Modulatory Effects of Urtica dioica on Neurodegenerative Diseases: Unveiling the Latest Findings and Applications Related to Neuroinflammation, Oxidative Stress, and Cognitive Dysfunction
Abstract
1. Introduction
2. Urtica dioica
2.1. Botanical Study
2.2. Toxicological Studies
2.3. Traditional Uses
2.4. The Roles of Phytochemical Compounds of Urtica dioica in Neurodegenerative Diseases
3. Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction in Neurodegenerative Diseases
3.1. Alzheimer’s Disease
3.2. Parkinson’s Disease
3.3. Multiple Sclerosis
3.4. Amyotrophic Lateral Sclerosis
3.5. Huntington’s Disease
3.6. Creutzfeldt-Jakob Disease
3.7. Perinatal Stroke
3.8. Duchenne Muscular Dystrophy
4. Effects of Urtica dioica on Neurodegenerative Disorders in Animal Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nabi, M.; Tabassum, N. Role of Environmental Toxicants on Neurodegenerative Disorders. Front. Toxicol. 2022, 4, 837579. [Google Scholar] [CrossRef] [PubMed]
- Aboubakr, M.; Elshafae, S.M.; Abdelhiee, E.Y.; Fadl, S.E.; Soliman, A.; Abdelkader, A.; Abdel-Daim, M.M.; Bayoumi, K.A.; Baty, R.S.; Elgendy, E.; et al. Antioxidant and Anti-Inflammatory Potential of Thymoquinone and Lycopene Mitigate the Chlorpyrifos-Induced Toxic Neuropathy. Pharmaceuticals 2021, 14, 940. [Google Scholar] [CrossRef]
- Wilson, D.M.; Cookson, M.R.; Bosch, L.V.D.; Zetterberg, H.; Holtzman, D.M.; Dewachter, I. Hallmarks of Neurodegenerative Diseases. Cell. 2023, 186, 693–714. [Google Scholar] [CrossRef] [PubMed]
- San-Millán, I. The Key Role of Mitochondrial Function in Health and Disease. Antioxidants 2023, 12, 782. [Google Scholar] [CrossRef] [PubMed]
- Smit, T.; Deshayes, N.A.C.; Borchelt, D.R.; Kamphuis, W.; Middeldorp, J.; Hol, E.M. Reactive Astrocytes as Treatment Targets in Alzheimer’s Disease—Systematic Review of Studies Using the APPswePS1dE9 Mouse Model. Glia. 2021, 69, 1852–1881. [Google Scholar] [CrossRef]
- Ara, I.; Maqbool, M.; Gani, I. Neuroprotective Activity of Herbal Medicinal Products: A Review. Int. J. Curr. Res. Physiol. Pharmacol. 2022, 6, 1–10. [Google Scholar]
- Tyler, S.E.B.; Tyler, L.D.K. Pathways to Healing: Plants with Therapeutic Potential for Neurodegenerative Diseases. IBRO Neurosci. Rep. 2023, 14, 210–234. [Google Scholar] [CrossRef]
- Chira, A.; Rekik, I.; Rahmouni, F.; Ben Amor, I.; Gargouri, B.; Kallel, C.; Jamoussi, K.; Allouche, N.; El Feki, A.; Kadmi, Y.; et al. Phytochemical Composition of Urtica dioica Essential Oil with Antioxidant and Anti-Inflammatory Properties: In Vitro and in Vivo Studies. Curr. Pharm. Biotechnol. 2022, 23, 728–739. [Google Scholar] [CrossRef]
- Chira, A.; Dridi, I.; Rahmouni, F.; Ben Amor, I.; Gargouri, B.; Kallel, C.; Jamoussi, K.; El Feki, A.; Saoudi, M. Neuroprotective and Antioxidant Effects of Urtica dioica Extract against Chlorpyrifos-Induced Toxicity: An in Vivo Study. 3 Biotech 2025, 15, 86. [Google Scholar] [CrossRef]
- Namazi, F.; Bordbar, E.; Bakhshaei, F.; Nazifi, S. The Effect of Urtica dioica Extract on Oxidative Stress, Heat Shock Proteins, and Brain Histopathology in Multiple Sclerosis Model. Physiol. Rep. 2022, 10, e15404. [Google Scholar] [CrossRef]
- Parente, R.; Paiva-Santos, A.C.; Cabral, C.; Costa, G. Comprehensive Review of Urtica dioica L. (Urticaceae) Phytochemistry and Anti-Inflammatory Properties. Phytochem. Rev. 2024, 24, 1591–1628. [Google Scholar] [CrossRef]
- Rahmati, M.; Keshvari, M.; Xie, W.; Yang, G.; Jin, H.; Li, H.; Chehelcheraghi, F.; Li, Y. Resistance Training and Urtica dioica Increase Neurotrophin Levels and Improve Cognitive Function by Increasing Age in the Hippocampus of Rats. Biomed. Pharmacother. 2022, 153, 113306. [Google Scholar] [CrossRef]
- Rajabian, A.; Sadeghnia, H.; Fanoudi, S.; Hosseini, A. Genus Boswellia as a New Candidate for Neurodegenerative Disorders. Iran. J. Basic Med. Sci. 2020, 23, 277. [Google Scholar] [PubMed]
- Grauso, L.; de Falco, B.; Lanzotti, V.; Motti, R. Stinging Nettle, Urtica dioica L.: Botanical, Phytochemical and Pharmacological Overview. Phytochem. Rev. 2020, 19, 1341–1377. [Google Scholar] [CrossRef]
- Malik, K.; Ahmad, M.; Öztürk, M.; Altay, V.; Zafar, M.; Sultana, S. Medicinal Plants Used for Musculoskeletal Disorders. In Herbals of Asia; Springer International Publishing: Cham, Switzerland, 2021; pp. 371–432. ISBN 978-3-030-85221-4. [Google Scholar]
- Shonte, T.T. Sensory and Nutritional Properties of Stinging Nettle (Urtica dioica L.) Leaves and Leaf Infusions; University of Pretoria: Pretoria, South Africa, 2017. [Google Scholar]
- Said, A.A.H.; Otmani, I.S.E.; Derfoufi, S.; Benmoussa, A. Highlights on nutritional and therapeutic value of stinging nettle (Urtica dioica). Int. J. Pharm. Pharm. Sci. 2015, 7, 8–14. Available online: https://journals.innovareacademics.in/index.php/ijpps/article/view/8165 (accessed on 20 May 2025).
- Ensikat, H.J.; Wessely, H.; Engeser, M.; Weigend, M. Distribution, Ecology, Chemistry and Toxicology of Plant Stinging Hairs. Toxins 2021, 13, 141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, X.; Zafar, M.H.; Zhang, J.; Wang, J.; Yu, X.; Liu, W.; Wang, M. Research Progress in Physiological Effects of Resistant Substances of Urtica dioica L. on Animal Performance and Feed Conversion. Front. Plant Sci. 2023, 14, 1164363. [Google Scholar] [CrossRef]
- Dong, J. Morphological Variation and Floral Development of Major Clades in Urticaceae—A Focus on the Female Flowers. Ph.D. Thesis, University of Edinburgh, Edinburgh, UK, 2016. [Google Scholar]
- Toffolatti, S.L.; Davillerd, Y.; D’Isita, I.; Facchinelli, C.; Germinara, G.S.; Ippolito, A.; Khamis, Y.; Kowalska, J.; Maddalena, G.; Marchand, P.; et al. Are Basic Substances a Key to Sustainable Pest and Disease Management in Agriculture? An Open Field Perspective. Plants 2023, 12, 3152. [Google Scholar] [CrossRef] [PubMed]
- Dar, S.A.; Ganai, F.A.; Yousuf, A.R.; Balkhi, M.-H.; Bhat, T.M.; Sharma, P. Pharmacological and Toxicological Evaluation of Urtica dioica. Pharm. Biol. 2013, 51, 170–180. [Google Scholar] [CrossRef]
- Araya, X.; Okumu, M.; Durán, G.; Gómez, A.; Gutiérrez, J.M.; León, G. Assessment of the Artemia Salina Toxicity Assay as a Substitute of the Mouse Lethality Assay in the Determination of Venom-Induced Toxicity and Preclinical Efficacy of Antivenom. Toxicon X 2024, 22, 100195. [Google Scholar] [CrossRef]
- Hamidi, M.R.; Jovanova, B.; Panovska, T.K. Toxicological Evaluation of the Plant Products Using Brine Shrimp (Artemia salina L.) Model. Maced. Pharm. Bull. 2014, 60, 9–18. [Google Scholar] [CrossRef]
- Damayanti, M.; Indarjo, A.; Sedjati, S. Phytochemical Content and Toxicity Test of Kappaphycus Alvarezii Hot Water and Methanol Using BSLT Method. J. Mar. Biotechnol. Immunol. 2025, 3, 49–54. [Google Scholar] [CrossRef]
- Cruzeiro, C.; Amaral, S.; Rocha, E.; Rocha, M.J. Determination of 54 Pesticides in Waters of the Iberian Douro River Estuary and Risk Assessment of Environmentally Relevant Mixtures Using Theoretical Approaches and Artemia Salina and Daphnia Magna Bioassays. Ecotoxicol. Environ. Saf. 2017, 145, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Brunelli, A.; Cazzagon, V.; Faraggiana, E.; Bettiol, C.; Picone, M.; Marcomini, A.; Badetti, E. An Overview on Dispersion Procedures and Testing Methods for the Ecotoxicity Testing of Nanomaterials in the Marine Environment. Sci. Total Environ. 2024, 921, 171132. [Google Scholar] [CrossRef] [PubMed]
- Tekin, M.; Him, A. Investigation of Acute Toxicity, Anti-Inflammatory, and Analgesic Effect of Urtica dioica L. Pharmacologyonline 2009, 1, 1210–1215. Pharmacologyonline 2009, 1, 1210–1215. [Google Scholar]
- Mhalhel, K.; Kadmi, Y.; Ben Chira, A.; Levanti, M.; Pansera, L.; Cometa, M.; Sicari, M.; Germanà, A.; Aragona, M.; Montalbano, G. Urtica dioica Extract Abrogates Chlorpyrifos-Induced Toxicity in Zebrafish Larvae. Int. J. Mol. Sci. 2024, 25, 6631. [Google Scholar] [CrossRef]
- Nencu, I.; Vlase, L.; Istudor, V.; Mircea, T. Preliminary Research Regarding Urtica urens L. and Urtica dioica L. Amino Acids 2015, 63, 710–715. [Google Scholar]
- Sundaram, R.L.; Vasanthi, H.R. Spermacoce Hispida Linn: A Critical Review on Pharmacognosy, Phytochemistry, and Pharmacology Based on Traditional Claims. Phytomedicine Plus 2022, 2, 100143. [Google Scholar] [CrossRef]
- Taheri, Y.; Quispe, C.; Herrera-Bravo, J.; Sharifi-Rad, J.; Ezzat, S.M.; Merghany, R.M.; Shaheen, S.; Azmi, L.; Prakash Mishra, A.; Sener, B.; et al. Urtica dioica-Derived Phytochemicals for Pharmacological and Therapeutic Applications. Evid.-Based Complement. Altern. Med. 2022, 2022, 1–30. [Google Scholar] [CrossRef]
- Bhusal, K.K.; Magar, S.K.; Thapa, R.; Lamsal, A.; Bhandari, S.; Maharjan, R.; Shrestha, S.; Shrestha, J. Nutritional and Pharmacological Importance of Stinging Nettle (Urtica dioica L.): A Review. Heliyon 2022, 8, e09717. [Google Scholar] [CrossRef]
- Semwal, P.; Rauf, A.; Olatunde, A.; Singh, P.; Zaky, M.Y.; Islam, M.M.; Khalil, A.A.; Aljohani, A.S.M.; Al Abdulmonem, W.; Ribaudo, G. The Medicinal Chemistry of Urtica dioica L.: From Preliminary Evidence to Clinical Studies Supporting Its Neuroprotective Activity. Nat. Prod. Bioprospect. 2023, 13, 16. [Google Scholar] [CrossRef]
- Esposito, S.; Bianco, A.; Russo, R.; Di Maro, A.; Isernia, C.; Pedone, P.V. Therapeutic Perspectives of Molecules from Urtica dioica Extracts for Cancer Treatment. Molecules 2019, 24, 2753. [Google Scholar] [CrossRef]
- Chira, A.; Kadmi, Y.; Badraoui, R.; Aouadi, K.; Alhawday, F.; Boudaya, M.; Jamoussi, K.; Kallel, C.; El Feki, A.; Kadri, A.; et al. GC-MS/MS Analysis and Wound Repair Potential of Urtica dioica Essential Oil: In Silico Modeling and In Vivo Study in Rats. Curr. Pharm. Biotechnol. 2024, 26, 591–607. [Google Scholar] [CrossRef] [PubMed]
- Vollmar, A.M.; Moser, S. The Advent of Phyllobilins as Bioactive Phytochemicals—Natural Compounds Derived from Chlorophyll in Medicinal Plants and Food with Immunomodulatory Activities. Pteridines 2023, 34, 20220047. [Google Scholar] [CrossRef]
- Durović, S.; Kojić, I.; Radić, D.; Smyatskaya, Y.A.; Bazarnova, J.G.; Filip, S.; Tosti, T. Chemical Constituents of Stinging Nettle (Urtica dioica L.): A Comprehensive Review on Phenolic and Polyphenolic Compounds and Their Bioactivity. Int. J. Mol. Sci. 2024, 25, 3430. [Google Scholar] [CrossRef]
- Koczkodaj, S.; Przybył, J.L.; Kosakowska, O.; Węglarz, Z.; Bączek, K.B. Intraspecific Variability of Stinging Nettle (Urtica dioica L.). Molecules 2023, 28, 1505. [Google Scholar] [CrossRef] [PubMed]
- Yousuf, S.; Shabir, S.; Kauts, S.; Minocha, T.; Obaid, A.A.; Khan, A.A.; Mujalli, A.; Jamous, Y.F.; Almaghrabi, S.; Baothman, B.K.; et al. Appraisal of the Antioxidant Activity, Polyphenolic Content, and Characterization of Selected Himalayan Herbs: Anti-Proliferative Potential in HepG2 Cells. Molecules 2022, 27, 8629. [Google Scholar] [CrossRef] [PubMed]
- Brahmi-Chendouh, N.; Piccolella, S.; Nigro, E.; Hamri-Zeghichi, S.; Madani, K.; Daniele, A.; Pacifico, S. Urtica dioica L. Leaf Chemical Composition: A Never-Ending Disclosure by Means of HR-MS/MS Techniques. J. Pharm. Biomed. Anal. 2021, 195, 113892. [Google Scholar] [CrossRef]
- Đurović, S.; Pezo, L.; Gašić, U.; Gorjanović, S.; Pastor, F.; Bazarnova, J.G.; Smyatskaya, Y.A.; Zeković, Z. Recovery of Biologically Active Compounds from Stinging Nettle Leaves Part II: Processing of Exhausted Plant Material after Supercritical Fluid Extraction. Foods 2023, 12, 809. [Google Scholar] [CrossRef]
- Ogaly, H.A.; Abdel-Rahman, R.F.; Mohamed, M.A.E.; Ahmed-Farid, O.A.; Khattab, M.S.; Abd-Elsalam, R.M. Thymol Ameliorated Neurotoxicity and Cognitive Deterioration in a Thioacetamide-Induced Hepatic Encephalopathy Rat Model; Involvement of the BDNF/CREB Signaling Pathway. Food Funct. 2022, 13, 6180–6194. [Google Scholar] [CrossRef]
- Li, W.; Wu, Z.-W.; Li, X.-B.; Chen, Y.; Wang, M.-Y. Chemical constituents from Urtica dioica fruits. Zhongguo Zhong Yao Za Zhi 2022, 47, 4972–4977. [Google Scholar] [CrossRef]
- Abi Sleiman, M.; Younes, M.; Hajj, R.; Salameh, T.; Abi Rached, S.; Abi Younes, R.; Daoud, L.; Doumiati, J.L.; Frem, F.; Ishak, R. Urtica dioica: Anticancer Properties and Other Systemic Health Benefits from In Vitro to Clinical Trials. Int. J. Mol. Sci. 2024, 25, 7501. [Google Scholar] [CrossRef]
- Menzikov, S.A.; Zaichenko, D.M.; Moskovtsev, A.A.; Morozov, S.G.; Kubatiev, A.A. Phenols and GABAA Receptors: From Structure and Molecular Mechanisms Action to Neuropsychiatric Sequelae. Front. Pharmacol. 2024, 15, 1272534. [Google Scholar] [CrossRef] [PubMed]
- Eren, A.; Varol, M.; Unal, R.; Altan, F. Exploring Urtica dioica L. as a Promising Alternative Therapy for Obesity-Related Breast Cancer: Insights from Molecular Mechanisms and Bioinformatic Analysis. Plant Foods Hum. Nutr. 2025, 80, 102. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.S.; Ray, R.S.; Sharma, A.; Mehta, V.; Katyal, A.; Udayabanu, M. Antidepressant and Anxiolytic like Effects of Urtica dioica Leaves in Streptozotocin Induced Diabetic Mice. Metab. Brain Dis. 2018, 33, 1281–1292. [Google Scholar] [CrossRef] [PubMed]
- Ilhan, M.; Ali, Z.; Khan, I.A.; Taştan, H.; Küpeli Akkol, E. Bioactivity-Guided Isolation of Flavonoids from Urtica dioica L. and Their Effect on Endometriosis Rat Model. J. Ethnopharmacol. 2019, 243, 112100. [Google Scholar] [CrossRef]
- Rehman, G.; Khan, I.; Rauf, A.; Rashid, U.; Siddique, A.; Shah, S.M.M.; Akram, Z.; AlMasoud, N.; Alomar, T.S.; Shah, Z.A.; et al. Antidiabetic Properties of Caffeoylmalic Acid, a Bioactive Natural Compound Isolated from Urtica dioica. Fitoterapia 2024, 176, 106024. [Google Scholar] [CrossRef]
- Dar, S.; Yousuf, A.; Ahmad, F.; Sharma, D.P.; Kumar, N.; Singh, D.R. Bioassay Guided Isolation and Identification of Anti-Inflammatory and Anti-Microbial Compounds from Urtica dioica L. (Urticaceae) Leaves. Afr. J. Biotechnol. 2012, 11, 12910–12920. [Google Scholar]
- Gorzalczany, S.; Marrassini, C.; Miño, J.; Acevedo, C.; Ferraro, G. Antinociceptive Activity of Ethanolic Extract and Isolated Compounds of Urtica circularis. J. Ethnopharmacol. 2011, 134, 733–738. [Google Scholar] [CrossRef]
- Francišković, M.; Gonzalez-Pérez, R.; Orčić, D.; Sánchez de Medina, F.; Martínez-Augustin, O.; Svirčev, E.; Simin, N.; Mimica-Dukić, N. Chemical Composition and Immuno-Modulatory Effects of L. (Stinging Nettle) Extracts. Phytother. Res. 2017, 31, 1183–1191. [Google Scholar] [CrossRef]
- Afzal, H.R.; Khan, N.u.H.; Sultana, K.; Mobashar, A.; Lareb, A.; Khan, A.; Gull, A.; Afzaal, H.; Khan, M.T.; Rizwan, M.; et al. Schiff Bases of Pioglitazone Provide Better Antidiabetic and Potent Antioxidant Effect in a Streptozotocin–Nicotinamide-Induced Diabetic Rodent Model. ACS Omega 2021, 6, 4470–4479. [Google Scholar] [CrossRef]
- Haidara, M.; Mikhailidis, D.; Rateb, M.; Ahmed, Z.; Yassin, H.; Ibrahim, I.; Rashed, A. Evaluation of the Effect of Oxidative Stress and Vitamin E Supplementation on Renal Function in Rats with Streptozotocin-Induced Type 1 Diabetes. J. Diabetes Its Complicat. 2008, 23, 130–136. [Google Scholar] [CrossRef]
- Amanzadeh, E.; Esmaeili, A.; Rahgozar, S.; Nourbakhshnia, M. Application of Quercetin in Neurological Disorders: From Nutrition to Nanomedicine. Rev. Neurosci. 2019, 30, 555–572. [Google Scholar] [CrossRef] [PubMed]
- Joshi, B.C.; Prakash, A.; Kalia, A.N. Hepatoprotective Potential of Antioxidant Potent Fraction from Urtica dioica Linn.(Whole Plant) in CCl4 Challenged Rats. Toxicol. Rep. 2015, 2, 1101–1110. [Google Scholar] [CrossRef]
- Nahata, A.; Dixit, V.K. Ameliorative Effects of Stinging Nettle (Urtica dioica) on Testosterone-Induced Prostatic Hyperplasia in Rats: Urtica dioica Attenuates Prostatic Hyperplasia. Andrologia 2012, 44, 396–409. [Google Scholar] [CrossRef] [PubMed]
- Rono, C.K.; Maiyoh, G.K.; Muhanji, C.I. Antihyperglycemic Potential of Urticol from Urtica dioica Leaves Using Freshly Isolated Rat Hepatocytes. Int. J. Sci. Eng. Res. 2015, 6, 277–282. [Google Scholar]
