Next Article in Journal
An Immune Assay to Quantify the Neutralization of Oxidation-Specific Epitopes by Human Blood Plasma
Previous Article in Journal
Anti-Inflammatory, Antioxidant, and Reparative Effects of Casearia sylvestris Leaf Derivatives on Periodontium In Vitro
Previous Article in Special Issue
Status of Mitochondrial Oxidative Phosphorylation during the Development of Heart Failure
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Mitochondrial Dysfunction and Oxidative Stress: Emerging Insights in Muscle and Cardiovascular Disease Mechanisms

1
Team 3072 “Mitochondria, Oxidative Stress and Muscle Plasticity”, CRBS, Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, 1 Rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France
2
Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de L’hôpital, 67091 Strasbourg, France
*
Authors to whom correspondence should be addressed.
Antioxidants 2025, 14(8), 902; https://doi.org/10.3390/antiox14080902
Submission received: 10 July 2025 / Accepted: 19 July 2025 / Published: 23 July 2025
Beyond their role as the “energy powerhouse” of the cell, mitochondria have emerged as essential actors in molecular signaling and determination of cellular fate, particularly through the production of reactive oxygen species (ROS). While traditionally considered as an unregulated process at the origin of oxidative stress and pathology, growing evidence demonstrates that ROS are also signaling molecules, enabling numerous physiological processes.
As the primary source of intracellular ROS, the mitochondrial electron transport chain (ETC) has attracted significant interest. Thus, investigating mitochondrial respiration provides valuable insights into mitochondrial dysfunction in tissues or cells. Indeed, any abnormality in the process of substrate oxidation or in components of the oxidative phosphorylation (OXPHOS) system may lead to a reduction in high-energy phosphate production, resulting in tissue dysfunction, systemic disease and potentially death [1,2].
Given their high mitochondrial content, cardiac and skeletal muscles represent ideal tissues for studying mitochondrial dysfunction [3,4,5,6,7]. Moreover, growing evidence suggests that therapies designed to reduce mitochondrial dysfunction may represent promising therapeutic strategies for muscular and cardiovascular diseases. Consequently, there is a challenge to develop specific and safe metabolic and antioxidant interventions—either alone or in combination—that target the mitochondrial OXPHOS system to improve heart failure therapy [8,9,10].
In this way, five papers were published in the Special Issue of Antioxidants, entitled “Mitochondrial functions and oxidative stress during cardiorespiratory and muscular diseases” [11,12,13,14,15]. These contributions highlight novel mechanisms and contribute to the current understanding of mitochondrial dysfunction in skeletal muscle, left heart failure and pulmonary hypertension (PH). They also underscore the role of oxidative stress and identify algae as a promising source of antioxidants.
Chernyavskij et al. investigated myogenesis in human myoblasts. Using various markers and oxidative stress modulators, the authors observed that the suppression of myogenesis by the tumor necrosis factor was associated with a mitoROS-dependent increase in general autophagy and mitophagy [11]. Considering that heart failure is a systemic condition associated with muscle damage [16,17,18,19], these findings suggest a shared mechanism of mitochondrial dysfunction in both cardiovascular and muscular diseases.
