The Destructive Cycle in Bronchopulmonary Dysplasia: The Rationale for Systems Pharmacology Therapeutics
Abstract
1. Introduction
2. Signaling Pathways That Amplify the OS and Inflammation in BPD Lungs
2.1. Primary Mechanisms of Inflammation
2.1.1. DAMPs and PRRs
2.1.2. Inflammasome Pathway
2.2. Uncoupled Endothelial Nitric Oxide Synthase (eNOS)
2.3. Endoplasmic Reticulum (ER) Stress or Unfolded Protein Response (UPR)
2.4. Cellular Senescence
2.5. Metabolic Disruption
3. Signaling Pathways That Impair Angiogenesis in BPD Lungs
3.1. eNOS Uncoupling
3.2. ER Stress
3.3. Mitochondrial Dysfunction
3.4. Cellular Senescence
4. Therapies for BPD: From One-Target Drugs to Systems Pharmacology
4.1. Historical and Current One Target–One Drug Paradigm
4.1.1. Steroids
4.1.2. Vitamin A
4.1.3. Caffeine
4.1.4. Stem Cell Therapy
4.2. Systems Pharmacology Therapeutics: A New Paradigm for Complex Diseases
4.2.1. Need for a New Therapeutic Framework
4.2.2. Definition of an SPT
- Multinodal Engagement: Simultaneous modulation of multiple interrelated targets within the same biological circuit.
- Modulatory (Not Ablative) Action: SPTs often tune rather than eliminate function, favoring homeostatic correction over complete suppression.
- Network-Driven Outcomes: Effects emerge from interaction dynamics across the system, not simple target summation.
- Emergent System Reprogramming: This may include the activation of adaptive responses, such as NRF2, the restoration of mitochondrial balance, or the dampening of DAMP signaling.
4.2.3. BPD Complexity and SPTs
- Scavenge ROS while modulating MPO activity.
- Activate NRF2-driven antioxidant gene expression.
- Reduce pro-inflammatory cytokine signaling in specific immune cell subsets.
- Protect epithelial and endothelial progenitor cell pools critical for lung development.
4.2.4. Strategic Considerations in Developing SPTs
- Network-Informed Targeting: Use of transcriptomic/proteomic data to map disease-relevant subnetworks.
- Phenotypic Screening: Prioritize functional outcomes in disease models over single-target readouts.
- Pharmacodynamic Complexity: Recognize that efficacy may reflect delayed or emergent system changes, requiring longitudinal biomarker strategies [143].
- Safety Profiling at the Network Level: Systems toxicology is essential to predict effects on unintended but connected pathways [138].
4.3. KYC as an SPT
4.3.1. What Is KYC?
4.3.2. Mechanism of Action: From MPO Activation to Site-Specific Network Modulation
- Myeloperoxidase (MPO) Activation: KYC is selectively activated at sites of inflammation by MPO, a heme-containing enzyme released by neutrophils. MPO catalyzes the oxidation of the tyrosine residue in KYC, forming an initial tyrosyl radical and then, via intramolecular electron transfer, converting the cysteine thiol into a thiyl radical. This activation is contingent on MPO’s catalytic cycle and thus restricted to inflammatory microzones.
- Sphere of Influence and Local Specificity: Once formed, the thiyl radical exits the MPO catalytic site and engages proximal protein thiols or oxidized amino acids, enabling reversible, site-specific covalent modification. We have termed this concept the “sphere of influence,” which confers selectivity by limiting KYC’s reactive behavior to a defined microenvironment shaped by inflammatory enzyme release, pH, and redox potential. In addition, the short-lived thiyl radical ensures both spatial precision and temporal constraint, limiting off-target effects. Unlike classical inhibitors, KYC does not irreversibly bind to targets but instead modifies them through thiolation, enabling the reprogramming of key signaling hubs, such as HMGB1, GSNOR, Keap1, and NF-κB regulators.
- Emergent Network Effects: These covalent modifications reset cellular redox tone, activate NRF2 signaling, dampen DAMP-associated inflammation, and restore mitochondrial homeostasis. KYC thus engages multiple, interlinked targets as part of a broader strategy to reestablish physiological equilibrium.
4.3.3. Systems Biological Effects of KYC in BPD
4.3.4. Aligning KYC with the SPT Framework
5. Discussion
6. Conclusions
7. Patents
- SYSTEMS CHEMICO–PHARMACOLOGY DRUGS AND METHODS OF USE. Kirkwood Arthur Pritchard, Jr.; Dustin Paul Martin; Ru-Jeng Teng; Billy W. Day; and Stephen Naylor. Pub. No.: US 2022/0409692 A1 (NON-PROVISIONAL FULL APPLICATION).
