Mitochondrial Dysfunction and Oxidative Stress: Emerging Insights in Muscle and Cardiovascular Disease Mechanisms
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Galluzzi, L.; Kepp, O.; Trojel-Hansen, C.; Kroemer, G. Mitochondrial Control of Cellular Life, Stress, and Death. Circ. Res. 2012, 111, 1198–1207. [Google Scholar] [CrossRef]
- Chen, Y.-R.; Zweier, J.L. Cardiac Mitochondria and Reactive Oxygen Species Generation. Circ. Res. 2014, 114, 524–537. [Google Scholar] [CrossRef]
- Stanley, W.C.; Recchia, F.A.; Lopaschuk, G.D. Myocardial Substrate Metabolism in the Normal and Failing Heart. Physiol. Rev. 2005, 85, 1093–1129. [Google Scholar] [CrossRef] [PubMed]
- Muntean, D.M.; Sturza, A.; Dănilă, M.D.; Borza, C.; Duicu, O.M.; Mornoș, C. The Role of Mitochondrial Reactive Oxygen Species in Cardiovascular Injury and Protective Strategies. Oxid. Med. Cell Longev. 2016, 2016, 8254942. [Google Scholar] [CrossRef] [PubMed]
- Dubois-Deruy, E.; Peugnet, V.; Turkieh, A.; Pinet, F. Oxidative Stress in Cardiovascular Diseases. Antioxidants 2020, 9, 864. [Google Scholar] [CrossRef] [PubMed]
- Scandalis, L.; Kitzman, D.W.; Nicklas, B.J.; Lyles, M.; Brubaker, P.; Nelson, M.B.; Gordon, M.; Stone, J.; Bergstrom, J.; Neufer, P.D.; et al. Skeletal Muscle Mitochondrial Respiration and Exercise Intolerance in Patients with Heart Failure with Preserved Ejection Fraction. JAMA Cardiol. 2023, 8, 575–584. [Google Scholar] [CrossRef]
- Charles, A.-L.; Guilbert, A.-S.; Guillot, M.; Talha, S.; Lejay, A.; Meyer, A.; Kindo, M.; Wolff, V.; Bouitbir, J.; Zoll, J.; et al. Muscles Susceptibility to Ischemia-Reperfusion Injuries Depends on Fiber Type Specific Antioxidant Level. Front. Physiol. 2017, 8, 52. [Google Scholar] [CrossRef]
- Murphy, M.P.; Hartley, R.C. Mitochondria as a Therapeutic Target for Common Pathologies. Nat. Rev. Drug Discov. 2018, 17, 865–886. [Google Scholar] [CrossRef]
- Gutierrez-Mariscal, F.M.; Arenas-de Larriva, A.P.; Limia-Perez, L.; Romero-Cabrera, J.L.; Yubero-Serrano, E.M.; López-Miranda, J. Coenzyme Q10 Supplementation for the Reduction of Oxidative Stress: Clinical Implications in the Treatment of Chronic Diseases. Int. J. Mol. Sci. 2020, 21, 7870. [Google Scholar] [CrossRef]
- Murray, K.O.; Ludwig, K.R.; Darvish, S.; Coppock, M.E.; Seals, D.R.; Rossman, M.J. Chronic Mitochondria Antioxidant Treatment in Older Adults Alters the Circulating Milieu to Improve Endothelial Cell Function and Mitochondrial Oxidative Stress. Am. J. Physiol. Heart Circ. Physiol. 2023, 325, H187–H194. [Google Scholar] [CrossRef]
- Chernyavskij, D.A.; Pletjushkina, O.Y.; Kashtanova, A.V.; Galkin, I.I.; Karpukhina, A.; Chernyak, B.V.; Vassetzky, Y.S.; Popova, E.N. Mitochondrial Oxidative Stress and Mitophagy Activation Contribute to TNF-Dependent Impairment of Myogenesis. Antioxidants 2023, 12, 602. [Google Scholar] [CrossRef]
- Zanini, G.; Selleri, V.; Malerba, M.; Solodka, K.; Sinigaglia, G.; Nasi, M.; Mattioli, A.V.; Pinti, M. The Role of Lonp1 on Mitochondrial Functions during Cardiovascular and Muscular Diseases. Antioxidants 2023, 12, 598. [Google Scholar] [CrossRef] [PubMed]
