Antioxidants Acteoside and Orientin as Emerging Agents in Synergistic Cancer Therapy: A Focus on Innovative Applications
Abstract
1. Introduction
2. Acteoside and Orientin Activity in Various Types of Cancer
2.1. Breast Cancer (BC)
2.2. Colorectal Cancer, Colon Cancer
2.3. Brain Cancer
2.4. Liver Cancer
Acteoside and Orientin vs. Other Natural Antioxidants in Liver Cancer
2.5. Lung Cancer
2.6. Skin Cancer
2.7. Leukemia
2.8. Cervical Cancer
2.9. Esophageal Cancer
2.10. Other Types of Cancer
3. Acteoside and Orientin in Synergy in Cancer
3.1. Acteoside in Synergy in Cancer
3.2. Orientin in Synergy in Cancer
4. Acteoside and Orientin in Nanotechnology in Cancer
4.1. The Metal-Based Drug Delivery System
4.2. The Lipid-Based Drug Delivery System
4.3. Acteoside in Nanotechnology in Cancer
4.4. Orientin in Nanotechnology in Cancer
5. Barriers to Commercialization
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
5-FU | 5-Fluorouracil |
ACF | Aberrant crypt foci |
ACT | Acteoside |
ARE | Antioxidant response element |
BC | Breast cancer |
BCSCs | Breast cancer stem cells |
BBB | Blood–brain barrier |
BDMC | Bisdemethoxycurcumin |
CC | Colon cancer |
CDK | Cyclin-dependent kinase |
CdTe | Cadmium telluride |
CLX | Celecoxib |
CNS | Central nervous system |
CRC | Colorectal cancer |
CUR | Curcumin |
DDSs | Drug delivery systems |
DHT | Dihydrotestosterone |
DMH | 1,2-Dimethylhydrazine |
EC | Esophageal cancer |
EAC | Esophageal adenocarcinoma |
ED50 | Effective dose |
EGFR | Epidermal growth factor receptor |
EMT | Epithelial-to-mesenchymal transition |
ERβ | Estrogen receptor beta |
ERK | Extracellular signal-regulated kinase |
ESCC | Esophageal squamous cell carcinoma |
GBM | Glioblastoma multiforme |
GNSs | Gold nanoshells |
HCC | Hepatocellular carcinoma |
HMGA2 | High mobility group A2 |
HMGB1 | High mobility group box 1 |
HPV | Human papillomavirus |
IL-8 | Interleukin-8 |
LBDDSs | Lipid-based drug delivery systems |
MITF | Microphthalmia-associated transcription factor |
MMP-9 | Matrix metalloproteinase-9 |
MyD88 | Myeloid differentiation primary response 88N |
Ps | Nanoparticles |
Nrf2 | Nuclear factor erythroid 2-related factor 2) |
NSCLC | Non-small cell lung cancer |
NSs | Nanoshells |
OC | Ovarian cancer |
ORI | Orientin |
OS | Osteosarcoma |
OSCC | Oral squamous cell carcinoma |
OXA | Oxaliplatin |
P-gp | P-glycoprotein |
PI3K | Phosphatidylinositol 3-kinase |
PMA | Phorbol-12-myristate-13-acetate |
p-STAT3 | Phosphorylated signal transducer and activator of transcription 3 |
PSA | Prostate-specific antigen |
QDs | Quantum dots |
RAGE | Receptor for advanced glycosylation end-products |
ROS | Reactive oxygen species |
SarA | Staphylococcal accessory regulator |
SCC | Squamous cell carcinoma |
SCLC | Small cell lung cancer |
SFE-CO2 | Supercritical fluid extraction |
SHP-1 | Protein tyrosine phosphatase 1 |
SI | Selectivity index |
TLR4 | Toll-like receptor 4 |
TMZ | Temozolomide |
TPA | 12-O-Tetradecanoylphorbol-13-acetate |
TRP-1 | Tyrosinase-related protein-1 |
References
- Chen, T.; Ren, L.; Liu, X.; Zhou, M.; Li, L.; Xu, J.; Zhu, X. DNA Nanotechnology for Cancer Diagnosis and Therapy. Int. J. Mol. Sci. 2018, 19, 1671. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer Statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Miura, K.; Satoh, M.; Kinouchi, M.; Yamamoto, K.; Hasegawa, Y.; Kakugawa, Y.; Kawai, M.; Uchimi, K.; Aizawa, H.; Ohnuma, S.; et al. The Use of Natural Products in Colorectal Cancer Drug Discovery. Expert Opin. Drug Discov. 2015, 10, 411–426. [Google Scholar] [CrossRef] [PubMed]
- Basmadjian, C.; Zhao, Q.; Bentouhami, E.; Djehal, A.; Nebigil, C.G.; Johnson, R.A.; Serova, M.; de Gramont, A.; Faivre, S.; Raymond, E.; et al. Cancer Wars: Natural Products Strike Back. Front. Chem. 2014, 2, 20. [Google Scholar] [CrossRef] [PubMed]
- Muller, A.G.; Sarker, S.D.; Saleem, I.Y.; Hutcheon, G.A. Delivery of Natural Phenolic Compounds for the Potential Treatment of Lung Cancer. DARU J. Pharm. Sci. 2019, 27, 433–449. [Google Scholar] [CrossRef]
- Alipieva, K.; Korkina, L.; Orhan, I.E.; Georgiev, M.I. Verbascoside—A Review of Its Occurrence, (Bio)Synthesis and Pharmacological Significance. Biotechnol. Adv. 2014, 32, 1065–1076. [Google Scholar] [CrossRef]
- Ma, D.; Wang, J.; Liu, L.; Chen, M.; Wang, Z. Acteoside as a Potential Therapeutic Option for Primary Hepatocellular Carcinoma: A Preclinical Study. BMC Cancer 2020, 20, 936. [Google Scholar] [CrossRef]
- Jia, W.-Q.; Zhu, J.-W.; Yang, C.-Y.; Ma, J.; Pu, T.-Y.; Han, G.-Q.; Zou, M.-M.; Xu, R.-X. Verbascoside Inhibits Progression of Glioblastoma Cells by Promoting Let-7g-5p and down-Regulating HMGA2 via Wnt/Beta-Catenin Signalling Blockade. J. Cell. Mol. Med. 2020, 24, 2901–2916. [Google Scholar] [CrossRef]
- Cheimonidi, C.; Samara, P.; Polychronopoulos, P.; Tsakiri, E.N.; Nikou, T.; Myrianthopoulos, V.; Sakellaropoulos, T.; Zoumpourlis, V.; Mikros, E.; Papassideri, I.; et al. Selective Cytotoxicity of the Herbal Substance Acteoside against Tumor Cells and Its Mechanistic Insights. Redox Biol. 2018, 16, 169–178. [Google Scholar] [CrossRef]
- Lam, K.Y.; Ling, A.P.K.; Koh, R.Y.; Wong, Y.P.; Say, Y.H. A Review on Medicinal Properties of Orientin. Adv. Pharmacol. Sci. 2016, 2016, 4104595. [Google Scholar] [CrossRef]
- Thangaraj, K.; Natesan, K.; Palani, M.; Vaiyapuri, M. Orientin, a Flavanoid, Mitigates 1, 2 Dimethylhydrazine-Induced Colorectal Lesions in Wistar Rats Fed a High-Fat Diet. Toxicol. Rep. 2018, 5, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Yücer, R.; Schröder, A.; Topçu, G.; Efferth, T. Identification of Anti-Inflammatory and Anti-Cancer Compounds Targeting the NF-κB-NLRP3 Inflammasome Pathway from a Phytochemical Library of the Sideritis Genus. J. Ethnopharmacol. 2025, 338, 119074. [Google Scholar] [CrossRef]
- Vaziri-Amjad, S.; Rahgosha, R.; Taherkhani, A. Potential JAK2 Inhibitors from Selected Natural Compounds: A Promising Approach for Complementary Therapy in Cancer Patients. Evid.-Based Complement. Altern. Med. ECAM 2024, 2024, 1114928. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hua, Z.; Zheng, Z.; Ma, X.; Zhu, L.; Li, Y. Acteoside Inhibits High Glucose-Induced Oxidative Stress Injury in RPE Cells and the Outer Retina through the Keap1/Nrf2/ARE Pathway. Exp. Eye Res. 2023, 232, 109496. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhou, F.; Xu, T.; Song, H.; Lu, B. Acteoside Protects against 6-OHDA-Induced Dopaminergic Neuron Damage via Nrf2-ARE Signaling Pathway. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2018, 119, 6–13. [Google Scholar] [CrossRef]
- Vasudevan Sajini, D.; Thaggikuppe Krishnamurthy, P.; Chakkittukandiyil, A.; Mudavath, R.N. Correction: Orientin Modulates Nrf2-ARE, PI3K/Akt, JNK-ERK1/2, and TLR4/NF-κB Pathways to Produce Neuroprotective Benefits in Parkinson’s Disease. Neurochem. Res. 2024, 49, 1588–1591. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef]
- Zhang, W.; Huo, S.-X.; Wen, Y.-L.; Xing, H.; Zhang, Q.; Li, N.; Zhao, D.; Sun, X.-L.; Xu, J.; Yan, M.; et al. Pharmacokinetics of Acteoside Following Single Dose Intragastric and Intravenous Administrations in Dogs. Chin. J. Nat. Med. 2015, 13, 634–640. [Google Scholar] [CrossRef]
- Wu, Y.-T.; Lin, L.-C.; Sung, J.-S.; Tsai, T.-H. Determination of Acteoside in Cistanche Deserticola and Boschniakia Rossica and Its Pharmacokinetics in Freely-Moving Rats Using LC–MS/MS. J. Chromatogr. B 2006, 844, 89–95. [Google Scholar] [CrossRef]
- Zhou, F.; Huang, W.; Xu, T.; Wu, L.; Chen, Q.; Peng, J.; Liu, X.; Lu, B. Natural P-Gp Inhibitor EGCG Improves the Acteoside Absorption in Caco-2 Cell Monolayers and Increases the Oral Bioavailability of Acteoside in Rats. Food Chem. Toxicol. 2020, 146, 111827. [Google Scholar] [CrossRef]
- Li, D.; Wang, Q.; Yuan, Z.F.; Zhang, L.; Xu, L.; Cui, Y.; Duan, K. Pharmacokinetics and Tissue Distribution Study of Orientin in Rat by Liquid Chromatography. J. Pharm. Biomed. Anal. 2008, 47, 429–434. [Google Scholar] [CrossRef]
- Zhang, Y.; Tie, X.; Bao, B.; Wu, X.; Zhang, Y. Metabolism of Flavone C-Glucosides and p-Coumaric Acid from Antioxidant of Bamboo Leaves (AOB) in Rats. Br. J. Nutr. 2007, 97, 484–494. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Su, R.; Nie, S.; Sun, M.; Zhang, J.; Wu, D.; Moustaid-Moussa, N. Application of Nanotechnology in Improving Bioavailability and Bioactivity of Diet-Derived Phytochemicals. J. Nutr. Biochem. 2014, 25, 363–376. [Google Scholar] [CrossRef] [PubMed]
- Dessale, M.; Mengistu, G.; Mengist, H.M. Nanotechnology: A Promising Approach for Cancer Diagnosis, Therapeutics and Theragnosis. Int. J. Nanomed. 2022, 17, 3735–3749. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Atluri, K.; Tiwari, A.K.; Babu, R.J. Exploring the Application of Micellar Drug Delivery Systems in Cancer Nanomedicine. Pharmaceuticals 2023, 16, 433. [Google Scholar] [CrossRef]
- Cheng, C.-T.; Castro, G.; Liu, C.-H.; Lau, P. Advanced Nanotechnology: An Arsenal to Enhance Immunotherapy in Fighting Cancer. Clin. Chim. Acta Int. J. Clin. Chem. 2019, 492, 12–19. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, M.; Zhang, J.; Peng, W.; Firempong, C.K.; Deng, W.; Wang, Q.; Wang, S.; Shi, F.; Yu, J.; et al. Improved Oral Bioavailability of Capsaicin via Liposomal Nanoformulation: Preparation, in Vitro Drug Release and Pharmacokinetics in Rats. Arch. Pharmacal Res. 2015, 38, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, Y.; Su, T.; Feng, L.; Long, Y.; Chen, Z. Silica-Coated Flexible Liposomes as a Nanohybrid Delivery System for Enhanced Oral Bioavailability of Curcumin. Int. J. Nanomed. 2012, 7, 5995–6002. [Google Scholar] [CrossRef]
- Shaikh, J.; Ankola, D.D.; Beniwal, V.; Singh, D.; Kumar, M.N.V.R. Nanoparticle Encapsulation Improves Oral Bioavailability of Curcumin by at Least 9-Fold When Compared to Curcumin Administered with Piperine as Absorption Enhancer. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2009, 37, 223–230. [Google Scholar] [CrossRef]
- Shrestha, H.; Bala, R.; Arora, S. Lipid-Based Drug Delivery Systems. J. Pharm. 2014, 2014, 801820. [Google Scholar] [CrossRef]
- Pagar, K.R.; Khandbahale, S.V. A Review on Novel Drug Delivery System: A Recent Trend. Asian J. Pharm. Technol. 2019, 9, 135. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The Ever-Increasing Importance of Cancer as a Leading Cause of Premature Death Worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef] [PubMed]
- Antonova, L.; Aronson, K.; Mueller, C.R. Stress and Breast Cancer: From Epidemiology to Molecular Biology. Breast Cancer Res. BCR 2011, 13, 208. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.-F.; Rao, Y.K.; Tzeng, Y.-M. Aqueous Extract of Anisomeles Indica and Its Purified Compound Exerts Anti-Metastatic Activity through Inhibition of NF-κB/AP-1-Dependent MMP-9 Activation in Human Breast Cancer MCF-7 Cells. Food Chem. Toxicol. 2012, 50, 2930–2936. [Google Scholar] [CrossRef]
- Barzaman, K.; Karami, J.; Zarei, Z.; Hosseinzadeh, A.; Kazemi, M.H.; Moradi-Kalbolandi, S.; Safari, E.; Farahmand, L. Breast Cancer: Biology, Biomarkers, and Treatments. Int. Immunopharmacol. 2020, 84, 106535. [Google Scholar] [CrossRef]
- Bilynskyj, B.T. The Breast Cancer Treatment as a Marker of Progress in Oncology. Exp. Oncol. 2010, 32, 190–194. [Google Scholar]
- Comşa, Ş.; Cîmpean, A.M.; Raica, M. The Story of MCF-7 Breast Cancer Cell Line: 40 Years of Experience in Research. Anticancer Res. 2015, 35, 3147–3154. [Google Scholar]
- Vasincu, A.; Neophytou, C.M.; Luca, S.V.; Skalicka-Woźniak, K.; Miron, A.; Constantinou, A.I. 6-O-(3″,4″-Di-O-Trans-Cinnamoyl)-α-l-Rhamnopyranosylcatalpol and Verbascoside: Cytotoxicity, Cell Cycle Kinetics, Apoptosis, and ROS Production Evaluation in Tumor Cells. J. Biochem. Mol. Toxicol. 2020, 34, e22443. [Google Scholar] [CrossRef]
- Cabatit, K.A.; Carandang, L.J.; Saragpon, D.J.; Minalang, K.; Paulin, J.; Devanadera, M.K.; Daya, M. Assessment of Cytotoxicity, Impact on Cell Migration and Apoptotic Modulation of Acteoside and Plantamajoside on Human Breast Adenocarcinoma (MCF-7). Asian Pac. J. Cancer Prev. 2025, 26, 925–934. [Google Scholar] [CrossRef]
- Delazar, A.; Asnaashari, S.; Nikkhah, E.; Asgharian, P. Phytochemical Analysis and Antiproliferative Activity of the Aerial Parts of Scrophularia Subaphylla. Res. Pharm. Sci. 2019, 14, 263–272. [Google Scholar] [CrossRef]
- Budzianowska, A.; Totoń, E.; Romaniuk-Drapała, A.; Kikowska, M.; Budzianowski, J. Cytotoxic Effect of Phenylethanoid Glycosides Isolated from Plantago lanceolata L. Life 2023, 13, 556. [Google Scholar] [CrossRef] [PubMed]
- Şenol, H.; Tulay, P.; Ergören, M.Ç.; Hanoğlu, A.; Çalış, İ.; Mocan, G. Cytotoxic Effects of Verbascoside on MCF-7 and MDA-MB-231. Turk. J. Pharm. Sci. 2021, 18, 637–644. [Google Scholar] [CrossRef]
- Daneshforouz, A.; Nazemi, S.; Gholami, O.; Kafami, M.; Amin, B. The Cytotoxicity and Apoptotic Effects of Verbascoside on Breast Cancer 4T1 Cell Line. BMC Pharmacol. Toxicol. 2021, 22, 72. [Google Scholar] [CrossRef]
- Schuster, R.; Holzer, W.; Doerfler, H.; Weckwerth, W.; Viernstein, H.; Okonogi, S.; Mueller, M. Cajanus Cajan—A Source of PPARγ Activators Leading to Anti-Inflammatory and Cytotoxic Effects. Food Funct. 2016, 7, 3798–3806. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, R.S.; Abou Zeid, A.H.; El Hawary, S.S.; Sleem, A.A.; Ashour, W.E. Flavonoid Constituents, Cytotoxic and Antioxidant Activities of Gleditsia triacanthos L. Leaves. Saudi J. Biol. Sci. 2014, 21, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Pham, T.-H.; Bak, Y.; Ryu, H.-W.; Oh, S.-R.; Yoon, D.-Y. Orientin Inhibits Invasion by Suppressing MMP-9 and IL-8 Expression via the PKCα/ ERK/AP-1/STAT3-Mediated Signaling Pathways in TPA-Treated MCF-7 Breast Cancer Cells. Phytomedicine Int. J. Phytother. Phytopharm. 2018, 50, 35–42. [Google Scholar] [CrossRef]
- Zu, Y.; Liu, X.; Fu, Y.; Wu, N.; Kong, Y.; Wink, M. Chemical Composition of the SFE-CO2 Extracts from Cajanus Cajan (L.) Huth and Their Antimicrobial Activity in Vitro and in Vivo. Phytomedicine 2010, 17, 1095–1101. [Google Scholar] [CrossRef]
- Czemplik, M.; Mierziak, J.; Szopa, J.; Kulma, A. Flavonoid C-Glucosides Derived from Flax Straw Extracts Reduce Human Breast Cancer Cell Growth In Vitro and Induce Apoptosis. Front. Pharmacol. 2016, 7, 282. [Google Scholar] [CrossRef]
- Paschke, S.; Jafarov, S.; Staib, L.; Kreuser, E.-D.; Maulbecker-Armstrong, C.; Roitman, M.; Holm, T.; Harris, C.C.; Link, K.-H.; Kornmann, M. Are Colon and Rectal Cancer Two Different Tumor Entities? A Proposal to Abandon the Term Colorectal Cancer. Int. J. Mol. Sci. 2018, 19, 2577. [Google Scholar] [CrossRef]
- Katsaounou, K.; Nicolaou, E.; Vogazianos, P.; Brown, C.; Stavrou, M.; Teloni, S.; Hatzis, P.; Agapiou, A.; Fragkou, E.; Tsiaoussis, G.; et al. Colon Cancer: From Epidemiology to Prevention. Metabolites 2022, 12, 499. [Google Scholar] [CrossRef]
- Attia, Y.M.; El-Kersh, D.M.; Wagdy, H.A.; Elmazar, M.M. Verbascoside: Identification, Quantification, and Potential Sensitization of Colorectal Cancer Cells to 5-FU by Targeting PI3K/AKT Pathway. Sci. Rep. 2018, 8, 16939. [Google Scholar] [CrossRef]
- Firat, F.; Türkoğlu, C.; Ozdal Kurt, F.; Vatansever, H.S. Is Acteoside Effects on Colon Cancer Stem Cells Via Inflamation or Apoptosis? Genel Tıp Derg. 2022, 32, 372–379. [Google Scholar] [CrossRef]
- Zhou, L.; Feng, Y.; Jin, Y.; Liu, X.; Sui, H.; Chai, N.; Chen, X.; Liu, N.; Ji, Q.; Wang, Y.; et al. Verbascoside Promotes Apoptosis by Regulating HIPK2–P53 Signaling in Human Colorectal Cancer. BMC Cancer 2014, 14, 747. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Jing, Z.; Haixia, W.; Ruitao, Y.; Huaixiu, W.; Zenggen, L.; Lijuan, M.; Yiping, W.; Yanduo, T. Antiproliferative Activity of Phenylpropanoids Isolated from Lagotis Brevituba Maxim. Phytother. Res. 2017, 31, 1509–1520. [Google Scholar] [CrossRef] [PubMed]
- Nabiuni, M.; Seyfi, D.; Behzad, S.; Parivar, K.; Tahmaseb, M.; Amini, E. Verbascoside Attenuates Rac-1 and HIF-1α Signaling Cascade in Colorectal Cancer Cells. Anticancer Agents Med. Chem. 2018, 18, 9979–9989. [Google Scholar] [CrossRef]
- Lee, K.-W.; Kim, H.J.; Lee, Y.S.; Park, H.-J.; Choi, J.-W.; Ha, J.; Lee, K.-T. Acteoside Inhibits Human Promyelocytic HL-60 Leukemia Cell Proliferation via Inducing Cell Cycle Arrest at G 0 /G 1 Phase and Differentiation into Monocyte. Carcinogenesis 2007, 28, 1928–1936. [Google Scholar] [CrossRef]
- Pirvu, L.C.; Pintilie, L.; Albulescu, A.; Stefaniu, A.; Neagu, G. Anti-Proliferative Potential of Cynaroside and Orientin—In Silico (DYRK2) and In Vitro (U87 and Caco-2) Studies. Int. J. Mol. Sci. 2023, 24, 16555. [Google Scholar] [CrossRef] [PubMed]
- Fayed, M.A.A.; Abouelela, M.E.; Refaey, M.S. Heliotropium Ramosissimum Metabolic Profiling, in Silico and in Vitro Evaluation with Potent Selective Cytotoxicity against Colorectal Carcinoma. Sci. Rep. 2022, 12, 12539. [Google Scholar] [CrossRef]
- Thangaraj, K.; Balasubramanian, B.; Park, S.; Natesan, K.; Liu, W.; Manju, V. Orientin Induces G0/G1 Cell Cycle Arrest and Mitochondria Mediated Intrinsic Apoptosis in Human Colorectal Carcinoma HT29 Cells. Biomolecules 2019, 9, 418. [Google Scholar] [CrossRef]
- Thangaraj, K.; Natesan, K.; Settu, K.; Palani, M.; Govindarasu, M.; Subborayan, V.; Vaiyapuri, M. Orientin Mitigates 1, 2-Dimethylhydrazine Induced Lipid Peroxidation, Antioxidant and Biotransforming Bacterial Enzyme Alterations in Experimental Rats. J. Cancer Res. Ther. 2018, 14, 1379. [Google Scholar] [CrossRef]
- Thangaraj, K.; Vaiyapuri, M. Orientin, a C-Glycosyl Dietary Flavone, Suppresses Colonic Cell Proliferation and Mitigates NF-κB Mediated Inflammatory Response in 1,2-Dimethylhydrazine Induced Colorectal Carcinogenesis. Biomed. Pharmacother. Biomedecine Pharmacother. 2017, 96, 1253–1266. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Rich, J.N.; Chen, S. Biomaterials and 3D Bioprinting Strategies to Model Glioblastoma and the Blood–Brain Barrier. Adv. Mater. 2021, 33, 2004776. [Google Scholar] [CrossRef] [PubMed]
- McLendon, R.E.; Halperin, E.C. Is the Long-Term Survival of Patients with Intracranial Glioblastoma Multiforme Overstated? Cancer 2003, 98, 1745–1748. [Google Scholar] [CrossRef]
- Iturrioz-Rodríguez, N.; Bertorelli, R.; Ciofani, G. Lipid-Based Nanocarriers for The Treatment of Glioblastoma. Adv. Nanobiomed Res. 2021, 1, 2000054. [Google Scholar] [CrossRef]
- Hottinger, A.F.; Stupp, R.; Homicsko, K. Standards of Care and Novel Approaches in the Management of Glioblastoma Multiforme. Chin. J. Cancer 2014, 33, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Hei, B.; Wang, J.; Wu, G.; Ouyang, J.; Liu, R. Verbascoside Suppresses the Migration and Invasion of Human Glioblastoma Cells via Targeting C-Met-Mediated Epithelial-Mesenchymal Transition. Biochem. Biophys. Res. Commun. 2019, 514, 1270–1277. [Google Scholar] [CrossRef]
- Jia, W.-Q.; Wang, Z.-T.; Zou, M.-M.; Lin, J.-H.; Li, Y.-H.; Zhang, L.; Xu, R.-X. Verbascoside Inhibits Glioblastoma Cell Proliferation, Migration and Invasion While Promoting Apoptosis Through Upregulation of Protein Tyrosine Phosphatase SHP-1 and Inhibition of STAT3 Phosphorylation. Cell. Physiol. Biochem. 2018, 47, 1871–1882. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Chen, C.; Fu, X.; Wang, J.; Fei, X.; Yan, X.; Xu, R. A Low MW Inhibitor of CD44 Dimerization for the Treatment of Glioblastoma. Br. J. Pharmacol. 2020, 177, 3009–3023. [Google Scholar] [CrossRef]
- Wang, H.; Feng, J.; Ao, F.; Tang, Y.; Xu, P.; Wang, M.; Huang, M. Tumor-Derived Exosomal microRNA-7-5p Enhanced by Verbascoside Inhibits Biological Behaviors of Glioblastoma in Vitro and in Vivo. Mol. Ther. Oncolytics 2020, 20, 569–582. [Google Scholar] [CrossRef]
- Piwowarczyk, L.; Mlynarczyk, D.T.; Krajka-Kuźniak, V.; Majchrzak-Celińska, A.; Budzianowska, A.; Tomczak, S.; Budzianowski, J.; Woźniak-Braszak, A.; Pietrzyk, R.; Baranowski, M.; et al. Natural Compounds in Liposomal Nanoformulations of Potential Clinical Application in Glioblastoma. Cancers 2022, 14, 6222. [Google Scholar] [CrossRef]
- Llovet, J.M.; Zucman-Rossi, J.; Pikarsky, E.; Sangro, B.; Schwartz, M.; Sherman, M.; Gores, G. Hepatocellular Carcinoma. Nat. Rev. Dis. Primers 2016, 2, 16018. [Google Scholar] [CrossRef] [PubMed]
- Kityania, S.; Nath, R.; Nath, D.; Patra, J.K.; Talukdar, A.D. Acteoside (Verbascoside): A Prospective Therapeutic Alternative against Hepatocellular Carcinoma by Inhibiting the Expression of AXL, FGFR, BRAF, TIE2 and RAF1 Targets. Comb. Chem. High Throughput Screen. 2023, 26, 1907–1919. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC) Hepatocellular Carcinoma—United States, 2001–2006. MMWR Morb. Mortal. Wkly. Rep. 2010, 59, 517–520.
- Sim, H.-W.; Knox, J. Hepatocellular Carcinoma in the Era of Immunotherapy. Curr. Probl. Cancer 2018, 42, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Khullar, M.; Sharma, A.; Wani, A.; Sharma, N.; Sharma, N.; Chandan, B.K.; Kumar, A.; Ahmed, Z. Acteoside Ameliorates Inflammatory Responses through NFκB Pathway in Alcohol Induced Hepatic Damage. Int. Immunopharmacol. 2019, 69, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Saracoglu, I.; Inoue, M.; Calis, I.; Ogihara, Y. Studies on Constituents with Cytotoxic and Cytostatic Activity of Two Turkish Medicinal Plants Phlomis Armeniaca and Scutellaria Salviifolia. Biol. Pharm. Bull. 1995, 18, 1396–1400. [Google Scholar] [CrossRef]
- Jiang, J.; Cheng, R.; Song, A.; Lou, Y.; Fan, G. Multi-Omics Analysis Reveals Mechanism of Schisandra Chinensis Lignans and Acteoside on EMT in Hepatoma Cells via ERK1/2 Pathway. Funct. Integr. Genom. 2024, 24, 112. [Google Scholar] [CrossRef]
- Sharma, P.; Prakash, O.; Shukla, A.; Rajpurohit, C.S.; Vasudev, P.G.; Luqman, S.; Srivastava, S.K.; Pant, A.B.; Khan, F. Structure-Activity Relationship Studies on Holy Basil (Ocimum sanctum L.) Based Flavonoid Orientin and Its Analogue for Cytotoxic Activity in Liver Cancer Cell Line HepG2. Comb. Chem. High Throughput Screen. 2016, 19, 656–666. [Google Scholar] [CrossRef]
- Tao, J.-Y.; Li, J.; Wan, L.; Dong, B.-Z.; Yu, Y.-J.; Liu, Y.-M.; Yi, M.-L.; Wan, L.-P. Orientin Regulates the Proliferation and Migration of Hepatocellular Carcinoma Cells. Naunyn. Schmiedebergs Arch. Pharmacol. 2023, 396, 2519–2528. [Google Scholar] [CrossRef]
- Gao, L.-L.; Jia, D.; Shi, J.-Q.; Zhang, J.-C.; Lu, L.-X.; Wei, M.; Qiao, Y.-Q.; Yu, X.-H.; Zheng, Y. Acteoside Suppresses Hepatocellular Carcinoma Progression via Modulation of Macrophage Migration Inhibitory Factor and Mitogen-Activated Protein Kinase Proteins. Int. J. Biol. Macromol. 2025, 320, 145579. [Google Scholar] [CrossRef]
- Zheng, Y.; Jia, R.; Li, J.; Tian, X.; Qian, Y. Curcumin- and Resveratrol-Co-Loaded Nanoparticles in Synergistic Treatment of Hepatocellular Carcinoma. J. Nanobiotechnology 2022, 20, 339. [Google Scholar] [CrossRef]
- Amaroli, A.; Panfoli, I.; Bozzo, M.; Ferrando, S.; Candiani, S.; Ravera, S. The Bright Side of Curcumin: A Narrative Review of Its Therapeutic Potential in Cancer Management. Cancers 2024, 16, 2580. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Perris, A.; Jawed, J.J.; Hoda, M. Therapeutic Role of Resveratrol against Hepatocellular Carcinoma: A Review on Its Molecular Mechanisms of Action. Pharmacol. Res.-Mod. Chin. Med. 2023, 6, 100233. [Google Scholar] [CrossRef]
- Wen, L.; Zhang, J.; Ju, B.; Ran, Z.; Zhang, H.; Liao, Y.; Cao, L.; Hou, Q.; Hu, J.; Yang, J. Synergistic and Toxicity-reducing Effects of Acteoside as an Adjuvant Therapy of Oxaliplatin against Hepatocellular Carcinoma. Int. J. Oncol. 2025, 66, 45. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-H.; Kung, P.-T.; Kuo, W.-Y.; Tsai, W.-C. Effect of Time Interval from Diagnosis to Treatment for Non-Small Cell Lung Cancer on Survival: A National Cohort Study in Taiwan. BMJ Open 2020, 10, e034351. [Google Scholar] [CrossRef]
- Schabath, M.B.; Cote, M.L. Cancer Progress and Priorities: Lung Cancer. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1563–1579. [Google Scholar] [CrossRef]
- Bade, B.C.; Dela Cruz, C.S. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin. Chest Med. 2020, 41, 1–24. [Google Scholar] [CrossRef]
- Jensen, A.R.; Mainz, J.; Overgaard, J. Impact of Delay on Diagnosis and Treatment of Primary Lung Cancer. Acta Oncol. 2002, 41, 147–152. [Google Scholar] [CrossRef]
- Chittasupho, C.; Athikomkulchai, S.; Samee, W.; Na Takuathung, M.; Yooin, W.; Sawangrat, K.; Saenjum, C. Phenylethanoid Glycoside-Enriched Extract Prepared from Clerodendrum Chinense Leaf Inhibits A549 Lung Cancer Cell Migration and Apoptosis Induction through Enhancing ROS Production. Antioxidants 2023, 12, 461. [Google Scholar] [CrossRef]
- Khalil, H.E.; Ibrahim, H.-I.M.; Ahmed, E.A.; Emeka, P.M.; Alhaider, I.A. Orientin, a Bio-Flavonoid from Trigonella hamosa L., Regulates COX-2/PGE-2 in A549 Cell Lines via miR-26b and miR-146a. Pharmaceuticals 2022, 15, 154. [Google Scholar] [CrossRef]
- Ahmed, B.; Qadir, M.I.; Ghafoor, S. Malignant Melanoma: Skin Cancer-Diagnosis, Prevention, and Treatment. Crit. Rev. Eukaryot. Gene Expr. 2020, 30, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Runkle, G.P.; Zaloznik, A.J. Malignant Melanoma. Am. Fam. Physician 1994, 49, 91–98, 102–104. [Google Scholar] [PubMed]
- Cummins, D.L.; Cummins, J.M.; Pantle, H.; Silverman, M.A.; Leonard, A.L.; Chanmugam, A. Cutaneous Malignant Melanoma. Mayo Clin. Proc. 2006, 81, 500–507. [Google Scholar] [CrossRef]
- Sandru, A.; Voinea, S.; Panaitescu, E.; Blidaru, A. Survival Rates of Patients with Metastatic Malignant Melanoma. J. Med. Life 2014, 7, 572–576. [Google Scholar]
- Wu, Y.; Zeng, M.; Xu, R.; Zhang, B.; Wang, S.; Li, B.; Kan, Y.; Cao, B.; Zheng, X.; Feng, W. Inhibitory Activity of Acteoside in Melanoma via Regulation of the ERβ-Ras/Raf1-STAT3 Pathway. Arch. Biochem. Biophys. 2021, 710, 108978. [Google Scholar] [CrossRef]
- Son, Y.-O.; Lee, S.-A.; Kim, S.-S.; Jang, Y.-S.; Chun, J.-C.; Lee, J.-C. Acteoside Inhibits Melanogenesis in B16F10 Cells through ERK Activation and Tyrosinase Down-Regulation. J. Pharm. Pharmacol. 2011, 63, 1309–1319. [Google Scholar] [CrossRef] [PubMed]
- Nagao, T.; Abe, F.; Okabe, H. Antiproliferative Constituents in the Plants 7. Leaves of Clerodendron Bungei and Leaves and Bark of C. Trichotomum. Biol. Pharm. Bull. 2001, 24, 1338–1341. [Google Scholar] [CrossRef]
- Abe, F.; Nagao, T.; Okabe, H. Antiproliferative Constituents in Plants 9. Aerial Parts of Lippia Dulcis and Lippia Canescens. Biol. Pharm. Bull. 2002, 25, 920–922. [Google Scholar] [CrossRef]
- Hosen, M.E.; Jahan Supti, S.; Akash, S.; Rahman, M.E.; Faruqe, M.O.; Manirujjaman, M.; Acharjee, U.K.; Gaafar, A.-R.Z.; Ouahmane, L.; Sitotaw, B.; et al. Mechanistic Insight of Staphylococcus Aureus Associated Skin Cancer in Humans by Santalum Album Derived Phytochemicals: An Extensive Computational and Experimental Approaches. Front. Chem. 2023, 11, 1273408. [Google Scholar] [CrossRef]
- Nemkov, T.; D’Alessandro, A.; Reisz, J.A. Metabolic Underpinnings of Leukemia Pathology and Treatment. Cancer Rep. 2019, 2, e1139. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Lv, H.; Zhao, B.; Zhou, L.; Wang, S.; Luo, J.; Liu, J.; Shang, P. Iron and Leukemia: New Insights for Future Treatments. J. Exp. Clin. Cancer Res. 2019, 38, 406. [Google Scholar] [CrossRef] [PubMed]
- Ci, T.; Zhang, W.; Qiao, Y.; Li, H.; Zang, J.; Li, H.; Feng, N.; Gu, Z. Delivery Strategies in Treatments of Leukemia. Chem. Soc. Rev. 2022, 51, 2121–2144. [Google Scholar] [CrossRef]
- Collins, S.J. The HL-60 Promyelocytic Leukemia Cell Line: Proliferation, Differentiation, and Cellular Oncogene Expression. Blood 1987, 70, 1233–1244. [Google Scholar] [CrossRef]
- Inoue, M.; Sakuma, Z.; Ogihara, Y.; Saracoglu, I. Induction of Apoptotic Cell Death in HL-60 Cells by Acteoside, a Phenylpropanoid Glycoside. Biol. Pharm. Bull. 1998, 21, 81–83. [Google Scholar] [CrossRef]
- Pettit, G.R.; Numata, A.; Takemura, T.; Ode, R.H.; Narula, A.S.; Schmidt, J.M.; Cragg, G.M.; Pase, C.P. Antineoplastic Agents, 107. Isolation of Acteoside and Isoacteoside from Castilleja Linariaefolia. J. Nat. Prod. 1990, 53, 456–458. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Aragão, D.M.; de Assis Lima, I.V.; da Silva, J.M.; Bellozi, P.M.Q.; de Carvalho da Costa, J.; Cardoso, G.M.M.; de Souza-Fagundes, E.M.; Scio, E. Anti-Inflammatory, Antinociceptive and Cytotoxic Effects of the Methanol Extract of Cecropia Pachystachya Trécul. Phytother. Res. 2013, 27, 926–930. [Google Scholar] [CrossRef] [PubMed]
- Bedell, S.L.; Goldstein, L.S.; Goldstein, A.R.; Goldstein, A.T. Cervical Cancer Screening: Past, Present, and Future. Sex. Med. Rev. 2020, 8, 28–37. [Google Scholar] [CrossRef]
- Hu, Z.; Ma, D. The Precision Prevention and Therapy of HPV-Related Cervical Cancer: New Concepts and Clinical Implications. Cancer Med. 2018, 7, 5217–5236. [Google Scholar] [CrossRef]
- Burd, E.M. Human Papillomavirus and Cervical Cancer. Clin. Microbiol. Rev. 2003, 16, 1–17. [Google Scholar] [CrossRef]
- Thaldar, D.W. Who Would Own the HeLa Cell Line If the Henrietta Lacks Case Happened in Present-Day South Africa? J. Law Biosci. 2023, 10, lsad011. [Google Scholar] [CrossRef]
- Pirkkanen, J.S.; Boreham, D.R.; Mendonca, M.S. The CGL1 (HeLa × Normal Skin Fibroblast) Human Hybrid Cell Line: A History of Ionizing Radiation Induced Effects on Neoplastic Transformation and Novel Future Directions in SNOLAB. Radiat. Res. 2017, 188, 512–524. [Google Scholar] [CrossRef]
- Piwowarczyk, L.; Stawny, M.; Piwowarczyk, K.; Mlynarczyk, D.T.; Muszalska-Kolos, I.; Wierzbicka, M.; Goslinski, T.; Jelinska, A. Role of Curcumin in Selected Head and Neck Lesions. Limitations on the Use of the Hep-2 Cell Line: A Critical Review. Biomed. Pharmacother. 2022, 154, 113560. [Google Scholar] [CrossRef]
- Guo, Q.; Tian, X.; Yang, A.; Zhou, Y.; Wu, D.; Wang, Z. Orientin in Trollius Chinensis Bunge Inhibits Proliferation of HeLa Human Cervical Carcinoma Cells by Induction of Apoptosis. Monatshefte Chem. Chem. Mon. 2014, 145, 229–233. [Google Scholar] [CrossRef]
- Huang, F.-L.; Yu, S.-J. Esophageal Cancer: Risk Factors, Genetic Association, and Treatment. Asian J. Surg. 2018, 41, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Domper Arnal, M.J.; Ferrández Arenas, Á.; Lanas Arbeloa, Á. Esophageal Cancer: Risk Factors, Screening and Endoscopic Treatment in Western and Eastern Countries. World J. Gastroenterol. 2015, 21, 7933–7943. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.; Rogers, J.E.; Iwatsuki, M.; Yamashita, K.; Baba, H.; Ajani, J.A. Recent Advances in Treating Oesophageal Cancer. F1000Research 2020, 9, 1189. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Rajaram, R.; Hofstetter, W.L. Management of Locally Advanced Esophageal Cancer. Surg. Oncol. Clin. N. Am. 2020, 29, 631–646. [Google Scholar] [CrossRef]
- Ji, M.; Sun, J.; Zhao, J. Verbascoside Represses Malignant Phenotypes of Esophageal Squamous Cell Carcinoma Cells by Inhibiting CDC42 via the HMGB1/RAGE Axis. Hum. Exp. Toxicol. 2022, 41, 09603271221127429. [Google Scholar] [CrossRef]
- An, F.; Wang, S.; Tian, Q.; Zhu, D. Effects of Orientin and Vitexin from Trollius Chinensis on the Growth and Apoptosis of Esophageal Cancer EC-109 Cells. Oncol. Lett. 2015, 10, 2627–2633. [Google Scholar] [CrossRef]
- Mulani, S.K.; Guh, J.-H.; Mong, K.-K.T. A General Synthetic Strategy and the Anti-Proliferation Properties on Prostate Cancer Cell Lines for Natural Phenylethanoid Glycosides. Org. Biomol. Chem. 2014, 12, 2926–2937. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-H.; Chen, C.-H.; Hsieh, P.-F.; Lee, Y.-H.; Kuo, W.W.-T.; Wu, R.C.-Y.; Hung, C.-H.; Yang, Y.-L.; Lin, V.C. Verbascoside Inhibits the Epithelial-Mesenchymal Transition of Prostate Cancer Cells through High-Mobility Group Box 1/Receptor for Advanced Glycation End-Products/TGF-β Pathway. Environ. Toxicol. 2021, 36, 1080–1089. [Google Scholar] [CrossRef] [PubMed]
- Marcoccia, D.; Georgiev, M.I.; Alipieva, K.I.; Lorenzetti, S. Inhibition of the DHT-Induced PSA Secretion by Verbascum Xanthophoeniceum and Serenoa Repens Extracts in Human LNCaP Prostate Epithelial Cells. J. Ethnopharmacol. 2014, 155, 616–625. [Google Scholar] [CrossRef]
- Ji, L.; Yun, Z.; Hong, Z.; Baoning, S.; Rongliang, Z. Differentiation of Human Gastric Adenocarcinoma Cell Line MGc80-3 Induced by Verbascoside. Planta Med. 1997, 63, 499–502. [Google Scholar] [CrossRef]
- Ren, Y.; He, J.; Zhao, W.; Ma, Y. The Anti-Tumor Efficacy of Verbascoside on Ovarian Cancer via Facilitating CCN1-AKT/NF-κB Pathway-Mediated M1 Macrophage Polarization. Front. Oncol. 2022, 12, 901922. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, Y.; Wu, H.; Xie, Z.; Wu, Y.; Song, X.; Wang, J.; Shu, W.; Xu, J.; Liu, B.; et al. Effect of Verbascoside on Apoptosis and Metastasis in Human Oral Squamous Cell Carcinoma. Int. J. Cancer 2018, 143, 980–991. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, W.; Zhang, X. Verbascoside Inhibits Oral Squamous Cell Carcinoma Cell Proliferation, Migration, and Invasion by the Methyltransferase 3-Mediated microRNA-31-5p/Homeodomain Interacting Protein Kinase 2 Axis. Arch. Oral Biol. 2024, 164, 105979. [Google Scholar] [CrossRef]
- Hwang, Y.P.; Kim, H.G.; Choi, J.H.; Park, B.H.; Jeong, M.H.; Jeong, T.C.; Jeong, H.G. Acteoside Inhibits PMA-Induced Matrix Metalloproteinase-9 Expression via CaMK/ERK- and JNK/NF-κB-Dependent Signaling. Mol. Nutr. Food Res. 2011, 55, S103–S116. [Google Scholar] [CrossRef]
- Tian, F.; Tong, M.; Li, Z.; Huang, W.; Jin, Y.; Cao, Q.; Zhou, X.; Tong, G. The Effects of Orientin on Proliferation and Apoptosis of T24 Human Bladder Carcinoma Cells Occurs Through the Inhibition of Nuclear Factor-kappaB and the Hedgehog Signaling Pathway. Med. Sci. Monit. 2019, 25, 9547–9554. [Google Scholar] [CrossRef]
- Halim, A.-B. Do We Have a Satisfactory Cell Viability Assay? Review of the Currently Commercially-Available Assays. Curr. Drug Discov. Technol. 2020, 17, 2–22. [Google Scholar] [CrossRef]
- van Tonder, A.; Joubert, A.M.; Cromarty, A.D. Limitations of the 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyl-2H-Tetrazolium Bromide (MTT) Assay When Compared to Three Commonly Used Cell Enumeration Assays. BMC Res. Notes 2015, 8, 47. [Google Scholar] [CrossRef]
- Wang, P.; Henning, S.M.; Heber, D. Limitations of MTT and MTS-Based Assays for Measurement of Antiproliferative Activity of Green Tea Polyphenols. PLoS ONE 2010, 5, e10202. [Google Scholar] [CrossRef]
- Lewis, M.A.; Patil, K.; Ettayebi, K.; Estes, M.K.; Atmar, R.L.; Ramani, S. Divergent Responses of Human Intestinal Organoid Monolayers Using Commercial in Vitro Cytotoxicity Assays. PLoS ONE 2024, 19, e0304526. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, U.; Gorlach, S.; Owczarek, K.; Hrabec, E.; Szewczyk, K. Synergistic Interactions Between Anticancer Chemotherapeutics and Phenolic Compounds and Anticancer Synergy Between Polyphenols. Adv. Hyg. Exp. Med. 2014, 68, 528–540. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-J.; Zhang, H.-Y. Synergy in Natural Medicines: Implications for Drug Discovery. Trends Pharmacol. Sci. 2008, 29, 331–332. [Google Scholar] [CrossRef] [PubMed]
- Karachi, A.; Dastmalchi, F.; Mitchell, D.A.; Rahman, M. Temozolomide for Immunomodulation in the Treatment of Glioblastoma. Neuro-Oncol. 2018, 20, 1566–1572. [Google Scholar] [CrossRef]
- Hwang, T.W.; Kim, D.H.; Kim, D.B.; Jang, T.W.; Kim, G.-H.; Moon, M.; Yoon, K.A.; Choi, D.E.; Park, J.H.; Kim, J.-J. Synergistic Anticancer Effect of Acteoside and Temozolomide-Based Glioblastoma Chemotherapy. Int. J. Mol. Med. 2019, 43, 1478–1486. [Google Scholar] [CrossRef]
- Hsia, T.-C.; Peng, S.-F.; Chueh, F.-S.; Lu, K.-W.; Yang, J.-L.; Huang, A.-C.; Hsu, F.-T.; Wu, R.S.-C. Bisdemethoxycurcumin Induces Cell Apoptosis and Inhibits Human Brain Glioblastoma GBM 8401/Luc2 Cell Xenograft Tumor in Subcutaneous Nude Mice In Vivo. Int. J. Mol. Sci. 2022, 23, 538. [Google Scholar] [CrossRef]
- Vodenkova, S.; Buchler, T.; Cervena, K.; Veskrnova, V.; Vodicka, P.; Vymetalkova, V. 5-Fluorouracil and Other Fluoropyrimidines in Colorectal Cancer: Past, Present and Future. Pharmacol. Ther. 2020, 206, 107447. [Google Scholar] [CrossRef]
- Tang, W.; Chen, Z.; Zhang, W.; Cheng, Y.; Zhang, B.; Wu, F.; Wang, Q.; Wang, S.; Rong, D.; Reiter, F.P.; et al. The Mechanisms of Sorafenib Resistance in Hepatocellular Carcinoma: Theoretical Basis and Therapeutic Aspects. Signal Transduct. Target. Ther. 2020, 5, 87. [Google Scholar] [CrossRef]
- Li, N.; Luo, D.; Hu, X.; Luo, W.; Lei, G.; Wang, Q.; Zhu, T.; Gu, J.; Lu, Y.; Zheng, Q. RUNX2 and Osteosarcoma. Anticancer Agents Med. Chem. 2015, 15, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Jendrossek, V. Targeting Apoptosis Pathways by Celecoxib in Cancer. Cancer Lett. 2013, 332, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Giordano, A.; Tommonaro, G. Curcumin and Cancer. Nutrients 2019, 11, 2376. [Google Scholar] [CrossRef]
- Ghosh, R.; Bhowmik, A.; Biswas, S.; Samanta, P.; Sarkar, R.; Pakhira, S.; Mondal, M.; Hajra, S.; Saha, P. Natural Flavonoid Orientin Restricts 5-Fluorouracil Induced Cancer Stem Cells Mediated Angiogenesis by Regulating HIF1α and VEGFA in Colorectal Cancer. Mol. Med. 2025, 31, 85. [Google Scholar] [CrossRef]
- Jin, C.; Wang, K.; Oppong-Gyebi, A.; Hu, J. Application of Nanotechnology in Cancer Diagnosis and Therapy—A Mini-Review. Int. J. Med. Sci. 2020, 17, 2964–2973. [Google Scholar] [CrossRef] [PubMed]
- Kuchur, O.A.; Tsymbal, S.A.; Shestovskaya, M.V.; Serov, N.S.; Dukhinova, M.S.; Shtil, A.A. Metal-Derived Nanoparticles in Tumor Theranostics: Potential and Limitations. J. Inorg. Biochem. 2020, 209, 111117. [Google Scholar] [CrossRef]
- Burlec, A.F.; Corciova, A.; Boev, M.; Batir-Marin, D.; Mircea, C.; Cioanca, O.; Danila, G.; Danila, M.; Bucur, A.F.; Hancianu, M. Current Overview of Metal Nanoparticles’ Synthesis, Characterization, and Biomedical Applications, with a Focus on Silver and Gold Nanoparticles. Pharmaceuticals 2023, 16, 1410. [Google Scholar] [CrossRef]
- Hirsch, L.R.; Gobin, A.M.; Lowery, A.R.; Tam, F.; Drezek, R.A.; Halas, N.J.; West, J.L. Metal Nanoshells. Ann. Biomed. Eng. 2006, 34, 15–22. [Google Scholar] [CrossRef]
- Ahmadi, A.; Arami, S. Potential Applications of Nanoshells in Biomedical Sciences. J. Drug Target. 2014, 22, 175–190. [Google Scholar] [CrossRef]
- Chakraborty, P.; Das, S.S.; Dey, A.; Chakraborty, A.; Bhattacharyya, C.; Kandimalla, R.; Mukherjee, B.; Gopalakrishnan, A.V.; Singh, S.K.; Kant, S.; et al. Quantum Dots: The Cutting-Edge Nanotheranostics in Brain Cancer Management. J. Control. Release Off. J. Control. Release Soc. 2022, 350, 698–715. [Google Scholar] [CrossRef]
- Kumar S., A.; Maurya, D.; Saikia, M.; Renuga Devi, N.; Angaiah, S. A Review on Plants Derived Carbon Quantum Dots for Bio-Imaging. Mater. Adv. 2023, 4, 3951–3966. [Google Scholar] [CrossRef]
- Akbari, M.; Rahimi-Nasrabadi, M.; Pourmasud, S.; Eghbali-Arani, M.; Banafshe, H.R.; Ahmadi, F.; Ganjali, M.R.; Sobhani Nasab, A. CdTe Quantum Dots Prepared Using Herbal Species and Microorganisms and Their Anti-Cancer, Drug Delivery and Antibacterial Applications; a Review. Ceram. Int. 2020, 46, 9979–9989. [Google Scholar] [CrossRef]
- Srivastav, A.K.; Karpathak, S.; Rai, M.K.; Kumar, D.; Misra, D.P.; Agarwal, V. Lipid Based Drug Delivery Systems for Oral, Transdermal and Parenteral Delivery: Recent Strategies for Targeted Delivery Consistent with Different Clinical Application. J. Drug Deliv. Sci. Technol. 2023, 85, 104526. [Google Scholar] [CrossRef]
- Kesharwani, R.; Jaiswal, P.; Patel, D.K.; Yadav, P.K. Lipid-Based Drug Delivery System (LBDDS): An Emerging Paradigm to Enhance Oral Bioavailability of Poorly Soluble Drugs. Biomed. Mater. Devices 2023, 1, 648–663. [Google Scholar] [CrossRef]
- Shankar, R.; Joshi, M.; Pathak, K. Lipid Nanoparticles: A Novel Approach for Brain Targeting. Pharm. Nanotechnol. 2018, 6, 81–93. [Google Scholar] [CrossRef]
- Li, M.; Du, C.; Guo, N.; Teng, Y.; Meng, X.; Sun, H.; Li, S.; Yu, P.; Galons, H. Composition Design and Medical Application of Liposomes. Eur. J. Med. Chem. 2019, 164, 640–653. [Google Scholar] [CrossRef] [PubMed]
- Zaimy, M.A.; Saffarzadeh, N.; Mohammadi, A.; Pourghadamyari, H.; Izadi, P.; Sarli, A.; Moghaddam, L.K.; Paschepari, S.R.; Azizi, H.; Torkamandi, S.; et al. New Methods in the Diagnosis of Cancer and Gene Therapy of Cancer Based on Nanoparticles. Cancer Gene Ther. 2017, 24, 233–243. [Google Scholar] [CrossRef]
- Gabizon, A.A. Pegylated Liposomal Doxorubicin: Metamorphosis of an Old Drug into a New Form of Chemotherapy. Cancer Investig. 2001, 19, 424–436. [Google Scholar] [CrossRef]
- Mukherjee, A.; Waters, A.K.; Kalyan, P.; Achrol, A.S.; Kesari, S.; Yenugonda, V.M. Lipid-Polymer Hybrid Nanoparticles as a next-Generation Drug Delivery Platform: State of the Art, Emerging Technologies, and Perspectives. Int. J. Nanomed. 2019, 14, 1937–1952. [Google Scholar] [CrossRef]
- Liu, P.; Chen, G.; Zhang, J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules 2022, 27, 1372. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, B.; Wu, H.; Li, B.; Xu, J.; Duan, L.; Jiang, C.; Zhao, X.; Yuan, Y.; Zhang, G.; et al. Anti-Tumor Activity of Verbascoside Loaded Gold Nanoparticles. J. Biomed. Nanotechnol. 2014, 10, 3638–3646. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhang, Y.; Huang, B.; Yang, X.; Wu, Y.; Liu, B.; Yuan, Y.; Zhang, G. Evaluation of the Antitumor Activity by Ni Nanoparticles with Verbascoside. J. Nanomater. 2013, 2013, e623497. [Google Scholar] [CrossRef]
- Chittasupho, C.; Samee, W.; Na Takuathung, M.; Okonogi, S.; Nimkulrat, S.; Athikomkulchai, S. Clerodendrum Chinense Stem Extract and Nanoparticles: Effects on Proliferation, Colony Formation, Apoptosis Induction, Cell Cycle Arrest, and Mitochondrial Membrane Potential in Human Breast Adenocarcinoma Breast Cancer Cells. Int. J. Mol. Sci. 2024, 25, 978. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Zhao, X.; Jiang, C.; Yu, J.; Wu, J.; Zeng, X. Gold Nanoshells with Verbascoside Induce the Apoptosis of Drug-Resistant Leukemia Cells Through Caspases Pathway and Inhibit Tumor Growth. J. Nanosci. Nanotechnol. 2016, 16, 7118–7124. [Google Scholar] [CrossRef]
- Zhao, X.-H.; Yue, H.-L.; Li, P.; Zeng, X.; Zhang, G. Evaluation of the Antitumor Activity by CdTe QDs with Verbascoside. Nano 2013, 08, 1350031. [Google Scholar] [CrossRef]
- Srećković, N.Z.; Nedić, Z.P.; Liberti, D.; Monti, D.M.; Mihailović, N.R.; Stanković, J.S.K.; Dimitrijević, S.; Mihailović, V.B. Application Potential of Biogenically Synthesized Silver Nanoparticles Using Lythrum salicaria L. Extracts as Pharmaceuticals and Catalysts for Organic Pollutant Degradation. RSC Adv. 2021, 11, 35585–35599. [Google Scholar] [CrossRef]
- Xiao, Y.; Ren, Q.; Wu, L. The Pharmacokinetic Property and Pharmacological Activity of Acteoside: A Review. Biomed. Pharmacother. Biomedecine Pharmacother. 2022, 153, 113296. [Google Scholar] [CrossRef]
- Raza Ishaq, A.; A S El-Nashar, H.; M Al-Qaaneh, A.; Asfandyar; Bashir, A.; Younis, T. Orientin: A Natural Glycoside with Versatile Pharmacological Activities. Nat. Prod. Res. 2025, 1–23. [Google Scholar] [CrossRef]
- Fahmy, M.I.; Sadek, M.A.; Abdou, K.; El-Dessouki, A.M.; El-Shiekh, R.A.; Khalaf, S.S. Orientin: A Comprehensive Review of a Promising Bioactive Flavonoid. Inflammopharmacology 2025, 33, 1713–1728. [Google Scholar] [CrossRef]
- Liu, S.; Lyu, Y.; Yu, S.; Cheng, J.; Zhou, J. Efficient Production of Orientin and Vitexin from Luteolin and Apigenin Using Coupled Catalysis of Glycosyltransferase and Sucrose Synthase. J. Agric. Food Chem. 2021, 69, 6578–6587. [Google Scholar] [CrossRef]
- Rahmat, E.; Okello, D.; Kim, H.; Lee, J.; Chung, Y.; Komakech, R.; Kang, Y. Scale-up Production of Rehmannia Glutinosa Adventitious Root Biomass in Bioreactors and Improvement of Its Acteoside Content by Elicitation. Ind. Crops Prod. 2021, 172, 114059. [Google Scholar] [CrossRef]
- Isacchi, B.; Bergonzi, M.C.; Iacopi, R.; Ghelardini, C.; Galeotti, N.; Bilia, A.R. Liposomal Formulation to Increase Stability and Prolong Antineuropathic Activity of Verbascoside. Planta Med. 2017, 83, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, R.A.; Kamel, A.S.; Hindam, M.O.; El-Dessouki, A.M.; Hamouda, H.A.; Ramadan, N.M.; Mohamed, S.S.; El-Shiekh, R.A.; Kamel, N.M. Acteoside as a Multifunctional Natural Glycoside: Therapeutic Potential across Various Diseases. Inflammopharmacology 2025, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Dewi, M.K.; Chaerunisaa, A.Y.; Muhaimin, M.; Joni, I.M. Improved Activity of Herbal Medicines through Nanotechnology. Nanomaterials 2022, 12, 4073. [Google Scholar] [CrossRef]
ACT | ||||
---|---|---|---|---|
Types of Cancer | Cell Line | IC50 [µM] | Incubation Time [h] | References |
Breast cancer | MCF-7 | 85.30 ± 12.6 | 48 | [38] |
MCF-7 | 0.624 ± 0.024 | 48 | [40] | |
MCF-7 | 219.1 ± 1.40 | 24 | [41] | |
154.2 ± 2.71 | 48 | |||
113.1 ± 2.81 | 72 | |||
MCF-7 | 0.127 | 24 | [42] | |
0.2174 | 48 | |||
0.2828 | 72 | |||
MCF-7 | 215.86 | 24 | [39] | |
MDA-MB-231 | 312.2 ± 3.28 | 24 | [41] | |
244.9 ± 4.96 | 48 | |||
200.2 ± 2.45 | 72 | |||
MDA-MB-231 | 0.1597 | 24 | [42] | |
0.2584 | 48 | |||
0.2563 | 72 | |||
4 T1 | 116.7 | 24 | [43] | |
Colorectal cancer, colon cancer | HT-29 | 120.40 ± 6.58 | 48 | [38] |
HT-29 | 1.489 ± 0.096 | 48 | [40] | |
HT-29 | 144.5 | 24 | [53] | |
108.82 | 48 | |||
66.68 | 72 | |||
Caco-2 | 507.6 ± 4.05 | 24 | [41] | |
466.9 ± 8.71 | 48 | |||
280.3 ± 6.13 | 72 | |||
SNU-C5 | 73.6 ± 4.9 | 24 | [56] | |
HCT-116 | 208.89 | 24 | [53] | |
97.86 | 48 | |||
63.51 | 72 | |||
HCT-116 | >100 | 24 | [54] | |
LoVo | 83.83 | 24 | [53] | |
59.62 | 48 | |||
43.96 | 72 | |||
SW620 | 52.73 | 24 | [53] | |
42.42 | 48 | |||
29.05 | 72 | |||
Brain cancer | U-138 MG | 274.3 ± 2.61 | 24 | [41] |
201.9 ± 4.90 | 48 | |||
156.6 ± 4.74 | 72 | |||
U-138 MG | 44.0 ± 4.1 | 24 | [70] | |
U251-MG | 3152.7 ± 4.15 | 24 | [41] | |
2412.5 ± 7.97 | 48 | |||
1165.3 ± 6.05 | 72 | |||
T98G | 85.0 ± 4.3 | 24 | [70] | |
Liver cancer | HepG2 | 261.3 ± 3.52 | 24 | [41] |
219.6 ± 2.65 | 48 | |||
173.8 ± 1.59 | 72 | |||
HepG2 | >100 | 24 | [54] | |
HepG2 | 53.1 ± 6.9 | 24 | [56] | |
dRLh-84 | 99.23 | 48 | [76] | |
Lung cancer | A549 | 114.57 ± 8.53 | 48 | [38] |
A549 | 93.92 ± 2.72 | 24 | [54] | |
A549 | 397.70 ± 25.33 | 24 | [90] | |
3LL Lewis | 62.5 ± 4.6 | 24 | [56] | |
Leukemia | HL-60 | 26.7 | 48 | [105] |
HL-60 | 38.3 ± 1.3 | 24 | [56] | |
Cervical cancer | HeLa | >320.20 | 48 | [76] |
Gastric cancer | MGc80-3 | 45.92 ± 4.48 | 24 | [54] |
Ovarian cancer | OVCAR-3 | 314.1 ± 3.52 | 24 | [41] |
232.0 ± 5.08 | 48 | |||
162.8 ± 3.41 | 72 | |||
Sarcoma | S-180 | 47.39 | 48 | [76] |
Lymphoid tumor cell line | P-388/D1 | 353.83 | 48 | [76] |
U-937 | 42.5 ± 2.1 | 24 | [56] |
ORI | ||||
---|---|---|---|---|
Types of Cancer | Cell Line | IC50 [µM] | Incubation Time [h] | References |
Breast cancer | MCF-7 | >178.42 | 24 | [44] |
Colorectal cancer, colon cancer | CaCo-2 | >178.42 | 24 | [44] |
CaCo-2 | 190.86 | 48 | [57] | |
Brain cancer | U87 MG | 68.94 | 48 | [57] |
Cervical cancer | HeLa | >178.42 | 24 | [44] |
(a) Main Information | ACT | ORI |
---|---|---|
Sources | Oleaceae, Bignoniaceae, Verbenaceae, Labiatae [6,7] | Ocimum sanctum, Commelina communis, Jatropha gossypifolia, Phyllostachys nigra [10] |
Key mechanisms | Increasing Bax expression; decreasing Bcl-2 expression [43] Changes Bax/Bcl-2 ratio [52]. Inhibiting MMP-9 transcription (via NF-κB/AP-1) [34] Modulating the PD-1 checkpoint and PD-L1 expression [39] Increasing caspase-3 [43] Increasing HIPK2, p53 [53] Increasing ROS levels [38] Suppressing Rac-1, HIF-1α, Zeb-1 signaling pathway [55] Reducing c-Met, EMT markers (snail, vimentin, zeb1) [66] Activates SHP-1, suppressing STAT3 phosphorylation [67] Suppressing HMGA2, inhibiting Wnt/β-catenin signaling [8] Inhibiting CDC42 activation via HMGB1/RAGE signaling [119] Inhibiting NFκB/IκB signaling pathway [75] Increasing p53, reducing KLK1, KLK2, KLK4, KLK9, KLK10 gene levels [7] Reducing CCL20, enhancing apoptosis via ERK1/2 pathway [77] Inducing G1 arrest, upregulating p21CIP1/WAF1, p27KIP1 levels and decreasing CDK2, CDK4 and CDK6 activities [56] Inducing M1 macrophages polarization [125] Blocking METTL3-regulated miR-31-5p/HIPK2 axis [127] | Increasing Bax expression; decreasing Bcl-2 expression; increasing Bax/Bcl-2 ratio, activating caspase-3, caspase-9 [114] Suppressing the expression of MMP-9 and IL-8 [46] Inducing G0/G1 cell cycle arrest [59] Decreasing NF-κB, TNF-α, IL-6 expression, downregulating iNOS, COX-2 overexpression [61] Increasing p53 [120] |
Target cancers | Breast cancer [34,38] Colorectal cancer, colon cancer [52,53] Brain cancer [66,67] Liver cancer [7,75] Lung cancer [38,90] Skin cancer [9,96] Leukemia [56,106] Cervical cancer [76,98] Esophageal cancer [119] Prostate cancer [121] Gastric cancer [124] Ovarian cancer [41] Oral cancer [126] Sarcoma [128] Lymphoid tumor cells [76] | Breast cancer [44,45] Colorectal cancer, colon cancer [44,57] Brain cancer [57] Liver cancer [78,79] Lung cancer [91] Skin cancer [100] Leukemia [107] Cervical cancer [44,114] Esophageal cancer [120] Bladder carcinoma [129] |
Optimal synergies | + TMZ (Brain cancer) [137] + BDMC (Brain cancer) [70] + 5-FU (Colorectal cancer, colon cancer) [139] + Sorafenib (Liver cancer) [7] +H2O2, epoxomicin, doxorubicin (Osteosarcoma) [9] + OXA (Hepatocellular carcinoma) [85] | + CLX (Lung cancer) [91] + CUR (Brain cancer) [70] + 5-FU (Colorectal cancer) [144] |
(b) DDSs | ACT | ORI |
Nanoparticles (NPs) | ACT-Au: 2 mg ACT and 30 mg gold NPs (Au). ACT-Au reduced K562 cell viability, ACT-Au promoted apoptosis (about 45%) more than Au (less than 20%) or ACT (less than 30%). ACT-Au injection in mice suppressed tumor growth, induced apoptosis [161]. ACT-Ni: 2mg ACT and 30 mg Ni nanoparticles. ACT-Ni treatment significantly reduced tumor volume and weight with more pronounced apoptosis than the ACT. ACT and Ni, bound by electrostatic interaction, effectively inhibited tumor growth. ACT-Ni treatment suppressed tumor growth in mice [162]. C. chinense stem extract, containing ACT and isoverbascoside, in NPs. At 500 µg/mL, the extract reduced MCF-7 colony formation to 1.40 ± 1.09% and induced 12.13% late-apoptotic cells, while NPs at the same concentration completely inhibited colony formation and induced 25.57% apoptotic cells in MCF-7 cells. The extract and NPs contained 553.20 ± 68.74 and 490.26 ± 24.12 mg GAE per gram, respectively. NPs enhance compounds’ solubility and stability, improving bioavailability [163]. | The aqueous extracts of L. salicaria aerial part (LSA) and root (LSR), used for AgNP synthesis, contained total phenolic compounds (among others ORI) at concentrations of 99.56 and 26.44 mg GAE per g of dry plant weight, respectively. LSA-AgNPs had IC50 values of 20.5 ± 5 μg/mL against A431 and 12.7 ± 6 μg/mL for SVT2 cells. LSR-AgNPs were only effective against A431 cells with an IC50 of 62 ± 17 μg/mL. The alkaline environment boosts the negative charge on phenolic groups, aiding the faster reduction and stabilization of AgNPs. ORI in extracts likely contributes to AgNP formation and stability [166]. |
Nanoshells (NSs) | ACT-PMS: ACT + PNIPAM/gold NSs (GNSs) structures (PMS): 2 mg VB and 30 mg PMS. Compared to PMS or ACT alone, PMS enhanced apoptosis and inhibited tumor growth in KA cells. ACT-PMS activated the expression of apoptosis-related caspase proteins. PMS structures enable efficient drug release due to their swelling and shrinking capabilities. ACT’s hydrophobicity was addressed by ACT-PMS, offering a reference for ACT’s application. ACT-PMS treatment increased apoptosis in KA cells, boosting ACT’s efficiency [164]. | no data |
Quantum dots (QDs) | In HepG2/ADM cells, the apoptotic cell percentages were 65.6% for ACT–QDs, 34.3% for ACT, and 11.6% for the control (no treatment). ACT content in ACT–QDs was 18.3 wt.%, equivalent to 183 mg of ACT per gram of ACT–QDs. ACT–QDs were stable after one year of storage in a sealed bottle at ambient conditions. ACT–QDs caused nanoscale holes in living cells, potentially improving drug delivery across the cell membrane [165]. | no data |
Liposomes | ACT:POPC: DOTAP (0.1:8:2) containing 62.5 µg/mL ACT. Liposomal delivery of ACT reduced IC50 values from 85.0 ± 4.3 µM to 2.9 ± 0.9 µM (T98G) and from 44.0 ± 4.1 µM to 4.0 ± 1.1 µM (U-138 MG). Encapsulation efficiency of ACT was 99.2 ± 1.8% [70]. | ORI:POPC: DOTAP (0.1:8:2) containing 44.8 µg/mL ORI. Liposomal delivery of ORI reduced IC50 values from >100 µM to 12.0 ± 1.7 µM (T98G) and 7.0 ± 1.5 µM (U-138 MG). Encapsulation efficiency of ORI was 79.3 ± 1.4% [70]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szkudlarek, J.; Piwowarczyk, L.; Jelińska, A. Antioxidants Acteoside and Orientin as Emerging Agents in Synergistic Cancer Therapy: A Focus on Innovative Applications. Antioxidants 2025, 14, 855. https://doi.org/10.3390/antiox14070855
Szkudlarek J, Piwowarczyk L, Jelińska A. Antioxidants Acteoside and Orientin as Emerging Agents in Synergistic Cancer Therapy: A Focus on Innovative Applications. Antioxidants. 2025; 14(7):855. https://doi.org/10.3390/antiox14070855
Chicago/Turabian StyleSzkudlarek, Jagoda, Ludwika Piwowarczyk, and Anna Jelińska. 2025. "Antioxidants Acteoside and Orientin as Emerging Agents in Synergistic Cancer Therapy: A Focus on Innovative Applications" Antioxidants 14, no. 7: 855. https://doi.org/10.3390/antiox14070855
APA StyleSzkudlarek, J., Piwowarczyk, L., & Jelińska, A. (2025). Antioxidants Acteoside and Orientin as Emerging Agents in Synergistic Cancer Therapy: A Focus on Innovative Applications. Antioxidants, 14(7), 855. https://doi.org/10.3390/antiox14070855