- DUAL ROLE COMPOUNDS WITH PRODRUG AND SYSTEMS CHEMICO-PHARMACOLOGY DRUG PROPERTIES. Billy W. Day; Kirkwood Arthur Pritchard, Jr.; Ru-Jeng Teng; and Stephen Naylor. FILED 04/21/2025 US PROVISIONAL PATENT APPLICATION 63/791,992.
- SYSTEMS CHEMICO-BIOPROBES DERIVED FROM SYSTEMS CHEMICO-PHARMACOLOGY DRUGS FOR TARGET DISCOVERY AND COMPANION DIAGNOSTIC APPLICATIONS. Kirkwood Arthur Pritchard, Jr.; Billy W. Day; Ru-Jeng Teng; and Stephen Naylor. FILED 04/21/2025 US PROVISIONAL PATENT APPLICATION 63/792,015.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGER | Advanced glycosylation end-product receptor |
AT2 | Type 2 alveolar epithelial cell |
ATF6 | Activating Transcription Factor 6 |
BiP | Binding immunoglobulin protein |
BPD | Bronchopulmonary dysplasia |
CD24 | Cluster of differentiation 24 |
cGAMP | Cyclic guanosine monophosphate-adenosine monophosphate |
CGAS | Cyclic GMP-AMP synthase |
CHOP | C/EBP homologous protein |
CXCR4 | C-X-C motif chemokine receptor 4 |
DAMP | Damage-associated molecular pattern |
eNOS | Endothelial nitric oxide synthase |
ER | Endoplasmic reticulum |
ETC | Electron transport chain |
GCH1 | GTP-cyclohydrolase 1 |
GRP78 | Glucose-regulated protein 78 |
GSDMD | Gasdermin D |
HAVCR2 | Hepatitis A virus cellular receptor 2 |
HMGB1 | High-mobility group box 1 |
HOCl | Hypochlorous acid |
HSP | Heat-shock protein |
iNOS | Inducible nitric oxide synthase |
IRE1α | Inositol-requiring enzyme 1 α |
JAK | Janus kinase |
KEAP1 | Kelch-like ECH-associated protein 1 |
KYC | N-acetyl-lysyltyrosylcysteine-amide |
LPS | Lipopolysaccharide |
MPO | Myeloperoxidase |
mROS | ROS from mitochondria |
MSC | Mesenchymal stem cell |
NF-kB | Nuclear factor-kappa B |
NLR | NOD-like receptors |
NOX | NADPH oxidase |
NRF2 | Nuclear factor erythroid 2-related factor 2 |
ONOO− | Peroxynitrite |
OS | Oxidative stress |
PAMP | Pathogen-associated molecular patterns |
PERK | PRKR-Like Endoplasmic Reticulum Kinase |
PI3K | Phosphoinositide 3-Kinase |
PPP | Pentose phosphate pathway |
PRR | Pattern recognition receptor |
PTEN | Phosphatase and tensin homolog |
ROS | Reactive oxygen species |
SAMD | Senescence-associated mitochondrial dysfunction |
SASP | Senescence-associated secretory phenotype |
SCPD | Systems chemico-pharmacology drug |
SMAD | Suppressor of mothers against decapentaplegic. |
SPT | Systems pharmacology therapeutics |
STAT | Signal transducer and activator of transcription |
STING1 | Stimulator of interferon genes 1 |
TGFβ | Transforming growth factor β |
TLR | Toll-like receptor |
TNFα | Tumor necrosis factor α |
TREM1 | Triggering receptor expressed on myeloid cells 1 |
VEGF | Vascular endothelial cell growth factor |
VEGFR2 | Type 2 VEGF receptor |
UPR | Unfolded protein response |
WNT | Wingless/Integrated |
XBP1 | X-box binding protein 1 |
References
- Northway, W.H., Jr.; Rosan, R.C.; Porter, D.Y. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N. Engl. J. Med. 1967, 276, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Philip, A.G. Bronchopulmonary dysplasia: Then and now. Neonatology 2012, 102, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jobe, A.J. The new BPD: An arrest of lung development. Pediatr. Res. 1999, 46, 641–643. [Google Scholar] [CrossRef] [PubMed]