- Bhullar, S.K.; Dhalla, N.S. Status of Mitochondrial Oxidative Phosphorylation during the Development of Heart Failure. Antioxidants 2023, 12, 1941. [Google Scholar] [CrossRef] [PubMed]
- Ryanto, G.R.T.; Suraya, R.; Nagano, T. Mitochondrial Dysfunction in Pulmonary Hypertension. Antioxidants 2023, 12, 372. [Google Scholar] [CrossRef] [PubMed]
- Vignaud, J.; Loiseau, C.; Hérault, J.; Mayer, C.; Côme, M.; Martin, I.; Ulmann, L. Microalgae Produce Antioxidant Molecules with Potential Preventive Effects on Mitochondrial Functions and Skeletal Muscular Oxidative Stress. Antioxidants 2023, 12, 1050. [Google Scholar] [CrossRef]
- Zoll, J.; Monassier, L.; Garnier, A.; N’Guessan, B.; Mettauer, B.; Veksler, V.; Piquard, F.; Ventura-Clapier, R.; Geny, B. ACE Inhibition Prevents Myocardial Infarction-Induced Skeletal Muscle Mitochondrial Dysfunction. J. Appl. Physiol. 2006, 101, 385–391. [Google Scholar] [CrossRef]
- Souza, L.M.; Damatto, F.C.; Brandão, B.B.; Rodrigues, E.A.; Santos, A.C.C.; Silva, R.C.F.; Gatto, M.; Pagan, L.U.; Martinez, P.F.; Murata, G.M.; et al. Impact of SGLT2i on Cardiac Remodeling and the Soleus Muscle of Infarcted Rats. Antioxidants 2025, 14, 647. [Google Scholar] [CrossRef]
- Lewsey, S.C.; Samuel, T.J.; Schär, M.; Sourdon, J.; Goldenberg, J.R.; Yanek, L.R.; Lai, S.; Steinberg, A.M.; Bottomley, P.A.; Gerstenblith, G.; et al. Skeletal Muscle Quantity Versus Quality in Heart Failure: Exercise Intolerance and Outcomes in Older Patients with HFpEF Are Related to Abnormal Skeletal Muscle Metabolism Rather Than Age-Related Skeletal Muscle Loss. Circ. Heart Fail. 2025, 18, e012512. [Google Scholar] [CrossRef]
- Quiriarte, H.; Noland, R.C.; Stampley, J.E.; Davis, G.; Li, Z.; Cho, E.; Kim, Y.; Doiron, J.; Spielmann, G.; Ghosh, S.; et al. Exercise Therapy Rescues Skeletal Muscle Dysfunction and Exercise Intolerance in Cardiometabolic HFpEF. JACC Basic. Transl. Sci. 2024, 9, 1409–1425. [Google Scholar] [CrossRef]
- Enache, I.; Charles, A.-L.; Bouitbir, J.; Favret, F.; Zoll, J.; Metzger, D.; Oswald-Mammosser, M.; Geny, B.; Charloux, A. Skeletal Muscle Mitochondrial Dysfunction Precedes Right Ventricular Impairment in Experimental Pulmonary Hypertension. Mol. Cell Biochem. 2013, 373, 161–170. [Google Scholar] [CrossRef]
- Riou, M.; Pizzimenti, M.; Enache, I.; Charloux, A.; Canuet, M.; Andres, E.; Talha, S.; Meyer, A.; Geny, B. Skeletal and Respiratory Muscle Dysfunctions in Pulmonary Arterial Hypertension. J. Clin. Med. 2020, 9, 410. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.F.F.; Soares, L.L.; Leite, L.B.; Portes, A.M.O.; Natali, A.J. Skeletal Muscle Atrophy in Pulmonary Arterial Hypertension: Potential Mechanisms and Effects of Physical Exercise. Heart Fail. Rev. 2025. [Google Scholar] [CrossRef] [PubMed]
- Menezes, T.C.F.; Lee, M.H.; Fonseca Balladares, D.C.; Nolan, K.; Sharma, S.; Kumar, R.; Ferreira, E.V.M.; Graham, B.B.; Oliveira, R.K.F. Skeletal Muscle Pathology in Pulmonary Arterial Hypertension and Its Contribution to Exercise Intolerance. J. Am. Heart Assoc. 2025, 14, e036952. [Google Scholar] [CrossRef] [PubMed]
