Highly Soluble Mussel Foot Protein and Its Derivatives Inhibit Inflammation by Targeting NF-κB/PI3K-Akt Signaling and Promoting M2 Macrophage Polarization
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Cell Viability Assay
2.3. ROS Measurement
2.4. Determination of Inflammatory Factors
2.5. Determination of NO Secretion Level
2.6. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
2.7. Western Blot Analysis
2.8. Statistical Analysis
3. Results
3.1. Effects of HMFP and HMFP-PEG on RAW264.7 Cell Viability and Intracellular ROS Levels
3.2. HMFP and HMFP-PEG Inhibit Pro-Inflammatory Cytokine Expression and Promote Anti-Inflammatory Cytokine Secretion in RAW264.7 Cell
3.3. HMFP and HMFP-PEG Inhibit Inflammation by Suppressing the PI3K-Akt Pathway
3.4. HMFP and HMFP-PEG Alleviate Inflammation by Inhibiting the NF-κB Signaling Pathway
3.5. HMFP and Its Derivatives Regulate iNOS/CD206 Expression and Promote RAW264.7 Cell Polarization Toward an Anti-Inflammatory Phenotype
3.6. HMFP and HMFP-PEG Further Influence the Activity of the NF-κB Signaling Pathway Under the Effect of the NF-κB Pathway Inhibitor MG132
3.7. Analysis of Changes in the PI3K/Akt Signaling Pathway Mediated by the NF-κB Signaling Pathway Inhibitor
3.8. Regulation of Macrophage Polarization Markers by HMFP and HMFP-PEG Under MG132 Intervention
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget 2017, 9, 7204–7218. [Google Scholar] [CrossRef]
- Jo, E.-K. Interplay between Host and Pathogen: Immune Defense and Beyond. Exp. Mol. Med. 2019, 51, 1–3. [Google Scholar] [CrossRef]
- Kaur, B.; Singh, P. Inflammation: Biochemistry, Cellular Targets, Anti-Inflammatory Agents and Challenges with Special Emphasis on Cyclooxygenase-2. Bioorganic Chem. 2022, 121, 105663. [Google Scholar] [CrossRef] [PubMed]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Wang, R.-X.; Zhou, M.; Ma, H.-L.; Qiao, Y.-B.; Li, Q.-S. The Role of Chronic Inflammation in Various Diseases and Anti-Inflammatory Therapies Containing Natural Products. ChemMedChem 2021, 16, 1576–1592. [Google Scholar] [CrossRef]
- Chavda, V.P.; Feehan, J.; Apostolopoulos, V. Inflammation: The Cause of All Diseases. Cells 2024, 13, 1906. [Google Scholar] [CrossRef] [PubMed]
- Celikkin, N.; Rinoldi, C.; Costantini, M.; Trombetta, M.; Rainer, A.; Święszkowski, W. Naturally Derived Proteins and Glycosaminoglycan Scaffolds for Tissue Engineering Applications. Mater. Sci. Eng. C 2017, 78, 1277–1299. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Chen, Y.-Y.; Zha, X.-Q.; Li, Q.-M.; Pan, L.-H.; Luo, J.-P. Research Progress on Polysaccharide/Protein Hydrogels: Preparation Method, Functional Property and Application as Delivery Systems for Bioactive Ingredients. Food Res. Int. 2021, 147, 110542. [Google Scholar] [CrossRef]
- Lyu, H.; Li, J.; Yuan, Z.; Liu, H.; Sun, Z.; Jiang, R.; Yu, X.; Hu, Y.; Pei, Y.; Ding, J.; et al. Supertough and Highly Stretchable Silk Protein-Based Films with Controlled Biodegradability. Acta Biomater. 2022, 153, 149–158. [Google Scholar] [CrossRef]
- Fan, X.; Fang, Y.; Zhou, W.; Yan, L.; Xu, Y.; Zhu, H.; Liu, H. Mussel Foot Protein Inspired Tough Tissue-Selective Underwater Adhesive Hydrogel. Mater. Horiz. 2021, 8, 997–1007. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Q.; Chen, X.; Jiang, T.; Song, P.; Wang, B.; Zhao, X. Mussel-Inspired Nanocomposite Hydrogel Based on Alginate and Antimicrobial Peptide for Infected Wound Repair. Int. J. Biol. Macromol. 2022, 219, 1087–1099. [Google Scholar] [CrossRef] [PubMed]
- Pilakka Veedu, A.; Nakashima, K.; Shiga, H.; Sato, T.; Godigamuwa, K.; Hiroyoshi, N.; Kawasaki, S. Functional Modification of Mussel Adhesive Protein to Control Solubility and Adhesion Property. J. Biosci. Bioeng. 2023, 136, 87–93. [Google Scholar] [CrossRef]
- Li, N.; Xu, J.; Liu, B.; Elango, J.; Wu, W. Highly Soluble Mussel Foot Protein Enhances Antioxidant Defense and Cytoprotection via PI3K/Akt and Nrf2/HO-1 Pathways. Antioxidants 2025, 14, 644. [Google Scholar] [CrossRef]
- Abbina, S.; Parambath, A. 14—PEGylation and Its Alternatives: A Summary. In Engineering of Biomaterials for Drug Delivery Systems; Parambath, A., Ed.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Cambridge, UK, 2018; pp. 363–376. ISBN 978-0-08-101750-0. [Google Scholar]
- Xu, Q.; Hou, J.; Rao, J.; Li, G.-H.; Liu, Y.-L.; Zhou, J. PEG Modification Enhances the in Vivo Stability of Bioactive Proteins Immobilized on Magnetic Nanoparticles. Biotechnol. Lett. 2020, 42, 1407–1418. [Google Scholar] [CrossRef]
- Li, C.; Li, T.; Tian, X.; An, W.; Wang, Z.; Han, B.; Tao, H.; Wang, J.; Wang, X. Research Progress on the PEGylation of Therapeutic Proteins and Peptides (TPPs). Front. Pharmacol. 2024, 15, 1353626. [Google Scholar] [CrossRef]
- Jozefczuk, J.; Adjaye, J. Chapter Six—Quantitative Real-Time PCR-Based Analysis of Gene Expression. In Methods in Enzymology; Jameson, D., Verma, M., Westerhoff, H.V., Eds.; Methods in Systems Biology; Academic Press: Cambridge, MA, USA, 2011; Volume 500, pp. 99–109. [Google Scholar]
- Mishra, M.; Tiwari, S.; Gomes, A.V. Protein Purification and Analysis: Next Generation Western Blotting Techniques. Expert. Rev. Proteom. 2017, 14, 1037–1053. [Google Scholar] [CrossRef] [PubMed]
- Bardaweel, S.K.; Gul, M.; Alzweiri, M.; Ishaqat, A.; ALSalamat, H.A.; Bashatwah, R.M. Reactive Oxygen Species: The Dual Role in Physiological and Pathological Conditions of the Human Body. Eurasian J. Med. 2018, 50, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ. Res. 2018, 122, 877–902. [Google Scholar] [CrossRef]
- Ghosh, N.; Das, A.; Chaffee, S.; Roy, S.; Sen, C.K. Chapter 4—Reactive Oxygen Species, Oxidative Damage and Cell Death. In Immunity and Inflammation in Health and Disease; Chatterjee, S., Jungraithmayr, W., Bagchi, D., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 45–55. ISBN 978-0-12-805417-8. [Google Scholar]
- Stark, A.-K.; Sriskantharajah, S.; Hessel, E.M.; Okkenhaug, K. PI3K Inhibitors in Inflammation, Autoimmunity and Cancer. Curr. Opin. Pharmacol. 2015, 23, 82–91. [Google Scholar] [CrossRef]
- Hawkins, P.T.; Stephens, L.R. PI3K Signalling in Inflammation. Biochim. Biophys. Acta 2015, 1851, 882–897. [Google Scholar] [CrossRef]
- Acosta-Martinez, M.; Cabail, M.Z. The PI3K/Akt Pathway in Meta-Inflammation. Int. J. Mol. Sci. 2022, 23, 15330. [Google Scholar] [CrossRef] [PubMed]
- Vergadi, E.; Ieronymaki, E.; Lyroni, K.; Vaporidi, K.; Tsatsanis, C. Akt Signaling Pathway in Macrophage Activation and M1/M2 Polarization. J. Immunol. 2017, 198, 1006–1014. [Google Scholar] [CrossRef] [PubMed]