Zanini et al. explored the role of the mitochondrial protease Lonp1 in the regulation of mitochondrial function in cardiovascular and muscular diseases [12]. Lonp1 modulates multiple mitochondrial functions in both cardiac and skeletal muscles. Notably, Lonp1 knockout stops heart development and induces cardiomyocyte apoptosis. Similarly, the specific ablation of Lonp1 in mice results in reduced skeletal muscle fiber size and strength.
In addition to the involvement of Lonp1 in heart development, Bhullar et al. focused on the role of substrate oxidation and ETC impairments, resulting in the depletion of myocardial high-energy phosphates, mitochondrial calcium overload and increased levels of ROS in the failing heart [13]. Accordingly, interventions improving ATP production have been reported to be a beneficial therapeutic strategy for heart failure.
By comparing with the physiopathology of the left heart, right heart failure resulting from PH is also associated with mitochondrial dysfunction in muscle tissues [20,21,22,23,24]. Ryanto et al. reviewed the large contribution of mitochondrial dysfunction to PH pathogenesis at different levels, including metabolism and the pulmonary vessels [14]. They also proposed that targeting mitochondrial metabolic pathways may provide new therapeutic issues [14,25].
Finally, pursuing an original therapeutic approach, Vignaud et al. described the antioxidant potential of microalgae in modulating oxidative stress in skeletal muscle [15]. Although they require additional investigation, microalgae and their biomolecules may reduce ROS-induced muscle alterations, especially in conditions such as exercise-induced stress or muscular diseases. This approach is particularly relevant in the context of environmental pollutants such as microplastics, which have been shown to induce skeletal muscle insulin resistance through mitochondrial dysfunction and ROS overproduction [26].
Taken together, these data address several knowledge gaps and provide new insights for improving mitochondrial function in muscle and cardiovascular diseases. Another emerging approach is using mitochondrial transplantation to reduce tissue mitochondrial dysfunction. Transplanting viable and functional mitochondria from non-ischemic tissues into injured myocardium is a promising approach for replacing dysfunctional mitochondria, promoting tissue repair and treating ischemic heart disease. Such an approach is potentially useful in almost all pathologies, including muscular and cardiopulmonary conditions, although the identification of a suitable source of mitochondria and precise techniques are still under investigation [27,28,29,30,31].
Moreover, although peripheral muscle biopsies are relatively easy to obtain in humans, they remain invasive. On the other hand, cardiac biopsies are risky and limited to the setting of cardiac surgery. A less invasive alternative is to study mitochondrial function in circulating cells, such as peripheral blood mononuclear cells [PBMCs] or platelets, which is also an area of increasing interest. Several publications have reported a relationship between the mitochondrial respiration of circulating cells and the severity of heart and lung diseases. Furthermore, as these cells have specific characteristics, such as inflammatory and immune functions in the case of PBMCs, studying their mitochondrial respiration and ability to produce ROS could improve the diagnosis, prognosis and potentially the therapy of many systemic diseases in which mitochondrial respiration is impaired [32,33,34,35,36,37,38,39,40,41].
In conclusion, there are many promising opportunities to improve our understanding of and develop targeted therapies for mitochondrial dysfunction and oxidative stress in muscle and cardiovascular diseases. Active research in this area may likely offer the prospect of repairing skeletal muscles and “broken hearts” in the future.

Author Contributions

Conceptualization, M.R. and B.G.; writing—original draft preparation, M.R. and B.G.; writing—review and editing, M.R. and B.G. All authors have read and agreed to the published version of the manuscript.

Acknowledgments

We would like to thank all the authors and reviewers who have contributed to this Special Issue and the editorial team for helpful support during the realization of this Special Issue.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Galluzzi, L.; Kepp, O.; Trojel-Hansen, C.; Kroemer, G. Mitochondrial Control of Cellular Life, Stress, and Death. Circ. Res. 2012, 111, 1198–1207. [Google Scholar] [CrossRef]
  2. Chen, Y.-R.; Zweier, J.L. Cardiac Mitochondria and Reactive Oxygen Species Generation. Circ. Res. 2014, 114, 524–537. [Google Scholar] [CrossRef]
  3. Stanley, W.C.; Recchia, F.A.; Lopaschuk, G.D. Myocardial Substrate Metabolism in the Normal and Failing Heart. Physiol. Rev. 2005, 85, 1093–1129. [Google Scholar] [CrossRef] [PubMed]
  4. Muntean, D.M.; Sturza, A.; Dănilă, M.D.; Borza, C.; Duicu, O.M.; Mornoș, C. The Role of Mitochondrial Reactive Oxygen Species in Cardiovascular Injury and Protective Strategies. Oxid. Med. Cell Longev. 2016, 2016, 8254942. [Google Scholar] [CrossRef] [PubMed]
  5. Dubois-Deruy, E.; Peugnet, V.; Turkieh, A.; Pinet, F. Oxidative Stress in Cardiovascular Diseases. Antioxidants 2020, 9, 864. [Google Scholar] [CrossRef] [PubMed]
  6. Scandalis, L.; Kitzman, D.W.; Nicklas, B.J.; Lyles, M.; Brubaker, P.; Nelson, M.B.; Gordon, M.; Stone, J.; Bergstrom, J.; Neufer, P.D.; et al. Skeletal Muscle Mitochondrial Respiration and Exercise Intolerance in Patients with Heart Failure with Preserved Ejection Fraction. JAMA Cardiol. 2023, 8, 575–584. [Google Scholar] [CrossRef]
  7. Charles, A.-L.; Guilbert, A.-S.; Guillot, M.; Talha, S.; Lejay, A.; Meyer, A.; Kindo, M.; Wolff, V.; Bouitbir, J.; Zoll, J.; et al. Muscles Susceptibility to Ischemia-Reperfusion Injuries Depends on Fiber Type Specific Antioxidant Level. Front. Physiol. 2017, 8, 52. [Google Scholar] [CrossRef]
  8. Murphy, M.P.; Hartley, R.C. Mitochondria as a Therapeutic Target for Common Pathologies. Nat. Rev. Drug Discov. 2018, 17, 865–886. [Google Scholar] [CrossRef]
  9. Gutierrez-Mariscal, F.M.; Arenas-de Larriva, A.P.; Limia-Perez, L.; Romero-Cabrera, J.L.; Yubero-Serrano, E.M.; López-Miranda, J. Coenzyme Q10 Supplementation for the Reduction of Oxidative Stress: Clinical Implications in the Treatment of Chronic Diseases. Int. J. Mol. Sci. 2020, 21, 7870. [Google Scholar] [CrossRef]
  10. Murray, K.O.; Ludwig, K.R.; Darvish, S.; Coppock, M.E.; Seals, D.R.; Rossman, M.J. Chronic Mitochondria Antioxidant Treatment in Older Adults Alters the Circulating Milieu to Improve Endothelial Cell Function and Mitochondrial Oxidative Stress. Am. J. Physiol. Heart Circ. Physiol. 2023, 325, H187–H194. [Google Scholar] [CrossRef]
  11. Chernyavskij, D.A.; Pletjushkina, O.Y.; Kashtanova, A.V.; Galkin, I.I.; Karpukhina, A.; Chernyak, B.V.; Vassetzky, Y.S.; Popova, E.N. Mitochondrial Oxidative Stress and Mitophagy Activation Contribute to TNF-Dependent Impairment of Myogenesis. Antioxidants 2023, 12, 602. [Google Scholar] [CrossRef]