- Baker, C.D.; Abman, S.H. Impaired pulmonary vascular development in bronchopulmonary dysplasia. Neonatology 2015, 107, 344–351. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Long, W.; Corbet, A.; Cotton, R.; Courtney, S.; McGuiness, G.; Walter, D.; Watts, J.; Smyth, J.; Bard, H.; Chernick, V. A controlled trial of synthetic surfactant in infants weighing 1250 g or more with respiratory distress syndrome. The American Exosurf Neonatal Study Group, I; and the Canadian Exosurf Neonatal Study Group. N. Engl. J. Med. 1991, 325, 1696–1703. [Google Scholar] [CrossRef] [PubMed]
- Edwards, E.M.; Ehret, D.E.Y.; Soll, R.F.; Horbar, J.D. Survival of Infants Born at 22 to 25 Weeks’ Gestation Receiving Care in the NICU: 2020-2022. Pediatrics 2024, 154, e2024065963. [Google Scholar] [CrossRef] [PubMed]
- Qattea, I.; Farghaly, M.A.A.; Kattea, M.O.; Abdula, N.; Mohamed, M.A.; Aly, H. Survival of infants born at periviable gestation: The US national database. Lancet Reg. Health Am. 2022, 14, 100330. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jobe, A.H.; Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2001, 163, 1723–1729. [Google Scholar] [CrossRef] [PubMed]
- Stoll, B.J.; Hansen, N.I.; Bell, E.F.; Shankaran, S.; Laptook, A.R.; Walsh, M.C.; Hale, E.C.; Newman, N.S.; Schibler, K.; Carlo, W.A.; et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics 2010, 126, 443–456. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jensen, E.A.; Schmidt, B. Epidemiology of bronchopulmonary dysplasia. Birth Defects Res. A Clin. Mol. Teratol. 2014, 100, 145–157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yeh, T.F.; Lin, Y.J.; Lin, H.C.; Huang, C.C.; Hsieh, W.S.; Lin, C.H.; Tsai, C.H. Outcomes at school age after postnatal dexamethasone therapy for lung disease of prematurity. N. Engl. J. Med. 2004, 350, 1304–1313. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.J.; Pramanik, A.K.; Committee on Fetus and Newborn. Postnatal Corticosteroids to Prevent or Treat Chronic Lung Disease Following Preterm Birth. Pediatrics 2022, 149, e2022057530. [Google Scholar] [CrossRef] [PubMed]
- Hanin, M.; Nuthakki, S.; Malkar, M.B.; Jadcherla, S.R. Safety and Efficacy of Oral Feeding in Infants with BPD on Nasal CPAP. Dysphagia 2015, 30, 121–127. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reynolds, E.W.; Grider, D.; Caldwell, R.; Capilouto, G.; Patwardhan, A.; Charnigo, R. Effects of Bronchopulmonary Dysplasia on Swallow: Breath Interaction and Phase of Respiration with Swallow During Non-nutritive Suck. J. Nat. Sci. 2018, 4, e531. [Google Scholar] [PubMed] [PubMed Central]
- Tyson, J.E.; Wright, L.L.; Oh, W.; Kennedy, K.A.; Mele, L.; Ehrenkranz, R.A.; Stoll, B.J.; Lemons, J.A.; Stevenson, D.K.; Bauer, C.R.; et al. Vitamin A supplementation for extremely-low-birth-weight infants. National Institute of Child Health and Human Development Neonatal Research Network. N. Engl. J. Med. 1999, 340, 1962–1968. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.; Roberts, R.S.; Davis, P.; Doyle, L.W.; Barrington, K.J.; Ohlsson, A.; Solimano, A.; Tin, W.; Caffeine for Apnea of Prematurity Trial Group. Caffeine therapy for apnea of prematurity. N. Engl. J. Med. 2006, 354, 2112–2121. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Sie, L.; Liu, J.; Profit, J.; Lee, H.C. Evaluation of Trends in Bronchopulmonary Dysplasia and Respiratory Support Practice for Very Low Birth Weight Infants: A Population-Based Cohort Study. J. Pediatr. 2022, 243, 47–52.e2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vali, P.; Lakshminrusimha, S. The Fetus Can Teach Us: Oxygen and the Pulmonary Vasculature. Children 2017, 4, 67. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martini, S.; Aceti, A.; Della Gatta, A.N.; Beghetti, I.; Marsico, C.; Pilu, G.; Corvaglia, L. Antenatal and Postnatal Sequelae of Oxidative Stress in Preterm Infants: A Narrative Review Targeting Pathophysiological Mechanisms. Antioxidants 2023, 12, 422. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zergeroglu, M.A.; McKenzie, M.J.; Shanely, R.A.; Van Gammeren, D.; DeRuisseau, K.C.; Powers, S.K. Mechanical ventilation-induced oxidative stress in the diaphragm. J. Appl. Physiol. 2003, 95, 1116–1124. [Google Scholar] [CrossRef] [PubMed]
- Cheah, F.C.; Jobe, A.H.; Moss, T.J.; Newnham, J.P.; Kallapur, S.G. Oxidative stress in fetal lambs exposed to intra-amniotic endotoxin in a chorioamnionitis model. Pediatr. Res. 2008, 63, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Lapcharoensap, W.; Kan, P.; Powers, R.J.; Shaw, G.M.; Stevenson, D.K.; Gould, J.B.; Wirtschafter, D.D.; Lee, H.C. The Relationship of Nosocomial Infection Reduction to Changes in Neonatal Intensive Care Unit Rates of Bronchopulmonary Dysplasia. J. Pediatr. 2017, 180, 105–109.e1. [Google Scholar] [CrossRef] [PubMed]
- Teng, R.J.; Jing, X.; Michalkiewicz, T.; Afolayan, A.J.; Wu, T.J.; Konduri, G.G. Attenuation of endoplasmic reticulum stress by caffeine ameliorates hyperoxia-induced lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2017, 312, L586–L598. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Block, M.S.; Rowan, B.G. Hypochlorous Acid: A Review. J. Oral. Maxillofac. Surg. 2020, 78, 1461–1466. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saugstad, O.D. Oxidative stress in the newborn–a 30-year perspective. Biol. Neonate 2005, 88, 228–236. [Google Scholar] [CrossRef]
- Alzahrani, A.S.; Smith, J.L.; García, M.; Chen, X.; Tanaka, H.; Müller, F.; Ivanova, K.; Kim, Y.; Silva, R.; Dubois, P. Oxidative stress and inflammation: The vicious cycle in BPD pathogenesis. Front. Pediatr. 2022, 10, 857234. [Google Scholar]
- Wu, T.J.; Teng, M.; Jing, X.; Pritchard, K.A., Jr.; Day, B.W.; Naylor, S.; Teng, R.J. Endoplasmic Reticulum Stress in Bronchopulmonary Dysplasia: Contributor or Consequence? Cells 2024, 13, 1774. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Teng, M.; Wu, T.J.; Jing, X.; Day, B.W.; Pritchard, K.A., Jr.; Naylor, S.; Teng, R.J. Temporal Dynamics of Oxidative Stress and Inflammation in Bronchopulmonary Dysplasia. Int. J. Mol. Sci. 2024, 25, 10145. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vaughan, A.E.; Chapman, H.A. Failure of Alveolar Type 2 Cell Maintenance Links Neonatal Distress with Adult Lung Disease. Am. J. Respir. Cell Mol. Biol. 2017, 56, 415–416. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Jia, S.; Teng, M.; Day, B.W.; Afolayan, A.J.; Jarzembowski, J.A.; Lin, C.W.; Hessner, M.J.; Pritchard, K.A., Jr.; Naylor, S.; et al. Cellular Senescence Contributes to the Progression of Hyperoxic Bronchopulmonary Dysplasia. Am. J. Respir. Cell Mol. Biol. 2024, 70, 94–109. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Anighoro, A.; Bajorath, J.; Rastelli, G. Polypharmacology: Challenges and opportunities in drug discovery. J. Med. Chem. 2014, 57, 7874–7887. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, K.A., Jr.; Martin, D.P.; Naylor, S. Perspective on Systems Pharmacology: When Multi-Targeting Is Advantageous. Drug Discovery World, Winter 2018. Available online: https://www.ddw-online.com/systems-pharmacology-when-multi-targeting-is-advantageous-503-201812/ (accessed on 14 June 2025).
- Ramsay, R.R.; Popovic-Nikolic, M.R.; Nikolic, K.; Uliassi, E.; Bolognesi, M.L. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med. 2018, 7, 3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Y.; Nuñez, G. Sterile inflammation: Sensing and reacting to damage. Nat. Rev. Immunol. 2010, 10, 826–837. [Google Scholar] [CrossRef]
- Murch, S.H.; Costeloe, K.; Klein, N.J.; MacDonald, T.T. Early production of macrophage inflammatory protein-1 alpha occurs in respiratory distress syndrome and is associated with poor outcome. Pediatr. Res. 1996, 40, 490–497. [Google Scholar] [CrossRef]
- Beckman, J.S.; Viera, L.; Estévez, A.G.; Teng, R. Nitric oxide and peroxynitrite in the perinatal period. Semin. Perinatol. 2000, 24, 37–41. [Google Scholar] [CrossRef]
- Pattison, D.I.; Davies, M.J.; Hawkins, C.L. Reactions and reactivity of myeloperoxidase-derived oxidants: Differential biological effects of hypochlorous and hypothiocyanous acids. Free Radic. Res. 2012, 46, 975–995. [Google Scholar] [CrossRef]
- Roh, J.S.; Sohn, D.H. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw. 2018, 18, e27. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Li, X.; Zhou, S.; Jiang, P.; Liu, X.; Ouyang, M.; Nie, Y.; Chen, X.; Zhang, L.; Liu, Y.; et al. Interplay between RAGE and TLR4 Regulates HMGB1-Induced Inflammation by Promoting Cell Surface Expression of RAGE and TLR4. J Immunol. 2020, 205, 767–775. [Google Scholar] [CrossRef]
- Chen, R.; Kang, R.; Tang, D. The mechanism of HMGB1 secretion and release. Exp. Mol. Med. 2022, 54, 91–102. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, K.; Fan, M.; Wang, X.; Xu, J.; Wang, Y.; Tu, F.; Gill, P.S.; Ha, T.; Liu, L.; Williams, D.L.; et al. Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis. Cell Death Differ. 2022, 29, 133–146. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aghai, Z.H.; Saslow, J.G.; Meniru, C.; Porter, C.; Eydelman, R.; Bhat, V.; Stahl, G.; Sannoh, S.; Pyon, K.; Hewitt, C.; et al. High-mobility group box-1 protein in tracheal aspirates from premature infants: Relationship with bronchopulmonary dysplasia and steroid therapy. J. Perinatol. 2010, 30, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Shima, Y.; Kumasaka, S.; Negishi, Y. Sustained sterile inflammation is related to pulmonary morbidities in premature infants. J. Matern. Fetal Neonatal Med. 2022, 35, 6928–6932. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Shimbo, T.; Masuda, T.; Kitayama, T.; Fujii, M.; Hanawa, M.; Yokota, K.; Endo, M.; Tomimatsu, T.; Kimura, T.; et al. High-mobility group box-1 peptide ameliorates bronchopulmonary dysplasia by suppressing inflammation and fibrosis in a mouse model. Biochem. Biophys. Res. Commun. 2023, 671, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Espirito Santo, A.I.; Zwingenberger, S.; Cai, L.; Vogl, T.; Feldmann, M.; Horwood, N.J.; Chan, J.K.; Nanchahal, J. Fully reduced HMGB1 accelerates the regeneration of multiple tissues by transitioning stem cells to GAlert. Proc. Natl. Acad. Sci. USA 2018, 115, E4463–E4472. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kwak, M.S.; Kim, H.S.; Lee, B.; Kim, Y.H.; Son, M.; Shin, J.S. Immunological Significance of HMGB1 Post-Translational Modification and Redox Biology. Front. Immunol. 2020, 11, 1189. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferrara, M.; Chialli, G.; Ferreira, L.M.; Ruggieri, E.; Careccia, G.; Preti, A.; Piccirillo, R.; Bianchi, M.E.; Sitia, G.; Venereau, E. Oxidation of HMGB1 Is a Dynamically Regulated Process in Physiological and Pathological Conditions. Front. Immunol. 2020, 11, 1122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, D.; Kang, R.; Zeh, H.J.; Lotze, M.T. The multifunctional protein HMGB1: 50 years of discovery. Nat. Rev. Immunol. 2023, 23, 824–841. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Weng, H.; Zhang, X.; Wang, S.; Lu, C.; Jin, H.; Chen, S.; Liu, Y.; Sheng, A.; Sun, Y. Low-Dose Vitamin D Protects Hyperoxia-Induced Bronchopulmonary Dysplasia by Inhibiting Neutrophil Extracellular Traps. Front. Pediatr. 2020, 8, 335. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tao, X.; Mo, L.; Zeng, L. Hyperoxia Induced Bronchopulmonary Dysplasia-Like Inflammation via miR34a-TNIP2-IL-1β Pathway. Front. Pediatr. 2022, 10, 805860. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jin, R.; Xu, J.; Gao, Q.; Mao, X.; Yin, J.; Lu, K.; Guo, Y.; Zhang, M.; Cheng, R. IL-33-induced neutrophil extracellular traps degrade fibronectin in a murine model of bronchopulmonary dysplasia. Cell Death Discov. 2020, 6, 33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nigro, P.; