023, 15, 3038. [Google Scholar] [CrossRef]
- Mušković, M.; Lončarić, M.; Ratkaj, I.; Malatesti, N. Impact of the Hydrophilic-Lipophilic Balance of Free-Base and Zn(II) Tricationic Pyridiniumporphyrins and Irradiation Wavelength in PDT against the Melanoma Cell Lines. Eur. J. Med. Chem. 2025, 282, 117063. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Luo, Q.; Halim, A.; Song, G. Targeting Lipid Metabolism of Cancer Cells: A Promising Therapeutic Strategy for Cancer. Cancer Lett. 2018, 401, 39–45. [Google Scholar] [CrossRef]
- Kobus, M.; Friedrich, T.; Zorn, E.; Burmeister, N.; Maison, W. Medicinal Chemistry of Drugs with N -Oxide Functionalities. J. Med. Chem. 2024, 67, 5168–5184. [Google Scholar] [CrossRef]
- Bernier, D.; Wefelscheid, U.K.; Woodward, S. Properties, Preparation and Synthetic Uses of Amine N -Oxides. An Update. Org. Prep. Proced. Int. 2009, 41, 173–210. [Google Scholar] [CrossRef]
- Hicks, K.O.; Siim, B.G.; Jaiswal, J.K.; Pruijn, F.B.; Fraser, A.M.; Patel, R.; Hogg, A.; Liyanage, H.D.S.; Jo Dorie, M.; Brown, J.M.; et al. Pharmacokinetic/Pharmacodynamic Modeling Identifies SN30000 and SN29751 as Tirapazamine Analogs with Improved Tissue Penetration and Hypoxic Cell Killing in Tumors. Clin. Cancer Res. 2010, 16, 4946–4957. [Google Scholar] [CrossRef]
- Rinderknecht, H.; Ehnert, S.; Braun, B.; Histing, T.; Nussler, A.K.; Linnemann, C. The Art of Inducing Hypoxia. Oxygen 2021, 1, 46–61. [Google Scholar] [CrossRef]
- Mušković, M.; Ćavar, I.; Lesar, A.; Lončarić, M.; Malatesti, N.; Gobin, I. Photodynamic Inactivation of Legionella Pneumophila Biofilm Formation by Cationic Tetra- and Tripyridylporphyrins in Waters of Different Hardness. Int. J. Mol. Sci. 2021, 22, 9095. [Google Scholar] [CrossRef] [PubMed]
- Malatesti, N.; Harej, A.; Kraljević Pavelić, S.; Lončarić, M.; Zorc, H.; Wittine, K.; Andjelkovic, U.; Josic, D. Synthesis, Characterisation and in Vitro Investigation of Photodynamic Activity of 5-(4-Octadecanamidophenyl)-10,15,20-Tris(N-Methylpyridinium-3-Yl)Porphyrin Trichloride on HeLa Cells Using Low Light Fluence Rate. Photodiagn. Photodyn. Ther. 2016, 15, 115–126. [Google Scholar] [CrossRef]
- Jelovica, M.; Grbčić, P.; Mušković, M.; Sedić, M.; Pavelić, S.K.; Lončarić, M.; Malatesti, N. In Vitro Photodynamic Activity of N-Methylated and N-Oxidised Tripyridyl Porphyrins with Long Alkyl Chains and Their Inhibitory Activity in Sphingolipid Metabolism. ChemMedChem 2018, 13, 360–372. [Google Scholar] [CrossRef]
- Bonnett, R.; McGarvey, D.J.; Harriman, A.; Land, E.J.; Truscott, T.G.; Winfield, U.-J. Photophysical Properties of Meso-Tetraphenylporphyrin and Some Meso-Tetra(Hydroxyphenyl)Porphyrins. Photochem. Photobiol. 1988, 48, 271–276. [Google Scholar] [CrossRef]
- Mušković, M.; Džeba, I.; Antol, I.; Basarić, N.; Malatesti, N. Photophysical Properties of 5-(4-Acetamidophenyl)-10,15,20-Tris(N-Methylpyridinium-3-Yl)Porphyrin Trichloride and Its Zn(II) Complex. J. Photochem. Photobiol. A Chem. 2023, 444, 114939. [Google Scholar] [CrossRef]
- Carmichael, I.; Hug, G.L. Triplet–Triplet Absorption Spectra of Organic Molecules in Condensed Phases. J. Phys. Chem. Ref. Data 1986, 15, 1–250. [Google Scholar] [CrossRef]
- Van Leeuwen, M.; Beeby, A.; Fernandes, I.; Ashworth, S.H. The Photochemistry and Photophysics of a Series of Alpha Octa(Alkyl-Substituted) Silicon, Zinc and Palladium Phthalocyanines. Photochem. Photobiol. Sci. 2014, 13, 62–69. [Google Scholar] [CrossRef]
- Posakony, J.J.; Pratt, R.C.; Rettig, S.J.; James, B.R.; Skov, K.A. Porphyrins Incorporating Heterocyclic N-Oxides: (Oxidopyridyl)Porphyrins, Porphyrin-N-Oxides, and a Tirapazamine-Porphyrin Conjugate. Can. J. Chem. 1999, 77, 182–198. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Swain, M. Chemicalize.Org. J. Chem. Inf. Model 2012, 52, 613–615. [Google Scholar] [CrossRef]
- Arnott, J.A.; Planey, S.L. The Influence of Lipophilicity in Drug Discovery and Design. Expert. Opin. Drug Discov. 2012, 7, 863–875. [Google Scholar] [CrossRef]
- Tetko, I.V.; Bruneau, P. Application of ALOGPS to Predict 1-octanol/Water Distribution Coefficients, LogP, and LogD, of AstraZeneca In-house Database. J. Pharm. Sci. 2004, 93, 3103–3110. [Google Scholar] [CrossRef]
- Martinez De Pinillos Bayona, A.; Mroz, P.; Thunshelle, C.; Hamblin, M.R. Design Features for Optimization of Tetrapyrrole Macrocycles as Antimicrobial and Anticancer Photosensitizers. Chem. Biol. Drug Des. 2017, 89, 192–206. [Google Scholar] [CrossRef]
- Sugano, K.; Kansy, M.; Artursson, P.; Avdeef, A.; Bendels, S.; Di, L.; Ecker, G.F.; Faller, B.; Fischer, H.; Gerebtzoff, G.; et al. Coexistence of Passive and Carrier-Mediated Processes in Drug Transport. Nat. Rev. Drug Discov. 2010, 9, 597–614. [Google Scholar] [CrossRef] [PubMed]
- Donohoe, C.; Schaberle, F.A.; Rodrigues, F.M.S.; Gonçalves, N.P.F.; Kingsbury, C.J.; Pereira, M.M.; Senge, M.O.; Gomes-da-Silva, L.C.; Arnaut, L.G. Unraveling the Pivotal Role of Atropisomerism for Cellular Internalization. J. Am. Chem. Soc. 2022, 144, 15252–15265. [Google Scholar] [CrossRef] [PubMed]
- Ben-Dror, S.; Bronshtein, I.; Wiehe, A.; Röder, B.; Senge, M.O.; Ehrenberg, B. On the Correlation between Hydrophobicity, Liposome Binding and Cellular Uptake of Porphyrin Sensitizers. Photochem. Photobiol. 2006, 82, 695–701. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, J.; Liu, Y.-Y.; Zhang, L.; Zhao, Z.; Lin, Q.; Lei, Y.; Xing, J.; Wang, H.; Tian, J.; et al. Self-Assembly of Highly Stable Uniform Single-Molecule Porphyrin Nanomicelles for Enhanced Photodynamic Therapy. Sci. China Chem. 2025, 68, 3660–3666. [Google Scholar] [CrossRef]
- Kessel, D.; Oleinick, N.L. Cell Death Pathways Associated with Photodynamic Therapy: An Update. Photochem. Photobiol. 2018, 94, 213–218. [Google Scholar] [CrossRef]
- Kessel, D. Apoptosis, Paraptosis and Autophagy: Death and Survival Pathways Associated with Photodynamic Therapy. Photochem. Photobiol. 2019, 95, 119–125. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhu, L.; Fan, L.; Zhao, W.; Wang, J.; Hao, X.; Zhu, Y.; Hu, X.; Yuan, Y.; Shao, J.; et al. Synthesis, SAR and Pharmacological Characterization of Novel Anthraquinone Cation Compounds as Potential Anticancer Agents. Eur. J. Med. Chem. 2017, 125, 902–913. [Google Scholar] [CrossRef]
- Muñoz-Sánchez, J.; Chánez-Cárdenas, M.E. The Use of Cobalt Chloride as a Chemical Hypoxia Model. J. Appl. Toxicol. 2019, 39, 556–570. [Google Scholar] [CrossRef]
- Casas, A.; Di Venosa, G.; Hasan, T.; Batlle, A. Mechanisms of Resistance to Photodynamic Therapy. Curr. Med. Chem. 2011, 18, 2486–2515. [Google Scholar] [CrossRef] [PubMed]
- Rana, N.K.; Singh, P.; Koch, B. CoCl2 Simulated Hypoxia Induce Cell Proliferation and Alter the Expression Pattern of Hypoxia Associated Genes Involved in Angiogenesis and Apoptosis. Biol. Res. 2019, 52, 12. [Google Scholar] [CrossRef] [PubMed]
- Zepeda, A.B.; Pessoa, A.; Castillo, R.L.; Figueroa, C.A.; Pulgar, V.M.; Farías, J.G. Cellular and Molecular Mechanisms in the Hypoxic Tissue: Role of HIF-1 and ROS. Cell Biochem. Funct. 2013, 31, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Yang, G.; Shahzidi, S.; Tkacz-Stachowska, K.; Suo, Z.; Nesland, J.M.; Peng, Q. Induction of Hypoxia-Inducible Factor-1α Overexpression by Cobalt Chloride Enhances Cellular Resistance to Photodynamic Therapy. Cancer Lett. 2006, 244, 182–189. [Google Scholar] [CrossRef]
- Rodríguez, M.E.; Catrinacio, C.; Ropolo, A.; Rivarola, V.A.; Vaccaro, M.I. A Novel HIF-1α/VMP1-Autophagic Pathway Induces Resistance to Photodynamic Therapy in Colon Cancer Cells. Photochem. Photobiol. Sci. 2017, 16, 1631–1642. [Google Scholar] [CrossRef]
- Nakahara, T.; Tamaki, Y.; Tominaga, N.; Ide, Y.; Nasu, M.; Ohyama, A.; Sato, S.; Ishiwata, I.; Ishiwata, H. Novel Amelanotic and Melanotic Cell Lines NM78-AM and NM78-MM Derived from a Human Oral Malignant Melanoma. Hum. Cell 2010, 23, 15–25. [Google Scholar] [CrossRef]
- Sparsa, A.; Bellaton, S.; Naves, T.; Jauberteau, M.-O.; Bonnetblanc, J.-M.; Sol, V.; Verdier, M.; Ratinaud, M.-H. Photodynamic Treatment Induces Cell Death by Apoptosis or Autophagy Depending on the Melanin Content in Two B16 Melanoma Cell Lines. Oncol. Rep. 2013, 29, 1196–1200. [Google Scholar] [CrossRef]