- Mahmood, D.; Khanam, R.; Pillai, K.K.; Akhtar, M. Reversal of Oxidative Stress by Histamine H3 Receptor-Ligands in Experimental Models of Schizophrenia. Arzneimittelforschung 2012, 62, 222–229. [Google Scholar] [CrossRef]
- Khan, A.; Park, J.S.; Kang, M.H.; Lee, H.J.; Ali, J.; Tahir, M.; Choe, K.; Kim, M.O. Caffeic Acid, a Polyphenolic Micronutrient Rescues Mice Brains against Aβ-Induced Neurodegeneration and Memory Impairment. Antioxidants 2023, 12, 1284. [Google Scholar] [CrossRef]
- de Munter, J.; Pavlov, D.; Gorlova, A.; Sicker, M.; Proshin, A.; Kalueff, A.V.; Svistunov, A.; Kiselev, D.; Nedorubov, A.; Morozov, S.; et al. Increased Oxidative Stress in the Prefrontal Cortex as a Shared Feature of Depressive- and PTSD-Like Syndromes: Effects of a Standardized Herbal Antioxidant. Front. Nutr. 2021, 8, 661455. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Rudkowska, M.; Kasprzak-Drozd, K.; Oniszczuk, A.; Borowicz-Reutt, K. Activity of Selected Group of Monoterpenes in Alzheimer’s Disease Symptoms in Experimental Model Studies—A Non-Systematic Review. Int. J. Mol. Sci. 2021, 22, 7366. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.A.; Rudkowska, M.; Klimek, K.; Mołdoch, J.; Agacka-Mołdoch, M.; Budzyńska, B.; Oniszczuk, A. S-(+)-Carvone, a Monoterpene with Potential Anti-Neurodegenerative Activity—In Vitro, In Vivo and Ex Vivo Studies. Molecules 2024, 29, 4365. [Google Scholar] [CrossRef] [PubMed]
- Bourgeois, C.; Leclerc, É.A.; Corbin, C.; Doussot, J.; Serrano, V.; Vanier, J.-R.; Seigneuret, J.-M.; Auguin, D.; Pichon, C.; Lainé, É. Nettle (Urtica dioica L.) as a Source of Antioxidant and Anti-Aging Phytochemicals for Cosmetic Applications. Comptes Rendus Chim. 2016, 19, 1090–1100. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, X.; Wu, T.; Zhang, W.; Shu, J.; He, Y.; Tang, S.-J. Quercetin Attenuates AZT-Induced Neuroinflammation in the CNS. Sci. Rep. 2018, 8, 6194. [Google Scholar] [CrossRef]
- Olianas, M.C.; Dedoni, S.; Onali, P. Protection from Interferon-β-induced Neuronal Apoptosis through Stimulation of Muscarinic Acetylcholine Receptors Coupled to ERK1/2 Activation. Br. J Pharmacol. 2016, 173, 2910–2928. [Google Scholar] [CrossRef]
- Yuan, A.; Gao, M.; Wang, B.; Zeng, N. Cholinergic Anti-Inflammatory Pathway: An Insight into Inflammatory Diseases Treatment with Chinese Herbal Medicine. Preprint on Authorea. Available online: https://www.authorea.com/users/369229/articles/488156-cholinergic-anti-inflammatory-pathway-an-insight-into-inflammatory-diseases-treatment-with-chinese-herbal-medicine (accessed on 7 July 2025).
- Yao, Y.; Baronio, D.; Chen, Y.-C.; Jin, C.; Panula, P. The Roles of Histamine Receptor 1 (Hrh1) in Neurotransmitter System Regulation, Behavior, and Neurogenesis in Zebrafish. Mol. Neurobiol. 2023, 60, 6660–6675. [Google Scholar] [CrossRef] [PubMed]
- Abu Almaaty, A.H.; Mosaad, R.M.; Hassan, M.K.; Ali, E.H.; Mahmoud, G.A.; Ahmed, H.; Anber, N.; Alkahtani, S.; Abdel-Daim, M.M.; Aleya, L. Urtica dioica Extracts Abolish Scopolamine-Induced Neuropathies in Rats. Environ. Sci. Pollut. Res. 2021, 28, 18134–18145. [Google Scholar] [CrossRef]
- Yoo, J.-M.; Lee, B.D.; Sok, D.-E.; Ma, J.Y.; Kim, M.R. Neuroprotective Action of N-Acetyl Serotonin in Oxidative Stress-Induced Apoptosis through the Activation of Both TrkB/CREB/BDNF Pathway and Akt/Nrf2/Antioxidant Enzyme in Neuronal Cells. Redox Biol. 2017, 11, 592–599. [Google Scholar] [CrossRef]
- Karg, C.A.; Parráková, L.; Fuchs, D.; Schennach, H.; Kräutler, B.; Moser, S.; Gostner, J.M. A Chlorophyll-Derived Phylloxanthobilin Is a Potent Antioxidant That Modulates Immunometabolism in Human PBMC. Antioxidants 2022, 11, 2056. [Google Scholar] [CrossRef]
- Gardón, D.P.; Cervantes-Llanos, M.; Matamoros, B.P.; Rodríguez, H.C.; Tan, C.; Marín–Prida, J.; Falcón-Cama, V.; Pavón-Fuentes, N.; Lemus, J.G.; Ruiz, L.d.l.C.B. Positive Effects of Phycocyanobilin on Gene Expression in Glutamate-Induced Excitotoxicity in SH-SY5Y Cells and Animal Models of Multiple Sclerosis and Cerebral Ischemia. Heliyon 2022, 8, e09769. [Google Scholar] [CrossRef]
- Ahn, Y.J.; Kim, H. Lutein as a Modulator of Oxidative Stress-Mediated Inflammatory Diseases. Antioxidants 2021, 10, 1448. [Google Scholar] [CrossRef]
- Marchetti, N.; Bonetti, G.; Brandolini, V.; Cavazzini, A.; Maietti, A.; Meca, G.; Mañes, J. Stinging Nettle (Urtica dioica L.) as a Functional Food Additive in Egg Pasta: Enrichment and Bioaccessibility of Lutein and β-Carotene. J. Funct. Foods 2018, 47, 547–553. [Google Scholar] [CrossRef]
- Roy, A.; Das, S.; Chatterjee, I.; Roy, S.; Chakraborty, R. Anti-Inflammatory Effects of Different Dietary Antioxidants. In Plant Antioxidants and Health; Springer: Cham, Switzerland, 2022; pp. 1–25. ISBN 978-3-030-45299-5. [Google Scholar]
- Dhouafli, Z.; Cuanalo-Contreras, K.; Hayouni, E.A.; Mays, C.E.; Soto, C.; Moreno-Gonzalez, I. Inhibition of protein misfolding and aggregation by natural phenolic compounds. Cell Mol. Life Sci. 2018, 75, 3521–3538. [Google Scholar] [CrossRef] [PubMed]
- Krajka-Kuźniak, V.; Baer-Dubowska, W. Modulation of Nrf2 and NF-κB Signaling Pathways by Naturally Occurring Compounds in Relation to Cancer Prevention and Therapy. Are Combinations Better Than Single Compounds? Int. J. Mol. Sci. 2021, 22, 8223. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, M.; Martins, V.; Silva, A.; Rocha, H.; Rachetti, V.; Scortecci, K. Phenolic Acids as Antidepressant Agents. Nutrients 2022, 14, 4309. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Hosseini, Z.; Khatami, A.; Abbasi-kolli, M.; Sadri Nahand, J.; Kouchaki, E.; Mirzaei, H. Neuroprotective Effects of Glycosides. In Phytonutrients and Neurological Disorders; Academic Press: Cambridge, MA, USA, 2023; pp. 201–226. ISBN 978-0-12-824467-8. [Google Scholar]
- Soleymani, S.; Habtemariam, S.; Rahimi, R.; Nabavi, S.M. The What and Who of Dietary Lignans in Human Health: Special Focus on Prooxidant and Antioxidant Effects. Trends Food Sci. Technol. 2020, 106, 382–390. [Google Scholar] [CrossRef]
- Giuliano, C.; Siani, F.; Mus, L.; Ghezzi, C.; Cerri, S.; Pacchetti, B.; Bigogno, C.; Blandini, F. Neuroprotective Effects of Lignan 7-Hydroxymatairesinol (HMR/Lignan) in a Rodent Model of Parkinson’s Disease. Nutrition 2020, 69, 110494. [Google Scholar] [CrossRef]
- Goel, P.; Chakrabarti, S.; Goel, K.; Bhutani, K.; Chopra, T.; Bali, S. Neuronal Cell Death Mechanisms in Alzheimer’s Disease: An Insight. Front. Mol. Neurosci. 2022, 15, 937133. [Google Scholar] [CrossRef]
- Gogoleva, V.S.; Drutskaya, M.S.; Atretkhany, K.S.-N. The Role of Microglia in the Homeostasis of the Central Nervous System and Neuroinflammation. Mol. Biol. 2019, 53, 696–703. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, J.A.; Kavanagh, E.; Engskog-Vlachos, P.; Engskog, M.K.R.; Herrera, A.J.; Espinosa-Oliva, A.M.; Joseph, B.; Hajji, N.; Venero, J.L.; Burguillos, M.A. Microglia: Agents of the CNS Pro-Inflammatory Response. Cells 2020, 9, 1717. [Google Scholar] [CrossRef]
- Zhang, T.; Ma, C.; Zhang, Z.; Zhang, H.; Hu, H. NF-κB Signaling in Inflammation and Cancer. MedComm 2021, 2, 618–653. [Google Scholar] [CrossRef]
- Gao, C.; Jiang, J.; Tan, Y.; Chen, S. Microglia in Neurodegenerative Diseases: Mechanism and Potential Therapeutic Targets. Signal Transduct. Target. Ther. 2023, 8, 359. [Google Scholar] [CrossRef] [PubMed]
- Dakhli, N.; López-Jiménez, A.; Cárdenas, C.; Hraoui, M.; Dhaouafi, J.; Bernal, M.; Sebai, H.; Medina, M.Á. Urtica dioica Aqueous Leaf Extract: Chemical Composition and In Vitro Evaluation of Biological Activities. Int. J. Mol. Sci. 2025, 26, 1220. [Google Scholar] [CrossRef] [PubMed]
- Umpierre, A.D.; Wu, L.-J. How Microglia Sense and Regulate Neuronal Activity. Glia 2021, 69, 1637–1653. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Mathew, S.; Gamage, R.; Bodkin, F.; Doyle, K.; Rossetti, I.; Wagnon, I.; Zhou, X.; Raju, R.; Gyengesi, E.; et al. From the Bush to the Brain: Preclinical Stages of Ethnobotanical Anti-Inflammatory and Neuroprotective Drug Discovery—An Australian Example. Int. J. Mol. Sci. 2023, 24, 11086. [Google Scholar] [CrossRef]
- Pons, V.; Rivest, S. Targeting Systemic Innate Immune Cells as a Therapeutic Avenue for Alzheimer Disease. Pharmacol. Rev. 2022, 74, 1–17. [Google Scholar] [CrossRef]
- McFarland, K.N.; Chakrabarty, P. Microglia in Alzheimer’s Disease: A Key Player in the Transition between Homeostasis and Pathogenesis. Neurotherapeutics 2023, 19, 186–208. [Google Scholar] [CrossRef]
- Kang, Y.J.; Hyeon, S.J.; McQuade, A.; Lim, J.; Baek, S.H.; Diep, Y.N.; Do, K.V.; Jeon, Y.; Jo, D.; Lee, C.J.; et al. Neurotoxic Microglial Activation via IFNγ-Induced Nrf2 Reduction Exacerbating Alzheimer’s Disease. Adv. Sci. 2024, 11, 2304357. [Google Scholar] [CrossRef]
- Slavich, G.M.; Sacher, J. Stress, Sex Hormones, Inflammation, and Major Depressive Disorder: Extending Social Signal Transduction Theory of Depression to Account for Sex Differences in Mood Disorders. Psychopharmacology 2019, 236, 3063–3079. [Google Scholar] [CrossRef]
- Kesika, P.; Suganthy, N.; Sivamaruthi, B.S.; Chaiyasut, C. Role of Gut-Brain Axis, Gut Microbial Composition, and Probiotic Intervention in Alzheimer’s Disease. Life Sci. 2021, 264, 118627. [Google Scholar] [CrossRef]
- Talamonti, E.; Sasso, V.; To, H.; Haslam, R.P.; Napier, J.A.; Ulfhake, B.; Pernold, K.; Asadi, A.; Hessa, T.; Jacobsson, A. Impairment of DHA Synthesis Alters the Expression of Neuronal Plasticity Markers and the Brain Inflammatory Status in Mice. FASEB J. 2020, 34, 2024. [Google Scholar] [CrossRef]
- Xiang, X.; Wang, X.; Wu, Y.; Hu, J.; Li, Y.; Jin, S.; Wu, X. Activation of GPR55 Attenuates Cognitive Impairment, Oxidative Stress, Neuroinflammation, and Synaptic Dysfunction in a Streptozotocin-Induced Alzheimer’s Mouse Model. Pharmacol. Biochem. Behav. 2022, 214, 173340. [Google Scholar] [CrossRef] [PubMed]
- Bisht, K.; Sharma, K.; Tremblay, M.-È. Chronic Stress as a Risk Factor for Alzheimer’s Disease: Roles of Microglia-Mediated Synaptic Remodeling, Inflammation, and Oxidative Stress. Neurobiol. Stress. 2018, 9, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Teleanu, D.M.; Niculescu, A.-G.; Lungu, I.I.; Radu, C.I.; Vladâcenco, O.; Roza, E.; Costăchescu, B.; Grumezescu, A.M.; Teleanu, R.I. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 5938. [Google Scholar] [CrossRef]
- Misrani, A.; Tabassum, S.; Yang, L. Mitochondrial Dysfunction and Oxidative Stress in Alzheimer’s Disease. Front. Aging Neurosci. 2021, 13, 617588. [Google Scholar] [CrossRef] [PubMed]
- Olufunmilayo, E.O.; Gerke-Duncan, M.B.; Holsinger, R.M.D. Oxidative Stress and Antioxidants in Neurodegenerative Disorders. Antioxidants 2023, 12, 517. [Google Scholar] [CrossRef]
- Ashrafian, H.; Zadeh, E.H.; Khan, R.H. Review on Alzheimer’s Disease: Inhibition of Amyloid Beta and Tau Tangle Formation. Int. J. Biol. Macromol. 2021, 167, 382–394. [Google Scholar] [CrossRef]
- Duran-Prado, M.; Fj, S.-B.; Fj, A.; Jr, P.; Llanos, E.; Henares Chavarino, Á.A.; Pedrero-Prieto, C.; Garcia, S.; Frontiñán-Rubio, J.; Sancho-Bielsa, F.; et al. Interplay Between Mitochondrial Oxidative Disorders and Proteostasis in Alzheimer’s Disease. Front. Neurosci. 2020, 13, 1444. [Google Scholar]
- Lauretti, E.; Dincer, O.; Praticò, D. Glycogen Synthase Kinase-3 Signaling in Alzheimer’s Disease. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2020, 1867, 118664. [Google Scholar] [CrossRef]
- Yao, Y.; Chinnici, C.; Tang, H.; Trojanowski, J.Q.; Lee, V.M.; Praticò, D. Brain Inflammation and Oxidative Stress in a Transgenic Mouse Model of Alzheimer-like Brain Amyloidosis. J. Neuroinflamm. 2004, 1, 21. [Google Scholar] [CrossRef]
- Belkacemi, A.; Ramassamy, C. Time Sequence of Oxidative Stress in the Brain from Transgenic Mouse Models of Alzheimer’s Disease Related to the Amyloid-β Cascade. Free Radic. Biol. Med. 2012, 52, 593–600. [Google Scholar] [CrossRef]
- Dhapola, R.; Beura, S.K.; Sharma, P.; Singh, S.K.; HariKrishnaReddy, D. Oxidative Stress in Alzheimer’s Disease: Current Knowledge of Signaling Pathways and Therapeutics. Mol. Biol. Rep. 2024, 51, 48. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-W.; Zong, H.-F.; Ma, K.-G.; Zhai, W.-Y.; Yang, W.-N.; Hu, X.-D.; Xu, J.-H.; Chen, X.-L.; Ji, S.-F.; Qian, Y.-H. Activation of A7 Nicotinic Acetylcholine Receptor Alleviates Aβ1-42-Induced Neurotoxicity via Downregulation of P38 and JNK MAPK Signaling Pathways. Neurochem. Int. 2018, 120, 238–250. [Google Scholar] [CrossRef]
- Kamat, P.K.; Kalani, A.; Rai, S.; Swarnkar, S.; Tota, S.; Nath, C.; Tyagi, N. Mechanism of Oxidative Stress and Synapse Dysfunction in the Pathogenesis of Alzheimer’s Disease: Understanding the Therapeutics Strategies. Mol. Neurobiol. 2016, 53, 648–661. [Google Scholar] [CrossRef]
- Shah, S.Z.A.; Zhao, D.; Hussain, T.; Sabir, N.; Mangi, M.H.; Yang, L. P62-Keap1-NRF2-ARE Pathway: A Contentious Player for Selective Targeting of Autophagy, Oxidative Stress and Mitochondrial Dysfunction in Prion Diseases. Front. Mol. Neurosci. 2018, 11, 310. [Google Scholar] [CrossRef]
- Kaur, K.; Narang, R.K.; Singh, S. Role of Nrf2 in Oxidative Stress, Neuroinflammation and Autophagy in Alzheimer’s Disease: Regulation of Nrf2 by Different Signaling Pathways. Curr. Mol. Med. 2025, 25, 372–387. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, W.; Zhao, M.; Ma, L.; Jiang, X.; Pei, H.; Cao, Y.; Li, H. Interaction between Aβ and Tau in the Pathogenesis of Alzheimer’s Disease. Int. J. Biol. Sci. 2021, 17, 2181–2192. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Goyal, L.; Singh, S. Tremor and Rigidity in Patients with Parkinson’s Disease: Emphasis on Epidemiology, Pathophysiology and Contributing Factors. CNS Neurol. Disord.-Drug Targets. 2022, 21, 596–609. [Google Scholar] [CrossRef]
- Váradi, C. Clinical Features of Parkinson’s Disease: The Evolution of Critical Symptoms. Biology 2020, 9, 103. [Google Scholar] [CrossRef] [PubMed]
- Rawat, C.S.; Pandey, S. Parkinson’s Disease–An Introduction. In Techniques for Assessment of Parkinsonism for Diagnosis and Rehabilitation; Arjunan, S.P., Kumar, D.K., Eds.; Series in BioEngineering; Springer Singapore: Singapore, 2022; pp. 1–24. ISBN 9789811630552. [Google Scholar]
- Tröster, A.I. Parkinson’s Disease and Parkinsonism. In APA Handbook of Neuropsychology: Neurobehavioral Disorders and Conditions: Accepted Science and Open Questions; American Psychological Association: Washington, DC, USA, 2023. [Google Scholar]
- Jankovic, J.; Lang, A.E. Diagnosis and Assessment of Parkinson Disease and Other Movement Disorders. In Bradley and Daroff’s Neurology in Clinical Practice, 8th ed.; Daroff, R.B., Jankovic, J., Mazziotta, J.C., Pomeroy, S.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 310–337. [Google Scholar]
- Jankovic, J.; Tan, E.K. Parkinson’s Disease: Etiopathogenesis and Treatment. J. Neurol. Neurosurg. Psychiatry 2020, 91, 795–808. [Google Scholar] [CrossRef]
- Mey, G.M.; Mahajan, K.R.; DeSilva, T.M. Neurodegeneration in Multiple Sclerosis. WIREs Mech. Dis. 2023, 15, e1583. [Google Scholar] [CrossRef]
- Balasa, R.; Barcutean, L.; Mosora, O.; Manu, D. Reviewing the Significance of Blood–Brain Barrier Disruption in Multiple Sclerosis Pathology and Treatment. Int. J. Mol. Sci. 2021, 22, 8370. [Google Scholar] [CrossRef]
- Celarain, N.; Tomas-Roig, J. Aberrant DNA Methylation Profile Exacerbates Inflammation and Neurodegeneration in Multiple Sclerosis Patients. J. Neuroinflamm. 2020, 17, 21. [Google Scholar] [CrossRef] [PubMed]
- Quincozes-Santos, A.; Santos, C.L.; De Souza Almeida, R.R.; Da Silva, A.; Thomaz, N.K.; Costa, N.L.F.; Weber, F.B.; Schmitz, I.; Medeiros, L.S.; Medeiros, L.; et al. Gliotoxicity and Glioprotection: The Dual Role of Glial Cells. Mol. Neurobiol. 2021, 58, 6577–6592. [Google Scholar] [CrossRef]
- Barrie, W.; Yang, Y.; Irving-Pease, E.K.; Attfield, K.E.; Scorrano, G.; Jensen, L.T.; Armen, A.P.; Dimopoulos, E.A.; Stern, A.; Refoyo-Martinez, A.; et al. Elevated Genetic Risk for Multiple Sclerosis Emerged in Steppe Pastoralist Populations. Nature 2024, 625, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Läderach, F.; Münz, C. Epstein Barr Virus Exploits Genetic Susceptibility to Increase Multiple Sclerosis Risk. Microorganisms 2021, 9, 2191. [Google Scholar] [CrossRef] [PubMed]
- Ishina, I.A.; Zakharova, M.Y.; Kurbatskaia, I.N.; Mamedov, A.E.; Belogurov, A.A., Jr.; Gabibov, A.G. MHC class II presentation in autoimmunity. Cells 2023, 12, 314. [Google Scholar] [CrossRef]
- Accogli, T.; Bruchard, M.; Végran, F. Modulation of CD4 T Cell Response According to Tumor Cytokine Microenvironment. Cancers 2021, 13, 373. [Google Scholar] [CrossRef]
- Rizea, R.E.; Corlatescu, A.-D.; Costin, H.P.; Dumitru, A.; Ciurea, A.V. Understanding Amyotrophic Lateral Sclerosis: Pathophysiology, Diagnosis, and Therapeutic Advances. Int. J. Mol. Sci. 2024, 25, 9966. [Google Scholar] [CrossRef]
- Ashok Verma, M.D. Clinical Manifestation and Management of Amyotrophic Lateral Sclerosis. Exon Publ. 2021, 1–14. [Google Scholar] [CrossRef]
- Shoesmith, C. Chapter 9—Palliative Care Principles in ALS. In Handbook of Clinical Neurology; Miyasaki, J.M., Kluger, B.M., Eds.; Neuropalliative Care, Part II; Elsevier: Amsterdam, The Netherlands, 2023; Volume 191, pp. 139–155. [Google Scholar]
- Rusina, R.; Vandenberghe, R.; Bruffaerts, R. Cognitive and Behavioral Manifestations in ALS: Beyond Motor System Involvement. Diagnostics 2021, 11, 624. [Google Scholar] [CrossRef]
- Goutman, S.A.; Hardiman, O.; Al-Chalabi, A.; Chió, A.; Savelieff, M.G.; Kiernan, M.C.; Feldman, E.L. Emerging Insights into the Complex Genetics and Pathophysiology of Amyotrophic Lateral Sclerosis. Lancet Neurol. 2022, 21, 465–479. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Miao, Z.; Liu, Y.; Chen, X.; Wang, H.; Su, J.; Chen, J. The Brain–Gut–Bone Axis in Neurodegenerative Diseases: Insights, Challenges, and Future Prospects. Adv. Sci. 2024, 11, 2307971. [Google Scholar] [CrossRef]
- Rummens, J.; Da Cruz, S. RNA-Binding Proteins in ALS and FTD: From Pathogenic Mechanisms to Therapeutic Insights. Mol. Neurodegener. 2025, 20, 64. [Google Scholar] [CrossRef]
- Bartl, S.; Xie, Y.; Potluri, N.; Kesineni, R.; Hencak, K.; Cengio, L.D.; Balazs, K.; Oueslati, A.; Parth, M.; Salhat, N.; et al. Reducing Huntingtin by Immunotherapy Delays Disease Progression in a Mouse Model of Huntington Disease. Neurobiol. Dis. 2024, 190, 106376. [Google Scholar] [CrossRef] [PubMed]
- Holen, M.M. Characterization of Genes and Proteins Related to Chitin Metabolism in Atlantic Salmon. Ph.D. Thesis, Norwegian University of Life Sciences, Ås, Norway, 2022. [Google Scholar]
- Migliaccio, R.; Tanguy, D.; Bouzigues, A.; Sezer, I.; Dubois, B.; Le Ber, I.; Batrancourt, B.; Godefroy, V.; Levy, R. Cognitive and Behavioural Inhibition Deficits in Neurodegenerative Dementias. Cortex 2020, 131, 265–283. [Google Scholar] [CrossRef] [PubMed]
- Johnston, H.E.; Samant, R.S. Alternative Systems for Misfolded Protein Clearance: Life beyond the Proteasome. FEBS J. 2021, 288, 4464–4487. [Google Scholar] [CrossRef]
- Iovino, L.; Tremblay, M.E.; Civiero, L. Glutamate-Induced Excitotoxicity in Parkinson’s Disease: The Role of Glial Cells. J. Pharmacol. Sci. 2020, 144, 151–164. [Google Scholar] [CrossRef]
- Gatto, E.M.; Rojas, N.G.; Persi, G.; Etcheverry, J.L.; Cesarini, M.E.; Perandones, C. Huntington Disease: Advances in the Understanding of Its Mechanisms. Clin. Park. Relat. Disord. 2020, 3, 100056. [Google Scholar] [CrossRef]
- Tunalı, N.E. Neurodegenerative Diseases: Molecular Mechanisms and Current Therapeutic Approaches; BoD—Books on Demand: Norderstedt, Germany, 2021; ISBN 978-1-83880-149-6. [Google Scholar]
- Watson, N.; Brandel, J.-P.; Green, A.; Hermann, P.; Ladogana, A.; Lindsay, T.; Mackenzie, J.; Pocchiari, M.; Smith, C.; Zerr, I. The Importance of Ongoing International Surveillance for Creutzfeldt–Jakob Disease. Nat. Rev. Neurol. 2021, 17, 362–379. [Google Scholar] [CrossRef]
- Ritchie, D.L.; Barria, M.A. Prion Diseases: A Unique Transmissible Agent or a Model for Neurodegenerative Diseases? Biomolecules 2021, 11, 207. [Google Scholar] [CrossRef]
- Salehi, P.; Clark, M.; Pinzon, J.; Patil, A. Sporadic Creutzfeldt-Jakob Disease. Am. J. Emerg. Med. 2022, 52, e1–e267. [Google Scholar] [CrossRef] [PubMed]
- Rissardo, J.P.; Caprara, A.L.F. A Literature Review of Movement Disorder Associated with Medications and Systemic Diseases. Preprints 2024, 2024020070. [Google Scholar] [CrossRef]
- Saitoh, Y.; Mizusawa, H. Prion Diseases, Always a Threat? J. Neurol. Sci. 2024, 463, 123119. [Google Scholar] [CrossRef] [PubMed]
- Jaunmuktane, Z.; Brandner, S. Invited Review: The Role of Prion-like Mechanisms in Neurodegenerative Diseases. Neuropathol. Appl. Neurobiol. 2020, 46, 522–545. [Google Scholar] [CrossRef]
- Tiffin, H. Foot in Mouth: Animals, Disease, and the Cannibal Complex. Mosaic Interdiscip. Crit. J. 2021, 54, 131–146. [Google Scholar] [CrossRef]
- Beasley, A.N. Doktor Bilong Kuru; Xlibris Corporation: Bloomington, IN, USA, 2024; ISBN 978-1-66988-097-4. [Google Scholar]
- Srivastava, N.K.; Yadav, R.; Mukherjee, S. Chapter 5—Interconnectivity of Gene, Immune System, and Metabolism in the Muscle Pathology of Duchenne Muscular Dystrophy (DMD). In The Molecular Immunology of Neurological Diseases; Kumar, S., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 51–74. ISBN 978-0-12-821974-4. [Google Scholar]
- Felling, R.J.; Sun, L.R. Stroke in Neonates. In Principles of Neonatology; Maheshwari, A., Ed.; Elsevier: New Delhi, India, 2024; pp. 438–443. ISBN 978-0-323-69415-5. [Google Scholar]
- Whitaker, E.E.; Cipolla, M.J. Chapter 16—Perinatal Stroke. In Handbook of Clinical Neurology; Steegers, E.A.P., Cipolla, M.J., Miller, E.C., Eds.; Neurology and Pregnancy; Elsevier: Amsterdam, The Netherlands, 2020; Volume 171, pp. 313–326. [Google Scholar]
- Elgendy, M.M.; Puthuraya, S.; LoPiccolo, C.; Liu, W.; Aly, H.; Karnati, S. Neonatal Stroke: Clinical Characteristics and Neurodevelopmental Outcomes. Pediatr. Neonatol. 2022, 63, 41–47. [Google Scholar] [CrossRef]
- Thomas, S.; Conway, K.M.; Fapo, O.; Street, N.; Mathews, K.D.; Mann, J.R.; Romitti, P.A.; Soim, A.; Westfield, C.; Fox, D.J.; et al. Time to Diagnosis of Duchenne Muscular Dystrophy Remains Unchanged: Findings from the Muscular Dystrophy Surveillance, Tracking, and Research Network, 2000–2015. Muscle Nerve 2022, 66, 193–197. [Google Scholar] [CrossRef]
- Darmahkasih, A.J.; Rybalsky, I.; Tian, C.; Shellenbarger, K.C.; Horn, P.S.; Lambert, J.T.; Wong, B.L. Neurodevelopmental, Behavioral, and Emotional Symptoms Common in Duchenne Muscular Dystrophy. Muscle Nerve 2020, 61, 466–474. [Google Scholar] [CrossRef]
- Limback, K.; Jacobus, W.; Wiggins-McDaniel, A.; Newman, R.; White, R. A Comprehensive Review of Duchenne Muscular Dystrophy: Genetics, Clinical Presentation, Diagnosis, and Treatment. Biotechnol. J. Int. 2022, 26, 1–31. [Google Scholar] [CrossRef]
- Kumar, S.H.; Athimoolam, K.; Suraj, M.; Das, M.S.D.C.; Muralidharan, A.; Jeyam, D.; Ashokan, J.; Karthikeyan, P.; Krishna, R.; Khanna-Gupta, A.; et al. Comprehensive Genetic Analysis of 961 Unrelated Duchenne Muscular Dystrophy Patients: Focus on Diagnosis, Prevention and Therapeutic Possibilities. PLoS ONE 2020, 15, e0232654. [Google Scholar] [CrossRef]
- Zabłocka, B.; Górecki, D.C.; Zabłocki, K. Disrupted Calcium Homeostasis in Duchenne Muscular Dystrophy: A Common Mechanism behind Diverse Consequences. Int. J. Mol. Sci. 2021, 22, 11040. [Google Scholar] [CrossRef]
- Elasbali, A.M.; Al-Soud, W.A.; Anwar, S.; Alhassan, H.H.; Adnan, M.; Hassan, M.I. A Review on Mechanistic Insights into Structure and Function of Dystrophin Protein in Pathophysiology and Therapeutic Targeting of Duchenne Muscular Dystrophy. Int. J. Biol. Macromol. 2024, 264, 130544. [Google Scholar] [CrossRef]