- Linton, M.F.; Moslehi, J.J.; Babaev, V.R. Akt Signaling in Macrophage Polarization, Survival, and Atherosclerosis. Int. J. Mol. Sci. 2019, 20, 2703. [Google Scholar] [CrossRef] [PubMed]
- El-Deeb, N.K.; El-Tanbouly, D.M.; Khattab, M.A.; EL-Yamany, M.F.; Mohamed, A.F. Crosstalk between PI3K/AKT/KLF4 Signaling and Microglia M1/M2 Polarization as a Novel Mechanistic Approach towards Flibanserin Repositioning in Parkinson’s Disease. Int. Immunopharmacol. 2022, 112, 109191. [Google Scholar] [CrossRef]
- Kwon, H.-J.; Choi, G.-E.; Ryu, S.; Kwon, S.J.; Kim, S.C.; Booth, C.; Nichols, K.E.; Kim, H.S. Stepwise Phosphorylation of P65 Promotes NF-κB Activation and NK Cell Responses during Target Cell Recognition. Nat. Commun. 2016, 7, 11686. [Google Scholar] [CrossRef]
- He, Y.; Sun, M.M.; Zhang, G.G.; Yang, J.; Chen, K.S.; Xu, W.W.; Li, B. Targeting PI3K/Akt Signal Transduction for Cancer Therapy. Sig Transduct. Target. Ther. 2021, 6, 425. [Google Scholar] [CrossRef]
- Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-κB in Biology and Targeted Therapy: New Insights and Translational Implications. Sig Transduct. Target. Ther. 2024, 9, 53. [Google Scholar] [CrossRef]
- Nakajima, S.; Kato, H.; Takahashi, S.; Johno, H.; Kitamura, M. Inhibition of NF-κB by MG132 through ER Stress-Mediated Induction of LAP and LIP. FEBS Lett. 2011, 585, 2249–2254. [Google Scholar] [CrossRef]
- Olajide, O.A.; Sarker, S.D. Chapter Five—Anti-Inflammatory Natural Products. In Annual Reports in Medicinal Chemistry; Sarker, S.D., Nahar, L., Eds.; Medicinal Natural Products: A Disease-Focused Approach; Academic Press: Cambridge, MA, USA, 2020; Volume 55, pp. 153–177. [Google Scholar]
- Bai, R.; Yao, C.; Zhong, Z.; Ge, J.; Bai, Z.; Ye, X.; Xie, T.; Xie, Y. Discovery of Natural Anti-Inflammatory Alkaloids: Potential Leads for the Drug Discovery for the Treatment of Inflammation. Eur. J. Med. Chem. 2021, 213, 113165. [Google Scholar] [CrossRef]
- Guo, Y.; Peng, X.; Liu, F.; Zhang, Q.; Ding, L.; Li, G.; Qiu, F. Potential of Natural Products in Inflammation: Biological Activities, Structure-Activity Relationships, and Mechanistic Targets. Arch. Pharm. Res. 2024, 47, 377–409. [Google Scholar] [CrossRef]
- Yu, J. Mussel Adhesion. In Adhesive Interactions of Mussel Foot Proteins; Yu, J., Ed.; Springer International Publishing: Cham, Switzerland, 2014; pp. 1–9. ISBN 978-3-319-06031-6. [Google Scholar]
- Liu, Y.; Meng, H.; Messersmith, P.B.; Lee, B.P.; Dalsin, J.L. Biomimetic Adhesives and Coatings Based on Mussel Adhesive Proteins. In Biological Adhesives; Smith, A.M., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 345–378. ISBN 978-3-319-46082-6. [Google Scholar]
- Vale, A.C.; Pereira, P.R.; Alves, N.M. Polymeric Biomaterials Inspired by Marine Mussel Adhesive Proteins. React. Funct. Polym. 2021, 159, 104802. [Google Scholar] [CrossRef]
- Megha, K.B.; Joseph, X.; Akhil, V.; Mohanan, P.V. Cascade of Immune Mechanism and Consequences of Inflammatory Disorders. Phytomedicine 2021, 91, 153712. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R. The Spectrum of Inflammatory Responses. Science 2021, 374, 1070–1075. [Google Scholar] [CrossRef]
