Oxidative Stress Triggers Porcine Ovarian Granulosa Cell Apoptosis Through MAPK Signaling
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection and In Vitro Culture of Follicles
2.2. Cell Culture
2.3. Antibodies
2.4. Lipid Peroxidation Assay
2.5. Malondialdehyde Colorimetric Assay
2.6. Estradiol Test
2.7. Serum Progesterone Test
2.8. CCK-8 Assay
2.9. DCFH-DA Assay
2.10. Mito Tracker Staining
2.11. RNA Extraction and Quantitative RT-PCR
2.12. Total RNA Isolation and Quality Control
2.13. RNA Annotation and Analyses for RNA-Seq Data
2.14. Screening and Analysis of Differentially Expressed Genes
2.15. GO and KEGG Enrichment Analysis
2.16. Western Blotting
2.17. Statistical Analysis
3. Results
3.1. Oxidative Stress as a Key Driver of Follicular Atresia
3.2. Transcriptomic Profiling of Porcine Healthy and Atretic Follicles
3.3. MAPK Signaling Pathway Is Significantly Upregulated in AF
3.4. ASK1 Inhibition Rescued Oxidative Stress-Induced Apoptosis in Mouse GC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McGee, E.A.; Hsueh, A.J. Initial and Cyclic Recruitment of Ovarian Follicles. Endocr. Rev. 2000, 21, 200–214. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Y.; Liu, H.; Pan, Z. MicroRNAs in Ovarian Follicular Atresia and Granulosa Cell Apoptosis. Reprod. Biol. Endocrinol. 2019, 17, 9. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, A.J.; Billig, H.; Tsafriri, A. Ovarian Follicle Atresia: A Hormonally Controlled Apoptotic Process. Endocr. Rev. 1994, 15, 707–724. [Google Scholar] [CrossRef]
- Cao, R.; Wu, W.J.; Zhou, X.L.; Xiao, P.; Wang, Y.; Liu, H.L. Expression and Preliminary Functional Profiling of the Let-7 Family during Porcine Ovary Follicle Atresia. Mol. Cells 2015, 38, 304–311. [Google Scholar] [CrossRef]
- Xiuru, L.; Yan, M. Research progress of endoplasmic reticulum stress on diminished ovarian reserve. Chin. J. Reprod. Contracept. 2020, 40, 521–525. [Google Scholar] [CrossRef]
- Wu, S.; Gan, M.; Wang, Y.; Pan, Y.; He, Y.; Feng, J.; Zhao, Y.; Niu, L.; Chen, L.; Zhang, S.; et al. Copper Mediated Follicular Atresia: Implications for Granulosa Cell Death. J. Hazard. Mater. 2024, 477, 135391. [Google Scholar] [CrossRef]
- Sun, D.; Wang, Y.; Sun, N.; Jiang, Z.; Li, Z.; Wang, L.; Yang, F.; Li, W. LncRNA DANCR Counteracts Premature Ovarian Insufficiency by Regulating the Senescence Process of Granulosa Cells through Stabilizing the Interaction between P53 and hNRNPC. J. Ovarian Res. 2023, 16, 41. [Google Scholar] [CrossRef]
- Geng, Y.; Sui, C.; Xun, Y.; Lai, Q.; Jin, L. MiRNA-99a Can Regulate Proliferation and Apoptosis of Human Granulosa Cells via Targeting IGF-1R in Polycystic Ovary Syndrome. J. Assist. Reprod. Genet. 2019, 36, 211–221. [Google Scholar] [CrossRef]
- Niu, W.; Spradling, A.C. Two Distinct Pathways of Pregranulosa Cell Differentiation Support Follicle Formation in the Mouse Ovary. Proc. Natl. Acad. Sci. USA 2020, 117, 20015–20026. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, K.; Masubuchi, S. Mouse Oocytes Connect with Granulosa Cells by Fusing with Cell Membranes and Form a Large Complex during Follicle Development. Biol. Reprod. 2018, 99, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Xiang, S.; Yu, Y.; Song, J.; Zheng, M.; Lian, F. miR-221-3p Regulates Apoptosis of Ovarian Granulosa Cells via Targeting FOXO1 in Older Women with Diminished Ovarian Reserve (DOR). Mol. Reprod. Dev. 2021, 88, 251–260. [Google Scholar] [CrossRef]
- Di Paolo, V.; Mangialardo, C.; Zacà, C.; Barberi, M.; Sereni, E.; Borini, A.; Centanni, M.; Coticchio, G.; Verga-Falzacappa, C.; Canipari, R. Thyroid Hormones T3 and T4 Regulate Human Luteinized Granulosa Cells, Counteracting Apoptosis and Promoting Cell Survival. J. Endocrinol. Investig. 2020, 43, 821–831. [Google Scholar] [CrossRef]
- Shen, M.; Lin, F.; Zhang, J.; Tang, Y.; Chen, W.-K.; Liu, H. Involvement of the Up-Regulated FoxO1 Expression in Follicular Granulosa Cell Apoptosis Induced by Oxidative Stress. J. Biol. Chem. 2012, 287, 25727–25740. [Google Scholar] [CrossRef]
- Sohel, M.M.H.; Akyuz, B.; Konca, Y.; Arslan, K.; Sariozkan, S.; Cinar, M.U. Oxidative Stress Modulates the Expression of Apoptosis-Associated microRNAs in Bovine Granulosa Cells in Vitro. Cell Tissue Res. 2019, 376, 295–308. [Google Scholar] [CrossRef]
- Idelchik, M.D.P.S.; Begley, U.; Begley, T.J.; Melendez, J.A. Mitochondrial ROS Control of Cancer. Semin. Cancer Biol. 2017, 47, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Geng, Q.; Chen, L.; Du, T.; Lin, Y.; Lai, R.; Meng, F.; Wu, Z.; Miao, X.; Yao, H. Schisandra Chinensis Bee Pollen’s Chemical Profiles and Protective Effect against H2O2-Induced Apoptosis in H9c2 Cardiomyocytes. BMC Complement. Med. Ther. 2020, 20, 274. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fan, D.; Cao, X.; Ye, Q.; Wang, Q.; Zhang, M.; Xiao, C. The Role of Reactive Oxygen Species in the Rheumatoid Arthritis-Associated Synovial Microenvironment. Antioxidants 2022, 11, 1153. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.; Zhang, H.; Ma, D.; Zhao, M.; Li, N.; Men, Y.; Zhang, Y.; Chu, H.; Lei, C.; et al. Transcriptome Profile of Goat Folliculogenesis Reveals the Interaction of Oocyte and Granulosa Cell in Correlation with Different Fertility Population. Sci. Rep. 2021, 11, 15698. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.; Wang, X.; Xu, Q.; Wu, Y.; Si, X.; Jiang, D. Effect of 3-Nitropropionic Acid Inducing Oxidative Stress and Apoptosis of Granulosa Cells in Geese. Biosci. Rep. 2018, 38, BSR20180274. [Google Scholar] [CrossRef]
- Liang, X.; Yan, Z.; Ma, W.; Qian, Y.; Zou, X.; Cui, Y.; Liu, J.; Meng, Y. Peroxiredoxin 4 Protects against Ovarian Ageing by Ameliorating D-Galactose-Induced Oxidative Damage in Mice. Cell Death Dis. 2020, 11, 1053. [Google Scholar] [CrossRef]
- Liu, S.; Jia, Y.; Meng, S.; Luo, Y.; Yang, Q.; Pan, Z. Mechanisms of and Potential Medications for Oxidative Stress in Ovarian Granulosa Cells: A Review. Int. J. Mol. Sci. 2023, 24, 9205. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.-Q.; Chen, C.-Q.; Huang, Y.-Q.; Liu, D.; Zhang, X.-Q.; Liu, F.-H. In Vitro Maturation of Human Oocytes Maintaining Good Development Potential for Rescue Intracytoplasmic Sperm Injection with Fresh Sperm. World J. Clin. Cases 2022, 10, 2166–2173. [Google Scholar] [CrossRef]
- Mehtap, K.; Ezgi, Ö.; Tugce, B.; Fatma, K.E.; Gul, O. Benomyl Induced Oxidative Stress Related DNA Damage and Apoptosis in H9c2 Cardiomyoblast Cells. Toxicol. Vitr. 2021, 75, 105180. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.-P.; Tang, Y.; Song, Y.-Y.; Du, G.; Li, J. Comprehensive Review of Phytochemical Constituents, Pharmacological Properties, and Clinical Applications of Prunus Mume. Front. Pharmacol. 2021, 12, 679378. [Google Scholar] [CrossRef]
- Chen, M.; He, C.; Zhu, K.; Chen, Z.; Meng, Z.; Jiang, X.; Cai, J.; Yang, C.; Zuo, Z. Resveratrol Ameliorates Polycystic Ovary Syndrome via Transzonal Projections within Oocyte-Granulosa Cell Communication. Theranostics 2022, 12, 782–795. [Google Scholar] [CrossRef]
- Chen, D.-Y.; Crest, J.; Streichan, S.J.; Bilder, D. Extracellular Matrix Stiffness Cues Junctional Remodeling for 3D Tissue Elongation. Nat. Commun. 2019, 10, 3339. [Google Scholar] [CrossRef]
