Green Tea Extract Containing Epigallocatechin-3-Gallate Facilitates Bone Formation and Mineralization by Alleviating Iron-Overload-Induced Oxidative Stress in Human Osteoblast-like (MG-63) Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Extraction and Analysis of Green Tea
2.3. Cell Culture
2.4. Cell Viability Assay
2.5. Iron Mobilization Assay
2.6. Measurement of Lipid Peroxidation
2.7. Reactive Oxygen Species (ROS) Measurement
2.8. Bone Formation Markers’ Determination
2.9. Bone Mineralization Assessment
2.10. Statistical Analysis
3. Results
3.1. Effects of GTE and FAC on MG-63 Cell Viability
3.2. GTE Effect on Intracellular Iron and Iron Mobilization
3.3. Inhibition of Lipid Peroxidation and Antioxidant Properties of GTE
3.4. Bone Formation and Mineralization Affected by GTE
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
BGLAP | Bone gamma-carboxyglutamate protein |
C | Catechin |
DCF | 2′,7′-Dichlorodihydrofluorescein |
DCFH-DA | 2′,7′-Dichlorodihydrofluorescein diacetate |
DFP | Deferiprone |
DMEM | Dulbecco’s Modified Eagle Medium |
ECG | Epicatechin-3-gallate |
EGC | Epigallocatechin |
EGCG | Epigallocatechin-3-gallate |
ELISA | Enzyme-linked immunosorbent assay |
FAC | Ferric ammonium citrate |
FBS | Fetal bovine serum |
FI | Fluorescence intensity |
GTE | Green tea extract |
MDA | Malondialdehyde |
MG-63 | Human osteoblast-like cells |
MPA | Meta-phosphoric acid |
MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide |
OPG | Osteoprotegerin |
RANKL | Receptor activator of nuclear factor kappa-B ligand |
ROS | Reactive oxygen species |
SEM | Standard error of the mean |
TBA | Thiobarbituric acid |
References
- Palmer, W.C.; Vishnu, P.; Sanchez, W.; Aqel, B.; Riegert-Johnson, D.; Seaman, L.A.K.; Bowman, A.W.; Rivera, C.E. Diagnosis and Management of Genetic Iron Overload Disorders. J. Gen. Intern. Med. 2018, 33, 2230–2236. [Google Scholar] [CrossRef] [PubMed]
- Queiroz-Andrade, M.; Blasbalg, R.; Ortega, C.D.; Rodstein, M.A.; Baroni, R.H.; Rocha, M.S.; Cerri, G.G. MR imaging findings of iron overload. Radiographics 2009, 29, 1575–1589. [Google Scholar] [CrossRef] [PubMed]
- Tsay, J.; Yang, Z.; Ross, F.P.; Cunningham-Rundles, S.; Lin, H.; Coleman, R.; Mayer-Kuckuk, P.; Doty, S.B.; Grady, R.W.; Giardina, P.J.; et al. Bone loss caused by iron overload in a murine model: Importance of oxidative stress. Blood 2010, 116, 2582–2589. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Meng, C.; Li, R.; Xu, Y.; Li, C. Targeting oxidative stress, iron overload and ferroptosis in bone-degenerative conditions. Turk. J. Biochem. 2025, 50, 1–16. [Google Scholar] [CrossRef]
- Jeney, V. Clinical Impact and Cellular Mechanisms of Iron Overload-Associated Bone Loss. Front. Pharmacol. 2017, 8, 77. [Google Scholar] [CrossRef] [PubMed]
- Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial Properties of Green Tea Catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, O.; Amit, T.; Mandel, S.; Youdim, M.B. Neuroprotective molecular mechanisms of (-)-epigallocatechin-3-gallate: A reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Genes. Nutr. 2009, 4, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Petiwathayakorn, T.; Hantrakool, S.; Settakorn, K.; Hutachok, N.; Tantiworawit, A.; Chalortham, N.; Koonyosying, P.; Srichairatanakool, S. Green Tea Epigallocatechin 3-Gallate Reduced Platelet Aggregation and Improved Anticoagulant Proteins in Patients with Transfusion-Dependent β-Thalassemia: A Randomized Placebo-Controlled Clinical Trial. Foods 2024, 13, 3864. [Google Scholar] [CrossRef] [PubMed]
- Rasaei, N.; Asbaghi, O.; Samadi, M.; Setayesh, L.; Bagheri, R.; Gholami, F.; Soveid, N.; Casazza, K.; Wong, A.; Suzuki, K.; et al. Effect of Green Tea Supplementation on Antioxidant Status in Adults: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Antioxidants 2021, 10, 1731. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.L.; Yeh, J.K.; Cao, J.J.; Chyu, M.C.; Wang, J.S. Green tea and bone health: Evidence from laboratory studies. Pharmacol. Res. 2011, 64, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Vali, B.; Rao, L.G.; El-Sohemy, A. Epigallocatechin-3-gallate increases the formation of mineralized bone nodules by human osteoblast-like cells. J. Nutr. Biochem. 2007, 18, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Ma, C.-M.; Shahidi, F. Antioxidant and antiviral activities of lipophilic epigallocatechin gallate (EGCG) derivatives. J. Funct. Foods 2012, 4, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Tallei, T.E.; Fatimawali; Niode, N.J.; Idroes, R.; Zidan, B.; Mitra, S.; Celik, I.; Nainu, F.; Ağagündüz, D.; Emran, T.B.; et al. A Comprehensive Review of the Potential Use of Green Tea Polyphenols in the Management of COVID-19. Evid. Based Complement. Alternat Med. 2021, 2021, 7170736. [Google Scholar] [CrossRef] [PubMed]
- Khalatbary, A.R.; Khademi, E. The green tea polyphenolic catechin epigallocatechin gallate and neuroprotection. Nutr. Neurosci. 2020, 23, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Dong, H.; Fang, K.; Gong, J.; Lu, F. Effects of green tea on lipid metabolism in overweight or obese people: A meta-analysis of randomized controlled trials. Mol. Nutr. Food Res. 2018, 62(1), 1601122. [Google Scholar] [CrossRef] [PubMed]
- Koonyosying, P.; Kongkarnka, S.; Uthaipibull, C.; Svasti, S.; Fucharoen, S.; Srichairatanakool, S. Green tea extract modulates oxidative tissue injury in beta-thalassemic mice by chelation of redox iron and inhibition of lipid peroxidation. Biomed. Pharmacother. 2018, 108, 1694–1702. [Google Scholar] [CrossRef] [PubMed]
- Lykkesfeldt, J. Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking. Clin. Chim. Acta 2007, 380, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Piga, A. Impact of bone disease and pain in thalassemia. Hematology 2017, 2017, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Rajneesh; Pathak, J.; Chatterjee, A.; Singh, S.P.; Sinha, R.P. Detection of Reactive Oxygen Species (ROS) in Cyanobacteria Using the Oxidant-sensing Probe 2′,7′-Dichlorodihydrofluorescein Diacetate (DCFH-DA). Bio Protoc. 2017, 7, e2545. [Google Scholar] [CrossRef] [PubMed]
- Tsao, Y.T.; Huang, Y.J.; Wu, H.H.; Liu, Y.A.; Liu, Y.S.; Lee, O.K. Osteocalcin Mediates Biomineralization during Osteogenic Maturation in Human Mesenchymal Stromal Cells. Int. J. Mol. Sci. 2017, 18, 159. [Google Scholar] [CrossRef] [PubMed]
- Borrás, T.; Comes, N. Evidence for a calcification process in the trabecular meshwork. Exp. Eye Res. 2009, 88, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Xie, Y.; Yin, X.; Huang, Y.; Yang, G.; Li, C.; Chen, Y.; Liu, F.; Zhang, N.; Liang, X.; et al. Oxidative Stress Damage of Iron Overload on Bone Marrow Erythropoiesis, Heart and Liver in Non-Transfusion Dependent Thalassemia. Blood 2023, 142, 5245. [Google Scholar] [CrossRef]
- Morales, N.P.; Rodrat, S.; Piromkraipak, P.; Yamanont, P.; Paiboonsukwong, K.; Fucharoen, S. Iron chelation therapy with deferiprone improves oxidative status and red blood cell quality and reduces redox-active iron in β-thalassemia/hemoglobin E patients. Biomed. Pharmacother. 2022, 145, 112381. [Google Scholar] [CrossRef] [PubMed]
- Taher, A.; Chamoun, F.M.; Koussa, S.; Saad, M.A.; Khoriaty, A.I.; Neeman, R.; Mourad, F.H. Efficacy and side effects of deferiprone (L1) in thalassemia patients not compliant with desferrioxamine. Acta Haematol. 1999, 101, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Buaboonnam, J.; Charuvanij, S. Severe deferiprone-induced arthropathy in young adolescent successfully treated with intraarticular triamcinolone acetonide injection: A case report. J. Med. Assoc. Thail. 2017, 100, 815–817. [Google Scholar]
- Gaudio, A.; Xourafa, A.; Rapisarda, R.; Zanoli, L.; Signorelli, S.S.; Castellino, P. Hematological Diseases and Osteoporosis. Int. J. Mol. Sci. 2020, 21, 3538. [Google Scholar] [CrossRef] [PubMed]
- Al-Basher, G.I. Green tea activity and iron overload induced molecular fibrogenesis of rat liver. Saudi J. Biol. Sci. 2019, 26, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Mandel, S.; Weinreb, O.; Reznichenko, L.; Kalfon, L.; Amit, T. Green tea catechins as brain-permeable, non toxic iron chelators to “iron out iron” from the brain. In Oxidative Stress and Neuroprotection; Parvez, H., Riederer, P., Eds.; Springer: Vienna, Austria, 2006; pp. 249–257. [Google Scholar]
- Tian, Q.; Wu, S.; Dai, Z.; Yang, J.; Zheng, J.; Zheng, Q.; Liu, Y. Iron overload induced death of osteoblasts in vitro: Involvement of the mitochondrial apoptotic pathway. PeerJ 2016, 4, e2611. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Yang, L.; Tian, R.; Wu, H.; Gu, Z.; Li, Y. Versatile polyphenolic platforms in regulating cell biology. Chem. Soc. Rev. 2022, 51, 4175–4198. [Google Scholar] [CrossRef] [PubMed]
- Al-Awaida, W.; Akash, M.; Aburubaiha, Z.; Talib, W.H.; Shehadeh, H. Chinese green tea consumption reduces oxidative stress, inflammation and tissues damage in smoke exposed rats. Iran. J. Basic. Med. Sci. 2014, 17, 740–746. [Google Scholar] [PubMed]
- Capasso, L.; De Masi, L.; Sirignano, C.; Maresca, V.; Basile, A.; Nebbioso, A.; Rigano, D.; Bontempo, P. Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential. Molecules 2025, 30, 654. [Google Scholar] [CrossRef] [PubMed]
- Oka, Y.; Iwai, S.; Amano, H.; Irie, Y.; Yatomi, K.; Ryu, K.; Yamada, S.; Inagaki, K.; Oguchi, K. Tea Polyphenols Inhibit Rat Osteoclast Formation and Differentiation. J. Pharmacol. Sci. 2012, 118, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Kearns, A.E.; Khosla, S.; Kostenuik, P.J. Receptor Activator of Nuclear Factor κB Ligand and Osteoprotegerin Regulation of Bone Remodeling in Health and Disease. Endocr. Rev. 2008, 29, 155–192. [Google Scholar] [CrossRef] [PubMed]
- Kayed, H.; Bekasi, S.; Keleg, S.; Michalski, C.W.; Giese, T.; Friess, H.; Kleeff, J. BGLAP is expressed in pancreatic cancer cells and increases their growth and invasion. Mol. Cancer 2007, 6, 83. [Google Scholar] [CrossRef] [PubMed]
- Torre, E. Molecular signaling mechanisms behind polyphenol-induced bone anabolism. Phytochem. Rev. 2017, 16, 1183–1226. [Google Scholar] [CrossRef] [PubMed]
- Land, C.; Schoenau, E. Fetal and postnatal bone development: Reviewing the role of mechanical stimuli and nutrition. Best. Pract. Res. Clin. Endocrinol. Metab. 2008, 22, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, R.; Paganelli, R.; Bandinelli, S.; Cherubini, A.; Andrés-Lacueva, C.; Di Iorio, A.; Sparvieri, E.; Zamora-Ros, R.; Ferrucci, L. Urinary and Daily Assumption of Polyphenols and Hip-Fracture Risk: Results from the InCHIANTI Study. Nutrients 2022, 14, 4754. [Google Scholar] [CrossRef] [PubMed]
- Di Iorio, A.; Abate, M.; Bandinelli, S.; Barassi, G.; Cherubini, A.; Andres-Lacueva, C.; Zamora-Ros, R.; Paganelli, R.; Volpato, S.; Ferrucci, L. Total urinary polyphenols and longitudinal changes of bone properties. The InCHIANTI study. Osteoporos. Int. 2021, 32, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H.; Yang, Y.C.; Yao, W.J.; Lu, F.H.; Wu, J.S.; Chang, C.J. Epidemiological evidence of increased bone mineral density in habitual tea drinkers. Arch. Intern. Med. 2002, 162, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.L.; Chyu, M.C.; Yeh, J.K.; Zhang, Y.; Pence, B.C.; Felton, C.K.; Brismée, J.M.; Arjmandi, B.H.; Doctolero, S.; Wang, J.S. Effect of green tea and Tai Chi on bone health in postmenopausal osteopenic women: A 6-month randomized placebo-controlled trial. Osteoporos. Int. 2012, 23, 1541–1552. [Google Scholar] [CrossRef] [PubMed]
- Devine, A.; Hodgson, J.M.; Dick, I.M.; Prince, R.L. Tea drinking is associated with benefits on bone density in older women. Am. J. Clin. Nutr. 2007, 86, 1243–1247. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Khantamat, O.; Korsieporn, W.; Paradee, N.; Li, J.; Zhong, Y.; Srichairatanakool, S.; Koonyosying, P. Green Tea Extract Containing Epigallocatechin-3-Gallate Facilitates Bone Formation and Mineralization by Alleviating Iron-Overload-Induced Oxidative Stress in Human Osteoblast-like (MG-63) Cells. Antioxidants 2025, 14, 874. https://doi.org/10.3390/antiox14070874
Xu H, Khantamat O, Korsieporn W, Paradee N, Li J, Zhong Y, Srichairatanakool S, Koonyosying P. Green Tea Extract Containing Epigallocatechin-3-Gallate Facilitates Bone Formation and Mineralization by Alleviating Iron-Overload-Induced Oxidative Stress in Human Osteoblast-like (MG-63) Cells. Antioxidants. 2025; 14(7):874. https://doi.org/10.3390/antiox14070874
Chicago/Turabian StyleXu, Honghong, Orawan Khantamat, Woranontee Korsieporn, Narisara Paradee, Jin Li, Yanping Zhong, Somdet Srichairatanakool, and Pimpisid Koonyosying. 2025. "Green Tea Extract Containing Epigallocatechin-3-Gallate Facilitates Bone Formation and Mineralization by Alleviating Iron-Overload-Induced Oxidative Stress in Human Osteoblast-like (MG-63) Cells" Antioxidants 14, no. 7: 874. https://doi.org/10.3390/antiox14070874
APA StyleXu, H., Khantamat, O., Korsieporn, W., Paradee, N., Li, J., Zhong, Y., Srichairatanakool, S., & Koonyosying, P. (2025). Green Tea Extract Containing Epigallocatechin-3-Gallate Facilitates Bone Formation and Mineralization by Alleviating Iron-Overload-Induced Oxidative Stress in Human Osteoblast-like (MG-63) Cells. Antioxidants, 14(7), 874. https://doi.org/10.3390/antiox14070874