- Bender, E.C.; Tareq, H.S.; Suggs, L.J. Inflammation: A Matter of Immune Cell Life and Death. npj Biomed. Innov. 2025, 2, 7. [Google Scholar] [CrossRef]
- Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The Crucial Roles of Inflammatory Mediators in Inflammation: A Review. Vet. World 2018, 11, 627–635. [Google Scholar] [CrossRef]
- Chen, S.; Saeed, A.F.U.H.; Liu, Q.; Jiang, Q.; Xu, H.; Xiao, G.G.; Rao, L.; Duo, Y. Macrophages in Immunoregulation and Therapeutics. Sig Transduct. Target. Ther. 2023, 8, 207. [Google Scholar] [CrossRef]
- Bhol, N.K.; Bhanjadeo, M.M.; Singh, A.K.; Dash, U.C.; Ojha, R.R.; Majhi, S.; Duttaroy, A.K.; Jena, A.B. The Interplay between Cytokines, Inflammation, and Antioxidants: Mechanistic Insights and Therapeutic Potentials of Various Antioxidants and Anti-Cytokine Compounds. Biomed. Pharmacother. 2024, 178, 117177. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, J.; Xu, X.; Li, W.; Zhong, R.; Qi, L.; Chen, J.; Cui, G.; Wang, S.; Zheng, Y.; et al. M-CSF, IL-6, and TGF-β Promote Generation of a New Subset of Tissue Repair Macrophage for Traumatic Brain Injury Recovery. Sci. Adv. 2021, 7, eabb6260. [Google Scholar] [CrossRef]
- Short, W.D.; Steen, E.; Kaul, A.; Wang, X.; Olutoye, O.O.; Vangapandu, H.V.; Templeman, N.; Blum, A.J.; Moles, C.M.; Narmoneva, D.A.; et al. IL-10 Promotes Endothelial Progenitor Cell Infiltration and Wound Healing via STAT3. FASEB J. 2022, 36, e22298. [Google Scholar] [CrossRef]
- Short, W.D.; Rae, M.; Lu, T.; Padon, B.; Prajapati, T.J.; Faruk, F.; Olutoye, O.O.; Yu, L.; Bollyky, P.; Keswani, S.G.; et al. Endogenous IL-10 Contributes to Wound Healing and Regulates Tissue Repair. J. Surg. Res. 2023, 285, 26–34. [Google Scholar] [CrossRef]
- Yeung, Y.T.; Aziz, F.; Guerrero-Castilla, A.; Arguelles, S. Signaling Pathways in Inflammation and Anti-Inflammatory Therapies. Curr. Pharm. Des. 2018, 24, 1449–1484. [Google Scholar] [CrossRef]
- Cicala, C.; Morello, S. Signaling Pathways in Inflammation and Its Resolution: New Insights and Therapeutic Challenges. Int. J. Mol. Sci. 2023, 24, 11055. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Zhang, W.; Wang, Y.; Qian, P.; Huang, H. Inflammation and Aging: Signaling Pathways and Intervention Therapies. Sig Transduct. Target. Ther. 2023, 8, 239. [Google Scholar] [CrossRef] [PubMed]
- Dorrington, M.G.; Fraser, I.D.C. NF-κB Signaling in Macrophages: Dynamics, Crosstalk, and Signal Integration. Front. Immunol. 2019, 10, 705. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB Signaling in Inflammation. Sig Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Van Quickelberghe, E.; De Sutter, D.; van Loo, G.; Eyckerman, S.; Gevaert, K. A Protein-Protein Interaction Map of the TNF-Induced NF-κB Signal Transduction Pathway. Sci. Data 2018, 5, 180289. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.J.; Lee, N.; Choi, S.-E.; Jeon, J.Y.; Han, S.J.; Kim, D.J.; Kang, Y.; Lee, K.W.; Kim, H.J. Amphiregulin Induces iNOS and COX-2 Expression through NF-κB and MAPK Signaling in Hepatic Inflammation. Mediat. Inflamm. 2023, 2023, 2364121. [Google Scholar] [CrossRef]