- Tian, Y.; Xie, Y.; Guo, Z.; Feng, P.; You, Y.; Yu, Q. 17β-Oestradiol Inhibits Ferroptosis in the Hippocampus by Upregulating DHODH and Further Improves Memory Decline after Ovariectomy. Redox Biol. 2023, 62, 102708. [Google Scholar] [CrossRef]
- Bao, Z.; Liu, Y.; Chen, B.; Miao, Z.; Tu, Y.; Li, C.; Chao, H.; Ye, Y.; Xu, X.; Sun, G.; et al. Prokineticin-2 Prevents Neuronal Cell Deaths in a Model of Traumatic Brain Injury. Nat. Commun. 2021, 12, 4220. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Matsunaga, N.; Nakao, T.; Hamamura, K.; Kondo, H.; Ide, T.; Tsutsui, H.; Tsuruta, A.; Kurogi, M.; Nakaya, M.; et al. Alteration of Circadian Machinery in Monocytes Underlies Chronic Kidney Disease-Associated Cardiac Inflammation and Fibrosis. Nat. Commun. 2021, 12, 2783. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, B.; Liu, X.; Gao, G.; Che, Z.; Fan, M.; Meng, S.; Zhao, X.; Sugimura, R.; Cao, H.; et al. ZFP281-BRCA2 Prevents R-Loop Accumulation during DNA Replication. Nat. Commun. 2022, 13, 3493. [Google Scholar] [CrossRef]
- Si, Y.; Wang, J.; Liu, X.; Zhou, T.; Xiang, Y.; Zhang, T.; Wang, X.; Feng, T.; Xu, L.; Yu, Q.; et al. Ethoxysanguinarine, a Novel Direct Activator of AMP-Activated Protein Kinase, Induces Autophagy and Exhibits Therapeutic Potential in Breast Cancer Cells. Front. Pharmacol. 2020, 10, 1503. [Google Scholar] [CrossRef] [PubMed]
- Kormann, R.; Kavvadas, P.; Placier, S.; Vandermeersch, S.; Dorison, A.; Dussaule, J.-C.; Chadjichristos, C.E.; Prakoura, N.; Chatziantoniou, C. Periostin Promotes Cell Proliferation and Macrophage Polarization to Drive Repair after AKI. J. Am. Soc. Nephrol. 2020, 31, 85–100. [Google Scholar] [CrossRef]
- Tiwari, M.; Prasad, S.; Pandey, A.N.; Premkumar, K.V.; Tripathi, A.; Gupta, A.; Chetan, D.R.; Yadav, P.K.; Shrivastav, T.G.; Chaube, S.K. Nitric Oxide Signaling during Meiotic Cell Cycle Regulation in Mammalian Oocytes. Front. Biosci. (Schol Ed.) 2017, 9, 307–318. [Google Scholar] [CrossRef]
- Das, S.; Chattopadhyay, R.; Ghosh, S.; Ghosh, S.; Goswami, S.K.; Chakravarty, B.N.; Chaudhury, K. Reactive Oxygen Species Level in Follicular Fluid--Embryo Quality Marker in IVF? Hum. Reprod. 2006, 21, 2403–2407. [Google Scholar] [CrossRef]
- Liang, J.; Gao, Y.; Feng, Z.; Zhang, B.; Na, Z.; Li, D. Reactive Oxygen Species and Ovarian Diseases: Antioxidant Strategies. Redox Biol. 2023, 62, 102659. [Google Scholar] [CrossRef]
- Maryam, S.; Khan, M.R.; Shah, S.A.; Zahra, Z.; Majid, M.; Sajid, M.; Ali, S. In Vitro Antioxidant Efficacy and the Therapeutic Potential of Wendlandia Heynei (Schult.) Santapau & Merchant against Bisphenol A-Induced Hepatotoxicity in Rats. Toxicol. Res. 2018, 7, 1173–1190. [Google Scholar] [CrossRef]
- Shi, Y.-Q.; Zhu, X.-T.; Zhang, S.-N.; Ma, Y.-F.; Han, Y.-H.; Jiang, Y.; Zhang, Y.-H. Premature Ovarian Insufficiency: A Review on the Role of Oxidative Stress and the Application of Antioxidants. Front. Endocrinol. 2023, 14, 1172481. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhang, L.; Chen, Y.; Chen, B.; Huang, H.; Lv, J.; Hu, S.; Shen, J. Vaspin Protects Mouse Mesenchymal Stem Cells from Oxidative Stress-Induced Apoptosis through the MAPK/P38 Pathway. Mol. Cell Biochem. 2019, 462, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, Y.; Guo, Y.; Liu, C.; Yang, Y.; Fan, X.; Yang, H.; Liu, Y.; Ma, T. Function and Inhibition of P38 MAP Kinase Signaling: Targeting Multiple Inflammation Diseases. Biochem. Pharmacol. 2024, 220, 115973. [Google Scholar] [CrossRef]
- Luo, Z.; Zhu, W.; Guo, Q.; Luo, W.; Zhang, J.; Xu, W.; Xu, J. Weaning Induced Hepatic Oxidative Stress, Apoptosis, and Aminotransferases through MAPK Signaling Pathways in Piglets. Oxid. Med. Cell Longev. 2016, 2016, 4768541. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Pang, L.; Zhang, Y.; Huang, J.; Wang, J.; Quan, H.; Wang, T.; Wang, Z. Synthesis, Characterization, Molecular Docking, and Biological Evaluation of Novel ASK1 Inhibitors. J. Mol. Struct. 2023, 1290, 135954. [Google Scholar] [CrossRef]
- Shunkina, D.; Dakhnevich, A.; Shunkin, E.; Khaziakhmatova, O.; Shupletsova, V.; Vulf, M.; Komar, A.; Kirienkova, E.; Litvinova, L. Gp130 Activates Mitochondrial Dynamics for Hepatocyte Survival in a Model of Steatohepatitis. Biomedicines 2023, 11, 396. [Google Scholar] [CrossRef] [PubMed]
- Rusnak, L.; Tang, C.; Qi, Q.; Mo, X.; Fu, H. Large Tumor Suppressor 2, LATS2, Activates JNK in a Kinase-Independent Mechanism through ASK1. J. Mol. Cell Biol. 2018, 10, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Paul, A.; Lahiri, A.; Adak, M.; Maity, S.K.; Sarkar, A.; Paul, S.; Chakrabarti, P. Proteasome Dysfunction under Compromised Redox Metabolism Dictates Liver Injury in NASH through ASK1/PPARγ Binodal Complementary Modules. Redox Biol. 2021, 45, 102043. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Kimura, A.; Namekata, K.; Harada, C.; Arai, N.; Takeda, K.; Ichijo, H.; Harada, T. ASK1 Signaling Regulates Phase-Specific Glial Interactions during Neuroinflammation. Proc. Natl. Acad. Sci. USA 2022, 119, e2103812119. [Google Scholar] [CrossRef] [PubMed]
- Goffart, S.; Tikkanen, P.; Michell, C.; Wilson, T.; Pohjoismäki, J.L.O. The Type and Source of Reactive Oxygen Species Influences the Outcome of Oxidative Stress in Cultured Cells. Cells 2021, 10, 1075. [Google Scholar] [CrossRef]
- Balan, D.J.; Rajavel, T.; Das, M.; Sathya, S.; Jeyakumar, M.; Devi, K.P. Thymol Induces Mitochondrial Pathway-Mediated Apoptosis via ROS Generation, Macromolecular Damage and SOD Diminution in A549 Cells. Pharmacol. Rep. 2021, 73, 240–254. [Google Scholar] [CrossRef]
- Munakata, Y.; Ueda, M.; Kawahara-Miki, R.; Kansaku, K.; Itami, N.; Shirasuna, K.; Kuwayama, T.; Iwata, H. Follicular Factors Determining Granulosa Cell Number and Developmental Competence of Porcine Oocytes. J. Assist. Reprod. Genet. 2018, 35, 1809–1819. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, T.; Jia, H.; Zhao, X.; Gu, X.; Yong, C.; Wang, S.; Zhou, J.; Li, L.; Gan, M.; Niu, L.; et al. Oxidative Stress Triggers Porcine Ovarian Granulosa Cell Apoptosis Through MAPK Signaling. Antioxidants 2025, 14, 978. https://doi.org/10.3390/antiox14080978
Zhao T, Jia H, Zhao X, Gu X, Yong C, Wang S, Zhou J, Li L, Gan M, Niu L, et al. Oxidative Stress Triggers Porcine Ovarian Granulosa Cell Apoptosis Through MAPK Signaling. Antioxidants. 2025; 14(8):978. https://doi.org/10.3390/antiox14080978
Chicago/Turabian StyleZhao, Ting, Hui Jia, Xuerui Zhao, Xiaotong Gu, Chaoxiong Yong, Saihao Wang, Jiawei Zhou, Linrong Li, Mailin Gan, Lili Niu, and et al. 2025. "Oxidative Stress Triggers Porcine Ovarian Granulosa Cell Apoptosis Through MAPK Signaling" Antioxidants 14, no. 8: 978. https://doi.org/10.3390/antiox14080978
APA StyleZhao, T., Jia, H., Zhao, X., Gu, X., Yong, C., Wang, S., Zhou, J., Li, L., Gan, M., Niu, L., Zhao, Y., Chen, L., Zhou, X., Shen, L., Zhu, L., & Wang, Y. (2025). Oxidative Stress Triggers Porcine Ovarian Granulosa Cell Apoptosis Through MAPK Signaling. Antioxidants, 14(8), 978. https://doi.org/10.3390/antiox14080978