  12. Zanini, G.; Selleri, V.; Malerba, M.; Solodka, K.; Sinigaglia, G.; Nasi, M.; Mattioli, A.V.; Pinti, M. The Role of Lonp1 on Mitochondrial Functions during Cardiovascular and Muscular Diseases. Antioxidants 2023, 12, 598. [Google Scholar] [CrossRef] [PubMed]
  13. Bhullar, S.K.; Dhalla, N.S. Status of Mitochondrial Oxidative Phosphorylation during the Development of Heart Failure. Antioxidants 2023, 12, 1941. [Google Scholar] [CrossRef] [PubMed]
  14. Ryanto, G.R.T.; Suraya, R.; Nagano, T. Mitochondrial Dysfunction in Pulmonary Hypertension. Antioxidants 2023, 12, 372. [Google Scholar] [CrossRef] [PubMed]
  15. Vignaud, J.; Loiseau, C.; Hérault, J.; Mayer, C.; Côme, M.; Martin, I.; Ulmann, L. Microalgae Produce Antioxidant Molecules with Potential Preventive Effects on Mitochondrial Functions and Skeletal Muscular Oxidative Stress. Antioxidants 2023, 12, 1050. [Google Scholar] [CrossRef]
  16. Zoll, J.; Monassier, L.; Garnier, A.; N’Guessan, B.; Mettauer, B.; Veksler, V.; Piquard, F.; Ventura-Clapier, R.; Geny, B. ACE Inhibition Prevents Myocardial Infarction-Induced Skeletal Muscle Mitochondrial Dysfunction. J. Appl. Physiol. 2006, 101, 385–391. [Google Scholar] [CrossRef]
  17. Souza, L.M.; Damatto, F.C.; Brandão, B.B.; Rodrigues, E.A.; Santos, A.C.C.; Silva, R.C.F.; Gatto, M.; Pagan, L.U.; Martinez, P.F.; Murata, G.M.; et al. Impact of SGLT2i on Cardiac Remodeling and the Soleus Muscle of Infarcted Rats. Antioxidants 2025, 14, 647. [Google Scholar] [CrossRef]
  18. Lewsey, S.C.; Samuel, T.J.; Schär, M.; Sourdon, J.; Goldenberg, J.R.; Yanek, L.R.; Lai, S.; Steinberg, A.M.; Bottomley, P.A.; Gerstenblith, G.; et al. Skeletal Muscle Quantity Versus Quality in Heart Failure: Exercise Intolerance and Outcomes in Older Patients with HFpEF Are Related to Abnormal Skeletal Muscle Metabolism Rather Than Age-Related Skeletal Muscle Loss. Circ. Heart Fail. 2025, 18, e012512. [Google Scholar] [CrossRef]
  19. Quiriarte, H.; Noland, R.C.; Stampley, J.E.; Davis, G.; Li, Z.; Cho, E.; Kim, Y.; Doiron, J.; Spielmann, G.; Ghosh, S.; et al. Exercise Therapy Rescues Skeletal Muscle Dysfunction and Exercise Intolerance in Cardiometabolic HFpEF. JACC Basic. Transl. Sci. 2024, 9, 1409–1425. [Google Scholar] [CrossRef]
  20. Enache, I.; Charles, A.-L.; Bouitbir, J.; Favret, F.; Zoll, J.; Metzger, D.; Oswald-Mammosser, M.; Geny, B.; Charloux, A. Skeletal Muscle Mitochondrial Dysfunction Precedes Right Ventricular Impairment in Experimental Pulmonary Hypertension. Mol. Cell Biochem. 2013, 373, 161–170. [Google Scholar] [CrossRef]
  21. Riou, M.; Pizzimenti, M.; Enache, I.; Charloux, A.; Canuet, M.; Andres, E.; Talha, S.; Meyer, A.; Geny, B. Skeletal and Respiratory Muscle Dysfunctions in Pulmonary Arterial Hypertension. J. Clin. Med. 2020, 9, 410. [Google Scholar] [CrossRef] [PubMed]
  22. Costa, S.F.F.; Soares, L.L.; Leite, L.B.; Portes, A.M.O.; Natali, A.J. Skeletal Muscle Atrophy in Pulmonary Arterial Hypertension: Potential Mechanisms and Effects of Physical Exercise. Heart Fail. Rev. 2025. [Google Scholar] [CrossRef] [PubMed]