- Lisi, L.; Ciotti, G.M.P.; Braun, D.; Kalinin, S.; Currò, D.; Dello Russo, C.; Coli, A.; Mangiola, A.; Anile, C.; Feinstein, D.L.; et al. Expression of iNOS, CD163 and ARG-1 Taken as M1 and M2 Markers of Microglial Polarization in Human Glioblastoma and the Surrounding Normal Parenchyma. Neurosci. Lett. 2017, 645, 106–112. [Google Scholar] [CrossRef]
- Lawrence, P.B.; Price, J.L. How PEGylation Influences Protein Conformational Stability. Curr. Opin. Chem. Biol. 2016, 34, 88–94. [Google Scholar] [CrossRef]
- Gupta, V.; Bhavanasi, S.; Quadir, M.; Singh, K.; Ghosh, G.; Vasamreddy, K.; Ghosh, A.; Siahaan, T.J.; Banerjee, S.; Banerjee, S.K. Protein PEGylation for Cancer Therapy: Bench to Bedside. J. Cell Commun. Signal 2019, 13, 319–330. [Google Scholar] [CrossRef]
- Andrianov, A.K. Noncovalent PEGylation of Protein and Peptide Therapeutics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol 2023, 15, e1897. [Google Scholar] [CrossRef] [PubMed]
Gene | Accession Number | Primer Sequence |
---|---|---|
Il1b | NM_008361.4 | Forward: 5′-TGGACCTTCCAGGATGAGGACA-3′ |
Reverse: 5′-GTTCATCTCGGAGCCTGTAGTG-3′ | ||
Tnf | NM_013693.4 | Forward: 5′-GGTGCCTATGTCTCAGCCTCTT-3′ |
Reverse: 5′-GCCATAGAACTGATGAGAGGGAG-3′ | ||
Il10 | NM_010548.5 | Forward: 5′-CGGGAAGACAATAACTGCACCC-3′ |
Reverse: 5′-CGGTTAGCAGTATGTTGTCCAGC-3′ | ||
Tgfb1 | NM_011577.3 | Forward: 5′-CCATGGATGCCGCCCTCGGG-3′ |
Reverse: 5′-GCGGAAGTCAATGTACAGCTGCC-3′ | ||
Pik3ca | NM_008839.3 | Forward: 5′-GAAGCACCTGAATAGGCAAGTCG-3′ |
Reverse: 5′-GAGCATCCATGAAATCTGGTCGC-3′ | ||
Akt1 | NM_009652.6 | Forward: 5′-GGACTACTTGCACTCCGAGAAG-3′ |
Reverse: 5′-CATAGTGGCACCGTCCTTGATC-3′ | ||
Rela | NM_009045.3 | Forward: 5′-TCCTGTTCGAGTCTCCATGCAG-3′ |
Reverse: 5′-GGTCTCATAGGTCCTTTTGCGC-3′ | ||
Nfkbia | NM_010907.2 | Forward: 5′-GCTGCCAAAGAAGGACACGACA-3′ |
Reverse: 5′-GGCAGGCTATTGCTCATCACAG-3′ | ||
NOS2 | NM_010927.3 | Forward: 5′-GAGACAGGGAAGTCTGAAGCAC-3′ |
Reverse: 5′-CCAGCAGTAGTTGCTCCTCTTC-3′ | ||
Mrc1 | NM_008625.2 | Forward: 5′-GTTCACCTGGAGTGATGGTTCTC-3′ |
Reverse: 5′- AGGACATGCCAGGGTCACCTTT-3′ | ||
β-Actin | NM_007393.5 | Forward: 5′-GCTACAGCTTCACCACCACA-3′ |
Reverse: 5′-AAGGAAGGCTGGAAAAGAGC-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Li, Y.; Xu, J.; Elango, J.; Wu, W. Highly Soluble Mussel Foot Protein and Its Derivatives Inhibit Inflammation by Targeting NF-κB/PI3K-Akt Signaling and Promoting M2 Macrophage Polarization. Antioxidants 2025, 14, 1021. https://doi.org/10.3390/antiox14081021
Li N, Li Y, Xu J, Elango J, Wu W. Highly Soluble Mussel Foot Protein and Its Derivatives Inhibit Inflammation by Targeting NF-κB/PI3K-Akt Signaling and Promoting M2 Macrophage Polarization. Antioxidants. 2025; 14(8):1021. https://doi.org/10.3390/antiox14081021
Chicago/Turabian StyleLi, Na, Yu Li, Jiren Xu, Jeevithan Elango, and Wenhui Wu. 2025. "Highly Soluble Mussel Foot Protein and Its Derivatives Inhibit Inflammation by Targeting NF-κB/PI3K-Akt Signaling and Promoting M2 Macrophage Polarization" Antioxidants 14, no. 8: 1021. https://doi.org/10.3390/antiox14081021
APA StyleLi, N., Li, Y., Xu, J., Elango, J., & Wu, W. (2025). Highly Soluble Mussel Foot Protein and Its Derivatives Inhibit Inflammation by Targeting NF-κB/PI3K-Akt Signaling and Promoting M2 Macrophage Polarization. Antioxidants, 14(8), 1021. https://doi.org/10.3390/antiox14081021