- Jheng, J.-R.; Bai, Y.; Noda, K.; Huot, J.R.; Cook, T.; Fisher, A.; Chen, Y.-Y.; Goncharov, D.A.; Goncharova, E.A.; Simon, M.A.; et al. Skeletal Muscle SIRT3 Deficiency Contributes to Pulmonary Vascular Remodeling in Pulmonary Hypertension Due to Heart Failure with Preserved Ejection Fraction. Circulation 2024, 150, 867–883. [Google Scholar] [CrossRef]
- Riou, M.; Enache, I.; Sauer, F.; Charles, A.-L.; Geny, B. Targeting Mitochondrial Metabolic Dysfunction in Pulmonary Hypertension: Toward New Therapeutic Approaches? Int. J. Mol. Sci. 2023, 24, 9572. [Google Scholar] [CrossRef]
- Tang, Y.; Suo, Y.; Sun, Z.; Wu, X.; Xing, Q.; Bai, Y. Microplastics Induce Insulin Resistance by Causing Mitochondrial Dysfunction Associated with mROS in Skeletal Muscle in Vitro. Ecotoxicol. Environ. Saf. 2025, 302, 118585. [Google Scholar] [CrossRef]
- Kubat, G.B.; Picone, P.; Tuncay, E.; Aryan, L.; Girgenti, A.; Palumbo, L.; Turkel, I.; Akat, F.; Singh, K.K.; Nuzzo, D. Biotechnological Approaches and Therapeutic Potential of Mitochondria Transfer and Transplantation. Nat. Commun. 2025, 16, 5709. [Google Scholar] [CrossRef]
- Moskowitzova, K.; Orfany, A.; Liu, K.; Ramirez-Barbieri, G.; Thedsanamoorthy, J.K.; Yao, R.; Guariento, A.; Doulamis, I.P.; Blitzer, D.; Shin, B.; et al. Mitochondrial Transplantation Enhances Murine Lung Viability and Recovery after Ischemia-Reperfusion Injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2020, 318, L78–L88. [Google Scholar] [CrossRef]
- Celik, A.; Lindstedt, S.; McGiffin, D.C.; Suen, J.Y.; Fraser, J.F.; Del Nido, P.J.; Emani, S.M.; McCully, J.D. Revitalizing Donor Organs: The Potential of Mitochondrial Transplantation in Heart and Lung Transplantation. J. Heart Lung Transplant. 2025, S1053-2498(25)02107-2. [Google Scholar] [CrossRef]
- Gorick, C.; Debski, A. Mitochondrial Transplantation for Ischemic Heart Disease. Nat. Nanotechnol. 2024, 19, 1247–1248. [Google Scholar] [CrossRef]
- Boutonnet, L.; Mallard, J.; Charles, A.-L.; Hucteau, E.; Gény, B.; Lejay, A.; Grandperrin, A. Autologous Mitochondrial Transplantation in Male Mice as a Strategy to Prevent Deleterious Effects of Peripheral Ischemia-Reperfusion. Am. J. Physiol. Cell Physiol. 2024, 326, C449–C456. [Google Scholar] [CrossRef]
- Wang, D.D.; Naumova, A.V.; Isquith, D.; Sapp, J.; Huynh, K.A.; Tucker, I.; Balu, N.; Voronyuk, A.; Chu, B.; Ordovas, K.; et al. Dapagliflozin Reduces Systemic Inflammation in Patients with Type 2 Diabetes without Known Heart Failure. Cardiovasc. Diabetol. 2024, 23, 197. [Google Scholar] [CrossRef]
- Alfatni, A.; Riou, M.; Charles, A.-L.; Meyer, A.; Barnig, C.; Andres, E.; Lejay, A.; Talha, S.; Geny, B. Peripheral Blood Mononuclear Cells and Platelets Mitochondrial Dysfunction, Oxidative Stress, and Circulating mtDNA in Cardiovascular Diseases. J. Clin. Med. 2020, 9, 311. [Google Scholar] [CrossRef] [PubMed]
- Shirakawa, R.; Yokota, T.; Nakajima, T.; Takada, S.; Yamane, M.; Furihata, T.; Maekawa, S.; Nambu, H.; Katayama, T.; Fukushima, A.; et al. Mitochondrial Reactive Oxygen Species Generation in Blood Cells Is Associated with Disease Severity and Exercise Intolerance in Heart Failure Patients. Sci. Rep. 2019, 9, 14709. [Google Scholar] [CrossRef] [PubMed]
- Sauer, F.; Riou, M.; Charles, A.-L.; Meyer, A.; Andres, E.; Geny, B.; Talha, S. Pathophysiology of Heart Failure: A Role for Peripheral Blood Mononuclear Cells Mitochondrial Dysfunction? J. Clin. Med. 2022, 11, 741. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.; Carvalho, E.; Diaz, E.C.; Cotter, M.; Bennuri, S.C.; Azhar, G.; Frye, R.E.; Adams, S.H.; Børsheim, E. A Comparative Study of Mitochondrial Respiration in Circulating Blood Cells and Skeletal Muscle Fibers in Women. Am. J. Physiol. Endocrinol. Metab. 2019, 317, E503–E512. [Google Scholar] [CrossRef]
- Sommer, N.; Theine, F.F.; Pak, O.; Tello, K.; Richter, M.; Gall, H.; Wilhelm, J.; Savai, R.; Weissmann, N.; Seeger, W.; et al. Mitochondrial Respiration in Peripheral Blood Mononuclear Cells Negatively Correlates with Disease Severity in Pulmonary Arterial Hypertension. J. Clin. Med. 2022, 11, 4132. [Google Scholar] [CrossRef]
- Petrus, A.T.; Lighezan, D.L.; Danila, M.D.; Duicu, O.M.; Sturza, A.; Muntean, D.M.; Ionita, I. Assessment of Platelet Respiration as Emerging Biomarker of Disease. Physiol. Res. 2019, 68, 347–363. [Google Scholar] [CrossRef]
- Kramer, P.A.; Ravi, S.; Chacko, B.; Johnson, M.S.; Darley-Usmar, V.M. A Review of the Mitochondrial and Glycolytic Metabolism in Human Platelets and Leukocytes: Implications for Their Use as Bioenergetic Biomarkers. Redox Biol. 2014, 2, 206–210. [Google Scholar] [CrossRef]
- Karan, K.R.; Trumpff, C.; McGill, M.A.; Thomas, J.E.; Sturm, G.; Lauriola, V.; Sloan, R.P.; Rohleder, N.; Kaufman, B.A.; Marsland, A.L.; et al. Mitochondrial Respiratory Capacity Modulates LPS-Induced Inflammatory Signatures in Human Blood. Brain Behav. Immun. Health 2020, 5, 100080. [Google Scholar] [CrossRef]
- Riou, M.; Charles, A.-L.; Enache, I.; Evrard, C.; Pistea, C.; Giannini, M.; Charloux, A.; Geny, B. Acute Severe Hypoxia Decreases Mitochondrial Chain Complex II Respiration in Human Peripheral Blood Mononuclear Cells. Int. J. Mol. Sci. 2025, 26, 705. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riou, M.; Geny, B. Mitochondrial Dysfunction and Oxidative Stress: Emerging Insights in Muscle and Cardiovascular Disease Mechanisms. Antioxidants 2025, 14, 902. https://doi.org/10.3390/antiox14080902
Riou M, Geny B. Mitochondrial Dysfunction and Oxidative Stress: Emerging Insights in Muscle and Cardiovascular Disease Mechanisms. Antioxidants. 2025; 14(8):902. https://doi.org/10.3390/antiox14080902
Chicago/Turabian StyleRiou, Marianne, and Bernard Geny. 2025. "Mitochondrial Dysfunction and Oxidative Stress: Emerging Insights in Muscle and Cardiovascular Disease Mechanisms" Antioxidants 14, no. 8: 902. https://doi.org/10.3390/antiox14080902
APA StyleRiou, M., & Geny, B. (2025). Mitochondrial Dysfunction and Oxidative Stress: Emerging Insights in Muscle and Cardiovascular Disease Mechanisms. Antioxidants, 14(8), 902. https://doi.org/10.3390/antiox14080902