  23. Menezes, T.C.F.; Lee, M.H.; Fonseca Balladares, D.C.; Nolan, K.; Sharma, S.; Kumar, R.; Ferreira, E.V.M.; Graham, B.B.; Oliveira, R.K.F. Skeletal Muscle Pathology in Pulmonary Arterial Hypertension and Its Contribution to Exercise Intolerance. J. Am. Heart Assoc. 2025, 14, e036952. [Google Scholar] [CrossRef] [PubMed]
  24. Jheng, J.-R.; Bai, Y.; Noda, K.; Huot, J.R.; Cook, T.; Fisher, A.; Chen, Y.-Y.; Goncharov, D.A.; Goncharova, E.A.; Simon, M.A.; et al. Skeletal Muscle SIRT3 Deficiency Contributes to Pulmonary Vascular Remodeling in Pulmonary Hypertension Due to Heart Failure with Preserved Ejection Fraction. Circulation 2024, 150, 867–883. [Google Scholar] [CrossRef]
  25. Riou, M.; Enache, I.; Sauer, F.; Charles, A.-L.; Geny, B. Targeting Mitochondrial Metabolic Dysfunction in Pulmonary Hypertension: Toward New Therapeutic Approaches? Int. J. Mol. Sci. 2023, 24, 9572. [Google Scholar] [CrossRef]
  26. Tang, Y.; Suo, Y.; Sun, Z.; Wu, X.; Xing, Q.; Bai, Y. Microplastics Induce Insulin Resistance by Causing Mitochondrial Dysfunction Associated with mROS in Skeletal Muscle in Vitro. Ecotoxicol. Environ. Saf. 2025, 302, 118585. [Google Scholar] [CrossRef]
  27. Kubat, G.B.; Picone, P.; Tuncay, E.; Aryan, L.; Girgenti, A.; Palumbo, L.; Turkel, I.; Akat, F.; Singh, K.K.; Nuzzo, D. Biotechnological Approaches and Therapeutic Potential of Mitochondria Transfer and Transplantation. Nat. Commun. 2025, 16, 5709. [Google Scholar] [CrossRef]
  28. Moskowitzova, K.; Orfany, A.; Liu, K.; Ramirez-Barbieri, G.; Thedsanamoorthy, J.K.; Yao, R.; Guariento, A.; Doulamis, I.P.; Blitzer, D.; Shin, B.; et al. Mitochondrial Transplantation Enhances Murine Lung Viability and Recovery after Ischemia-Reperfusion Injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2020, 318, L78–L88. [Google Scholar] [CrossRef]
  29. Celik, A.; Lindstedt, S.; McGiffin, D.C.; Suen, J.Y.; Fraser, J.F.; Del Nido, P.J.; Emani, S.M.; McCully, J.D. Revitalizing Donor Organs: The Potential of Mitochondrial Transplantation in Heart and Lung Transplantation. J. Heart Lung Transplant. 2025, S1053-2498(25)02107-2. [Google Scholar] [CrossRef]
  30. Gorick, C.; Debski, A. Mitochondrial Transplantation for Ischemic Heart Disease. Nat. Nanotechnol. 2024, 19, 1247–1248. [Google Scholar] [CrossRef]
  31. Boutonnet, L.; Mallard, J.; Charles, A.-L.; Hucteau, E.; Gény, B.; Lejay, A.; Grandperrin, A. Autologous Mitochondrial Transplantation in Male Mice as a Strategy to Prevent Deleterious Effects of Peripheral Ischemia-Reperfusion. Am. J. Physiol. Cell Physiol. 2024, 326, C449–C456. [Google Scholar] [CrossRef]
  32. Wang, D.D.; Naumova, A.V.; Isquith, D.; Sapp, J.; Huynh, K.A.; Tucker, I.; Balu, N.; Voronyuk, A.; Chu, B.; Ordovas, K.; et al. Dapagliflozin Reduces Systemic Inflammation in Patients with Type 2 Diabetes without Known Heart Failure. Cardiovasc. Diabetol. 2024, 23, 197. [Google Scholar] [CrossRef]
  33. Alfatni, A.; Riou, M.; Charles, A.-L.; Meyer, A.; Barnig, C.; Andres, E.; Lejay, A.; Talha, S.; Geny, B. Peripheral Blood Mononuclear Cells and Platelets Mitochondrial Dysfunction, Oxidative Stress, and Circulating mtDNA in Cardiovascular Diseases. J. Clin. Med. 2020, 9, 311. [Google Scholar] [CrossRef] [PubMed]