- Davids, L.M.; Kleemann, B. Combating Melanoma: The Use of Photodynamic Therapy as a Novel, Adjuvant Therapeutic Tool. Cancer Treat. Rev. 2010, 37, 465–475. [Google Scholar] [CrossRef]
Compounds | τFL(% of the Decay)/ns | τT/μs | εT-T/M−1cm−1 | ΦISC | kq (O2)/M−1s−1 |
---|---|---|---|---|---|
TPP * | 10.7 ns | 90 | 66 600 | 0.67 | / |
TOPyP3-CH3 | τ1 = 0.82 ± 0.08 ns (2%) τ2 = 8.62 ± 0.02 ns (98%) | 1100 ± 200 | 47 000 | 0.66 | 1.3 × 109 |
TOPyP3-C17H35 | τ1 = 0.57 ± 0.08 ns (1%) τ2 = 7.82 ± 0.02 ns (99%) | 960 ± 30 | 58 300 | 0.51 | 1.4 × 109 |
HDF | MeWo | A375 | |||||
---|---|---|---|---|---|---|---|
IC50 [µM] | No CoCl2 | CoCl2 * | No CoCl2 | CoCl2 * | No CoCl2 | CoCl2 * | |
TMPyP3 | -CH3 | >100 | >100 | >100 | >100 | >100 | >100 |
-C9H19 | 7.09 ± 0.66 | 8.87 ± 0.02 | 3.52 ± 0.65 | 6.81 ± 1.36 | 0.67 ± 0.03 | 0.99 ± 0.13 | |
-C13H27 | 0.81 ± 0.05 | 0.99 ± 0.05 | 0.43 ± 0.03 | 0.61 ± 0.16 | 0.15 ± 0.06 | 0.22 ± 0.08 | |
-C17H35 | 0.33 ± 0.03 | 0.46 ± 0.14 | 0.33 ± 0.04 | 0.47 ± 0.02 | 0.15 ± 0.08 | 0.23 ± 0.07 | |
TOPyP3 | -CH3 | >100 | >100 | >100 | >100 | >100 | >100 |
-C9H19 | 3.49 ± 0.45 | 7.65 ± 0.06 | 5.46 ± 1.08 | 6.28 ± 0.82 | 3.87 ± 0.45 | 5.46 ± 1.48 | |
-C13H27 | 0.86 ± 0.04 | 2.62 ± 0.19 | 1.04 ± 0.09 | 1.79 ± 0.37 | 0.78 ± 0.17 | 0.86 ± 0.06 | |
-C17H35 | 1.31 ± 0.57 | 1.09 ± 0.29 | 0.66 ± 0.14 | 0.68 ± 0.19 | 0.77 ± 0.08 | 0.94 ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mušković, M.; Lončarić, M.; Ratkaj, I.; Malatesti, N. (Oxidopyridyl)Porphyrins of Different Lipophilicity: Photophysical Properties, ROS Production and Phototoxicity on Melanoma Cells Under CoCl2-Induced Hypoxia. Antioxidants 2025, 14, 992. https://doi.org/10.3390/antiox14080992
Mušković M, Lončarić M, Ratkaj I, Malatesti N. (Oxidopyridyl)Porphyrins of Different Lipophilicity: Photophysical Properties, ROS Production and Phototoxicity on Melanoma Cells Under CoCl2-Induced Hypoxia. Antioxidants. 2025; 14(8):992. https://doi.org/10.3390/antiox14080992
Chicago/Turabian StyleMušković, Martina, Martin Lončarić, Ivana Ratkaj, and Nela Malatesti. 2025. "(Oxidopyridyl)Porphyrins of Different Lipophilicity: Photophysical Properties, ROS Production and Phototoxicity on Melanoma Cells Under CoCl2-Induced Hypoxia" Antioxidants 14, no. 8: 992. https://doi.org/10.3390/antiox14080992
APA StyleMušković, M., Lončarić, M., Ratkaj, I., & Malatesti, N. (2025). (Oxidopyridyl)Porphyrins of Different Lipophilicity: Photophysical Properties, ROS Production and Phototoxicity on Melanoma Cells Under CoCl2-Induced Hypoxia. Antioxidants, 14(8), 992. https://doi.org/10.3390/antiox14080992