- Dowling, P.; Swandulla, D.; Ohlendieck, K. Cellular Pathogenesis of Duchenne Muscular Dystrophy: Progressive Myofibre Degeneration, Chronic Inflammation, Reactive Myofibrosis and Satellite Cell Dysfunction. Eur. J. Transl. Myol. 2023, 33, 11856. [Google Scholar] [CrossRef] [PubMed]
- Alkhalifa, A.E.; Alkhalifa, O.; Durdanovic, I.; Ibrahim, D.R.; Maragkou, S. Oxidative Stress and Mitochondrial Dysfunction in Alzheimer’s Disease: Insights into Pathophysiology and Treatment. J. Dement. Alzheimer’s Dis. 2025, 2, 17. [Google Scholar] [CrossRef]
- Vidović, M.; Rikalovic, M.G. Alpha-Synuclein Aggregation Pathway in Parkinson’s Disease: Current Status and Novel Therapeutic Approaches. Cells 2022, 11, 1732. [Google Scholar] [CrossRef]
- Wang, P.-F.; Jiang, F.; Zeng, Q.-M.; Yin, W.-F.; Hu, Y.-Z.; Li, Q.; Hu, Z.-L. Mitochondrial and Metabolic Dysfunction of Peripheral Immune Cells in Multiple Sclerosis. J. Neuroinflamm. 2024, 21, 28. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Xu, R. Current Insights in the Molecular Genetic Pathogenesis of Amyotrophic Lateral Sclerosis. Front. Neurosci. 2023, 17, 1189470. [Google Scholar] [CrossRef]
- Du, X.; Dong, Q.; Zhu, J.; Li, L.; Yu, X.; Liu, R. Rutin Ameliorates ALS Pathology by Reducing SOD1 Aggregation and Neuroinflammation in an SOD1-G93A Mouse Model. Int. J. Mol. Sci. 2024, 25, 10392. [Google Scholar] [CrossRef]
- Tarasevičienė, Ž.; Vitkauskaitė, M.; Paulauskienė, A.; Černiauskienė, J. Wild Stinging Nettle (Urtica dioica L.) Leaves and Roots Chemical Composition and Phenols Extraction. Plants 2023, 12, 309. [Google Scholar] [CrossRef]
- Jurcau, A. Molecular Pathophysiological Mechanisms in Huntington’s Disease. Biomedicines 2022, 10, 1432. [Google Scholar] [CrossRef]
- Franco-Iborra, S.; Plaza-Zabala, A.; Montpeyo, M.; David, S.; Vila, M.; Martinez-Vicente, M. Mutant HTT (Huntingtin) Impairs Mitophagy in a Cellular Model of Huntington Disease. Autophagy 2021, 17, 672–689. [Google Scholar] [CrossRef] [PubMed]
- Taran, A.S.; Shuvalova, L.D.; Lagarkova, M.A.; Alieva, I.B. Huntington’s Disease—An Outlook on the Interplay of the HTT Protein, Microtubules and Actin Cytoskeletal Components. Cells 2020, 9, 1514. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.; Mailo, J.; Dunbar, M. Perinatal Stroke in Fetuses, Preterm and Term Infants. In Seminars in Pediatric Neurology; Elsevier: Amsterdam, The Netherlands, 2022; Volume 43, p. 100988. [Google Scholar]
- Alimoddin, M.; Jayakumari, S.; Fatima, B.; Hasan, N.; Ali, S.; Sami, F.; Ali, S.; Nair, R.S.; Ansari, M.T. Pharmacological Applications of Urtica dioica: A Comprehensive Review of Its Traditional Use and Modern Scientific Evidence. J. Herb. Med. 2024, 48, 100935. [Google Scholar] [CrossRef]
- Hedayati Ch, M.; Abedinzade, M.; Khanaki, K.; Khakpour Tleghani, B.; Golshekan, M.; Mohammadi, E. Comparative Protective Effects of Viola Spathulata, Urtica dioica, and Lamium Album on Endoplasmic Reticulum (ER) Stress in Rat Stroke Model. Casp. J. Neurol. Sci. 2021, 7, 172–179. [Google Scholar] [CrossRef]
- Moda, F.; Ciullini, A.; Dellarole, I.; Lombardo, A.; Campanella, N.; Bufano, G.; Giaccone, G. Secondary protein aggregates in neurodegenerative diseases: Almost the rule rather than the exception. Front. Biosci. 2023, 28, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Tahir, W.; Zafar, S.; Llorens, F.; Arora, A.S.; Thüne, K.; Schmitz, M.; Gotzmann, N.; Kruse, N.; Mollenhauer, B.; Torres, J.M. Molecular Alterations in the Cerebellum of Sporadic Creutzfeldt–Jakob Disease Subtypes with DJ-1 as a Key Regulator of Oxidative Stress. Mol. Neurobiol. 2018, 55, 517–537. [Google Scholar] [CrossRef]
- Dhouibi, R.; Affes, H.; Ben Salem, M.; Charfi, S.; Marekchi, R.; Hammami, S.; Zeghal, K.; Ksouda, K. Protective Effect of Urtica dioica in Induced Neurobehavioral Changes, Nephrotoxicity and Hepatotoxicity after Chronic Exposure to Potassium Bromate in Rats. Environ. Pollut. 2021, 287, 117657. [Google Scholar] [CrossRef]
- Mareedu, S.; Million, E.D.; Duan, D.; Babu, G.J. Abnormal Calcium Handling in Duchenne Muscular Dystrophy: Mechanisms and Potential Therapies. Front. Physiol. 2021, 12, 647010. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Quispe, C.; Herrera-Bravo, J.; Martorell, M.; Sharopov, F.; Tumer, T.B.; Kurt, B.; Lankatillake, C.; Docea, A.O.; Moreira, A.C.; et al. A Pharmacological Perspective on Plant-Derived Bioactive Molecules for Epilepsy. Neurochem. Res. 2021, 46, 2205–2225. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Rapposelli, S.; Sestito, S.; Herrera-Bravo, J.; Arancibia-Diaz, A.; Salazar, L.A.; Yeskaliyeva, B.; Beyatli, A.; Leyva-Gómez, G.; González-Contreras, C.; et al. Multi-Target Mechanisms of Phytochemicals in Alzheimer’s Disease: Effects on Oxidative Stress, Neuroinflammation and Protein Aggregation. J. Pers. Med. 2022, 12, 1515. [Google Scholar] [CrossRef]
- Patel, S.S.; Udayabanu, M. Urtica dioica Extract Attenuates Depressive like Behavior and Associative Memory Dysfunction in Dexamethasone Induced Diabetic Mice. Metab. Brain Dis. 2014, 29, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Aziz, N.; Vinod, Y.; Sarkar, D.; Wal, A.; Verma, V.; Wal, P. Urtica dioica (Stinging Nettle): A Comprehensive & Concise Review on Its Nutritional Profile and Therapeutic Applications. Curr. Tradit. Med. 2023, 10, e120923220975. [Google Scholar] [CrossRef]
- Devkota, H.P.; Paudel, K.R.; Khanal, S.; Baral, A.; Panth, N.; Adhikari-Devkota, A.; Jha, N.K.; Das, N.; Singh, S.K.; Chellappan, D.K.; et al. Stinging Nettle (Urtica dioica L.): Nutritional Composition, Bioactive Compounds, and Food Functional Properties. Molecules 2022, 27, 5219. [Google Scholar] [CrossRef] [PubMed]
Phytochemicals [References] | Chira et al. 2022 [8] | Ðurovic et al. 2024 [38] | Koczkoday et al. 2023 [39] | Yousuf et al. 2022 [40] | Brahmi-Chendouh et al. 2021 [41] | Ðurovic et al. 2023 [42] |
---|---|---|---|---|---|---|
Protocatechuic acid [38,42] | n.d. | X | n.d. | n.d. | n.d. | X |
p-Hydroxybenzoic acid [38,41] | n.d. | X | n.d. | n.d. | X | n.d. |
Caffeic acid [38,41,42] | n.d. | X | n.d. | n.d. | X | X |
Vanillic acid [38,42] | n.d. | X | n.d. | n.d. | n.d. | X |
Aesculin [38] | n.d. | X | n.d. | n.d. | n.d. | n.d. |
5-O-Caffeoylquinic acid [38,39] | n.d. | X | X | n.d. | n.d. | n.d. |
p-Coumaric acid [38,41,42] | n.d. | X | n.d. | n.d. | X | X |
Ferulic acid [38,42] | n.d. | X | n.d. | n.d. | n.d. | X |
p-Hydroxyphenylacetic [38] | n.d. | X | n.d. | n.d. | n.d. | N.d. |
Quercetin-3-O-galactoside [38,39] | n.d. | X | X | n.d. | n.d. | N.d. |
Quercetin-3-O-rutinoside (Rutin) [38,39,40,42] | n.d. | X | X | X | n.d. | X |
Apigenin-7-O-glucoside [38] | n.d. | X | n.d. | n.d. | n.d. | n.d. |
Quercetin [38,40,42] | n.d. | X | n.d. | X | n.d. | X |
Luteolin [38,41] | n.d. | X | n.d. | n.d. | X | n.d. |
Naringin [38] | n.d. | X | n.d. | n.d. | n.d. | n.d. |
Naringenin [38,42] | n.d. | X | n.d. | n.d. | n.d. | X |
Kaempferol [38,42] | n.d. | X | n.d. | n.d. | n.d. | X |
Kaempferol 3-O-glucoside [42] | n.d. | n.d. | n.d. | n.d. | n.d. | X |
Apigenin [38,41] | n.d. | X | n.d. | n.d. | X | n.d. |
Isorhamnetin-3-O-rutinoside [38] | n.d. | X | n.d. | n.d. | n.d. | n.d. |
Taxifolin [38] | n.d. | X | n.d. | n.d. | n.d. | n.d. |
Isorhamnetin-3-O-glucoside [38] | n.d. | X | n.d. | n.d. | n.d. | n.d. |
Daidzein [38] | n.d. | X | n.d. | n.d. | n.d. | n.d. |
Eriodictyol [38] | n.d. | X | n.d. | n.d. | n.d. | n.d. |
Chrysoeriol [38] | n.d. | X | n.d. | n.d. | n.d. | n.d. |
Chrysin [38] | n.d. | X | n.d. | n.d. | n.d. | n.d. |
Acacetin [38] | n.d. | X | n.d. | n.d. | n.d. | n.d. |
Genkwanin [38] | n.d. | X | n.d. | n.d. | n.d. | n.d. |
Galangin [38] | n.d. | X | n.d. | n.d. | n.d. | n.d. |
Kaempferide [38] | n.d. | X | n.d. | n.d. | n.d. | n.d. |
Cinnamic acid [42] | n.d. | n.d. | n.d. | n.d. | n.d. | X |
Syringic acid [42] | n.d. | n.d. | n.d. | n.d. | n.d. | X |
Chlorogenic acid [39,42] | n.d. | n.d. | X | n.d. | n.d. | X |
Neochlorogenic acid [39] | n.d. | n.d. | X | n.d. | n.d. | n.d. |
Sinapic acid [42] | n.d. | n.d. | n.d. | n.d. | n.d. | X |
Gallic acid [42] | n.d. | n.d. | n.d. | n.d. | n.d. | X |
Cichoric acid [39] | n.d. | n.d. | X | n.d. | n.d. | n.d. |
Hyperoside [39] | n.d. | n.d. | X | n.d. | n.d. | n.d. |
Rutoside [39] | n.d. | n.d. | X | n.d. | n.d. | n.d. |
Pentenal [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
1-8-Cineol [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
Cis-linalool oxide [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
Trans-linalool oxide [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
β-linalool [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
Camphor [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
Menthone [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
Cyclohexanone [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
Borneol [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
Menthol [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
α-Terpineol [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
Carvone [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
Borneol-acetate [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
Cariophylène oxide [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
Globulol [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
Ethyl palmitate [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
Phytol [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
Ethyl oleate [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
Cetanol [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
Tetradecanoic acid [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
Eicosanol [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
Eicosene [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
Decanol [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
Loxanol [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
3-Pyridinecarbonitrile [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
3-Ecosene (E) [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
Benzene dicarboxylic acid [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
Oleic acid [8,38,41,42] | X | X | n.d. | n.d. | X | X |
Diethyl methyl borane [8] | X | n.d. | n.d. | n.d. | n.d. | n.d. |
Phytochemicals [References] | Animal Model or Human Study | Protective and Therapeutic Effects |
---|---|---|
Flavonoids (rutin, isoquercetin, kaempferol-3-O-rutinoside, isorhamnetin-3-O-rutinoside, kaempferol-3-O-glucoside, isorhamnetin-3-O-glucoside) [49] | Rat surgical endometriosis model | Significantly reduces implant volumes and adhesion scores of endometriotic implants. Decreases TNF-α, VEGF, and IL-6 levels in peritoneal fluids. Histopathological findings support the biological activity results. |
Caffeoylmalic acid [50] | Mouse diabetes model | Exhibits antidiabetic activity by stimulating glucose absorption and reducing blood glucose levels. Ameliorates lipid profile, liver, and blood parameters, with a moderate effect on insulin secretion. Inhibits α-amylase and α-glucosidase activities. |
2,4-di-t-butylphenol, neophytadiene, butyl tetradecyl ester, dibutyl phthalate, bis(2-ethyl hexyl) maleate, 1,2-benzenedicarboxylic acid, 2-t-butyl-4,6-bis(3,5-di-t-butyl-4-hydroxybenzyl)phenol [51] | Wistar rats | Exhibits anti-inflammatory activity (part of fraction-II) with 48.83% inhibition at 200 mg/kg bw/pro die, comparable to indomethacin. Shows anti-microbial activity against various bacterial strains (e.g., Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Shigella flexneri, and Salmonella typhi). |
Vitexin (apigenin-8C-glucoside), chlorogenic acid, caffeic acid, vicenin-2 (6,8-di-C-glucosyl apigenin) [52] | Mice (writhing, formalin, and hot plate tests) | Produced significant inhibition on nociception induced by acetic acid and formalin: at a dose of 10 mg/kg bw/pro die, intraperitoneally: vitexin showed 91% inhibition, chlorogenic acid 72%, caffeic acid 41%, and vicenin-2 41%. The activation of cholinergic systems seems to be involved in the mechanism of antinociception |
Phenolic acids (5-O-caffeoylquinic acid), Flavonol glycosides (rutin, isoquercitrin, kaempferol 3-O-glucoside), Lignans (secoisolariciresinol, 9,9′-bisacetyl-neo-olivil and their glucosides) [53] | Human platelets Intestinal epithelial cells | Inhibit cyclooxygenase and lipoxygenase pathways. Herb extracts inhibit 12-lipoxygenase pathway; root extracts inhibit thromboxane production. Increase monocyte chemoattractant protein-1 and growth-related oncogene release, stimulating MyD88/NF-κB/p38 signaling, preserving epithelial integrity and enhancing intestinal defense mechanisms. Root extract reduces lipopolysaccharide-induced monocyte chemoattractant protein-1/growth-related oncogene secretion and cyclooxygenase-2 expression, showing potential protective effect against tissue damage caused by inflammation. |
Polyphenols (e.g., flavonoids, phenolic acids) [42] | Human breast cancer cell lines BALB/c mice | Exhibits anti-proliferative and apoptotic effects on various human cancers, including breast cancer. Inhibits cancer cell growth, induces apoptosis, and reduces tumor volume. Enhances sensitivity to chemotherapy drugs like paclitaxel and cisplatin. Possesses anti-oxidant, anti-mutagenic, and anti-proliferative properties. |
Pioglitazone (PIO) [54] | Streptozotocin (STZ)-induced diabetic mice | Reduces oxidative stress and hyperglycemia; alleviates neurotoxicity. |
Vitamin E [55] | Streptozotocin (STZ)-induced diabetic mice | Reduces oxidative stress and ameliorates pain. |
Quercetin [56] | Mouse (Chronic Unpredicted Stress Model) | Reduces anxiety. Attenuates depression. Improves cognitive dysfunction. Normalizes locomotor activity. Lowers oxidative stress markers. Enhances antioxidant levels. Reduces pro-inflammatory cytokines. Prevents hippocampal neuronal damage. |
Ferulic acid [57] | Rats | Antioxidant potential: ferulic acid, isolated from the ethyl acetate fraction (EAF) of U. dioica, showed potent antioxidant properties, reducing oxidative stress in both in-vitro and in-vivo models. Hepatoprotective potential: ferulic acid significantly attenuated increased liver enzymes and oxidative parameters in CCl4-induced hepatotoxicity, demonstrating its protective effect on the liver. |
β-Sitosterol [58] | Rats | Significant reduction in prostate/body weight ratio. Decreased serum testosterone levels. Lowered prostate-specific antigen levels. Improved histological examinations of the prostate. |
Urticol [59] | Ex vivo assays using primary rat hepatocytes | Reduced elevated glucose levels by stimulating glucose uptake by 28.57% compared to untreated control and by 11.45% compared to pioglitazone (100 μM) (p ≤ 0.05). Shows potential as an antihyperglycemic agent, possibly through the induction of Glut-4 expression in hepatocytes. |
Histamine H3R-antagonists (ciproxifan, clobenpropit) [60] | Animal models of schizophrenia (SCZ) | Controlled elevated oxidative stress markers: TBARS, GSH, superoxide dismutase, catalase. Prevented oxidative stress. Alleviated schizophrenic symptoms, focusing on negative symptoms and cognitive deficits. Exhibited antioxidant activity. Supplemented antioxidant needs in SCZ. |
Phytochemicals [References] | Antioxidant Potential | Anti-Inflammatory Potential | Neuroplasticity Potential | Anti-Neuropathological Protein Accumulation Potential |
---|---|---|---|---|
Caffeic acid derivative [61,62,63] | Reduced levels of reactive oxygen species (ROS) and lipid peroxidation (LPO). | Decreased expression of inflammatory markers (Iba-1, GFAP). | Increased expression of synaptic proteins SNAP-25 and PSD-95, improving synaptic function. | Inhibited the formation of α-synuclein oligomers, prevented Aβ peptide fibrillation and oligomerization, and enhanced expression of Nrf2 and HO-1. |
Carvone [64] | Significant increase in both enzymatic and non-enzymatic antioxidants in Freund’s Complete Adjuvant-induced arthritic rats. | Immunostimulating and immunosuppressive effects depending on mouse model. | Improved memory in BALB/c mice; altered memory in C57BL/6J mice. | Inhibits butyrylcholinesterase (40%). |
Quercetin [56,65,66] | High ROS scavenging capability. | Reduce the production of inflammatory cytokines including IL-6 and IL-1. | Increased expression of BDNF, p-CREB, and FoxG1 in DG promoting AHN. | Inhibition of mTORC1, reducing β-amyloid, α-synuclein, or huntingtin levels. |
Acetylcholine [67,68] | Regulation of the activity of antioxidant enzymes (ascorbate peroxidase, catalase). | Inhibiting production of proinflammatory cytokines (ILs, TNF-α, HMGB-1). | Prevent neuronal apoptosis (increase cleaved caspase 3 induced by IFN-β). | High affinity for synuclein binding in Parkinson’s disease patients. |
Histamine [60,69] | Stimulation of immune cells, such as neutrophils, leads to ROS generation. | Inhibit prostaglandin production via COX-1, COX-2, HPGDS to prevent degranulation. | Modulation of protein synthesis-dependent synaptic plasticity via histamine and NMDA receptors. | Preservation of CREB and PSD-95 essential for neuronal and synaptic function. |
Serotonin [70,71] | Elevated serotonin levels improve microcirculation and tissue recovery. | Reduction of pro-inflammatory cytokines (COX-2, IL-6). | Enhanced BDNF, VEGF, arc expression, and increased neurogenesis in the hippocampus. | Modulation of cortical Tau and hippocampal Hsp70, activation of BDNF/TrkB/CREB pathway in neuronal cells. |
Phylloxanthobilin (PxB) [72,73] | Demonstrated the strongest antioxidative properties in cell-free and cell-based systems among tested phyllobilins. | PxB inhibits the catabolism of tryptophan to kynurenine in human peripheral blood mononuclear cells, indicating a suppressive effect on immune activation pathways. | PxB enhances synaptic plasticity, crucial for learning and memory, by inhibiting amyloid β (Aβ) aggregation, a hallmark of AD. | PxB’s ability to modulate immune responses may reduce neurotoxic protein accumulation, mitigating neurodegeneration. |
Lutein [61,74,75] | Scavenges ROS (singlet oxygen, lipid peroxy radicals), reducing oxidative stress linked to metabolic diseases. | Modulates NF-κB, suppressing pro-inflammatory cytokines (IL-1β, TNF-α), preventing chronic inflammation. | Enhances synaptic proteins expression, supporting neuroprotection and reducing cognitive decline. | Mitigates aggregation of misfolded proteins in neurodegenerative conditions through antioxidant activity. |
β-carotene [72,73,74] | Exhibits antioxidant properties with lower bioaccessibility (~10%). | Reduction of iNOS and COX-2 expression in LPS-stimulated macrophages decreases inflammatory mediators. | Enhances synaptic integrity, facilitating LTP and LTD, essential for learning and memory. | Inhibits Aβ peptide aggregation, reducing amyloid fibril formation and stabilizing soluble Aβ forms to prevent toxic plaque formation. |
Phenolic acids [53,76,77,78,79] | Promotes Nrf2 nuclear translocation, enhancing antioxidant defense genes like heme oxygenase and NAD(P)H quinone oxidoreductase 1 (NQO1). | Selective inhibition of cyclooxygenase and lipoxygenase pathways. | Inhibits monoamine oxidase (MAO) enzymes, improving neurotransmitter availability, neuroplasticity, and reducing depressive-like behavior. | Enhances clearance of misfolded proteins via autophagy and the ubiquitin-proteasome system, preventing toxic effects of protein accumulation. |
Flavonol glycosides [53,80] | Eliminate hydroxyl radicals generated from oxidative stress. | Inhibits cyclooxygenase and lipoxygenase pathways. | Stimulates neurite and neuronal synapse formation, enhanced by treatments like RhoA inhibitors. | Promotes misfolded protein clearance through autophagy and ubiquitin-proteasome system, maintaining protein homeostasis. |
Lignans (e.g., secoisolariciresinol, 9,9′-bisacetyl-neo-olivil, 7-hydroxymatairesinol) [53,81,82] | Inhibits lipid peroxidation and eliminates hydroxyl radicals. | Better inhibition of thromboxane production; reduced inflammatory markers. | Protects against neurodegeneration, alleviates memory impairment in Parkinson’s disease models. | Promotes neurotrophic factor expression (e.g., BDNF), enhances misfolded protein clearance, and improves neuronal resilience. |
Disease | Core Pathogenic Mechanisms | Experimental Effects of U. dioica |
---|---|---|
Alzheimer’s Disease (AD) | Tau pathology, oxidative stress dysfunction, and Aβ accumulation [160] | Enhances memory and lessens cholinergic and oxidative stress in animal models of diabetes and scopolamine [70] |
Parkinson’s Disease (PD) | α-synuclein aggregation, mitochondrial damage, and reduced protein clearance [161] | Enhances antioxidant enzyme activity and reduces neuroinflammation (TNF-α/IL-1β levels) in MPTP mouse models [34] |
Multiple Sclerosis (MS) | Immune cell infiltration, ROS-induced demyelination, and axonal deterioration [162] | Reduces Heat Shock Protein 60 (HSP60) expression and promotes neuroregeneration (Experimental Autoimmune Encephalomyelitis) [10] |
Amyotrophic Lateral Sclerosis (ALS) | Genetic mutations (SOD1, TDP-43, FUS, C9orf72), protein aggregation, mitochondrial dysfunction, excitotoxicity, RNA metabolism defects, and neuroinflammation [163] | Flavonoid component (rutin) in U. dioica improves motor outcomes and reduces protein aggregation in SOD1-G93A models [164,165] |
Huntington’s Disease (HD) | Mutant huntingtin (mHTT) aggregation, CAG repeat expansion, and striatal neuron degeneration [166,167,168] | No direct models tested [166]. However, omega-3 fatty acids (e.g., DHA and EPA) in U. dioica may counteract mitochondrial malfunction and excitotoxic brain damage, both significant in HD development [134,135] |
Perinatal Stroke (PS) | Ischemia or hemorrhage, impaired neuronal development, long-term motor and cognitive deficits [169] | Pretreatment with extracts of Viola spathulata, U. dioica, and Lamium album significantly decreased XBP-1 splicing in stroke rats’ brains, indicating ER stress reduction [170]. Specifically, in groups treated with U. dioica, XBP-1 gene splicing was significantly inhibited, even totally halted in healthy rats given U. dioica alone [171] |
Creutzfeldt-Jakob Disease (CJD) | Prion proteins aggregation, oxidative stress, rapid neurodegeneration [172,173] | No experimental data [45]; antioxidative properties suggest potential relevance may be related to the pathophysiology of neurodegeneration, including those found in CJD [174] |
Duchenne Muscular Dystrophy (DMD) | Dystrophin loss destabilizes muscle fibers, facilitates calcium influx, and triggers oxidative and immune stress [175] | No direct studies [45]; neuroprotective, anti-inflammatory, antioxidant, and metabolic benefits supports theoretical applicability [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chira, A.; Lorenzetti, S. Modulatory Effects of Urtica dioica on Neurodegenerative Diseases: Unveiling the Latest Findings and Applications Related to Neuroinflammation, Oxidative Stress, and Cognitive Dysfunction. Antioxidants 2025, 14, 854. https://doi.org/10.3390/antiox14070854
Chira A, Lorenzetti S. Modulatory Effects of Urtica dioica on Neurodegenerative Diseases: Unveiling the Latest Findings and Applications Related to Neuroinflammation, Oxidative Stress, and Cognitive Dysfunction. Antioxidants. 2025; 14(7):854. https://doi.org/10.3390/antiox14070854
Chicago/Turabian StyleChira, Ahlem, and Stefano Lorenzetti. 2025. "Modulatory Effects of Urtica dioica on Neurodegenerative Diseases: Unveiling the Latest Findings and Applications Related to Neuroinflammation, Oxidative Stress, and Cognitive Dysfunction" Antioxidants 14, no. 7: 854. https://doi.org/10.3390/antiox14070854
APA StyleChira, A., & Lorenzetti, S. (2025). Modulatory Effects of Urtica dioica on Neurodegenerative Diseases: Unveiling the Latest Findings and Applications Related to Neuroinflammation, Oxidative Stress, and Cognitive Dysfunction. Antioxidants, 14(7), 854. https://doi.org/10.3390/antiox14070854