  34. Shirakawa, R.; Yokota, T.; Nakajima, T.; Takada, S.; Yamane, M.; Furihata, T.; Maekawa, S.; Nambu, H.; Katayama, T.; Fukushima, A.; et al. Mitochondrial Reactive Oxygen Species Generation in Blood Cells Is Associated with Disease Severity and Exercise Intolerance in Heart Failure Patients. Sci. Rep. 2019, 9, 14709. [Google Scholar] [CrossRef] [PubMed]
  35. Sauer, F.; Riou, M.; Charles, A.-L.; Meyer, A.; Andres, E.; Geny, B.; Talha, S. Pathophysiology of Heart Failure: A Role for Peripheral Blood Mononuclear Cells Mitochondrial Dysfunction? J. Clin. Med. 2022, 11, 741. [Google Scholar] [CrossRef] [PubMed]
  36. Rose, S.; Carvalho, E.; Diaz, E.C.; Cotter, M.; Bennuri, S.C.; Azhar, G.; Frye, R.E.; Adams, S.H.; Børsheim, E. A Comparative Study of Mitochondrial Respiration in Circulating Blood Cells and Skeletal Muscle Fibers in Women. Am. J. Physiol. Endocrinol. Metab. 2019, 317, E503–E512. [Google Scholar] [CrossRef]
  37. Sommer, N.; Theine, F.F.; Pak, O.; Tello, K.; Richter, M.; Gall, H.; Wilhelm, J.; Savai, R.; Weissmann, N.; Seeger, W.; et al. Mitochondrial Respiration in Peripheral Blood Mononuclear Cells Negatively Correlates with Disease Severity in Pulmonary Arterial Hypertension. J. Clin. Med. 2022, 11, 4132. [Google Scholar] [CrossRef]
  38. Petrus, A.T.; Lighezan, D.L.; Danila, M.D.; Duicu, O.M.; Sturza, A.; Muntean, D.M.; Ionita, I. Assessment of Platelet Respiration as Emerging Biomarker of Disease. Physiol. Res. 2019, 68, 347–363. [Google Scholar] [CrossRef]
  39. Kramer, P.A.; Ravi, S.; Chacko, B.; Johnson, M.S.; Darley-Usmar, V.M. A Review of the Mitochondrial and Glycolytic Metabolism in Human Platelets and Leukocytes: Implications for Their Use as Bioenergetic Biomarkers. Redox Biol. 2014, 2, 206–210. [Google Scholar] [CrossRef]
  40. Karan, K.R.; Trumpff, C.; McGill, M.A.; Thomas, J.E.; Sturm, G.; Lauriola, V.; Sloan, R.P.; Rohleder, N.; Kaufman, B.A.; Marsland, A.L.; et al. Mitochondrial Respiratory Capacity Modulates LPS-Induced Inflammatory Signatures in Human Blood. Brain Behav. Immun. Health 2020, 5, 100080. [Google Scholar] [CrossRef]
  41. Riou, M.; Charles, A.-L.; Enache, I.; Evrard, C.; Pistea, C.; Giannini, M.; Charloux, A.; Geny, B. Acute Severe Hypoxia Decreases Mitochondrial Chain Complex II Respiration in Human Peripheral Blood Mononuclear Cells. Int. J. Mol. Sci. 2025, 26, 705. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Riou, M.; Geny, B. Mitochondrial Dysfunction and Oxidative Stress: Emerging Insights in Muscle and Cardiovascular Disease Mechanisms. Antioxidants 2025, 14, 902. https://doi.org/10.3390/antiox14080902

AMA Style

Riou M, Geny B. Mitochondrial Dysfunction and Oxidative Stress: Emerging Insights in Muscle and Cardiovascular Disease Mechanisms. Antioxidants. 2025; 14(8):902. https://doi.org/10.3390/antiox14080902

Chicago/Turabian Style

Riou, Marianne, and Bernard Geny. 2025. "Mitochondrial Dysfunction and Oxidative Stress: Emerging Insights in Muscle and Cardiovascular Disease Mechanisms" Antioxidants 14, no. 8: 902. https://doi.org/10.3390/antiox14080902

APA Style

Riou, M., & Geny, B. (2025). Mitochondrial Dysfunction and Oxidative Stress: Emerging Insights in Muscle and Cardiovascular Disease Mechanisms. Antioxidants, 14(8), 902. https://doi.org/10.3390/antiox14080902

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop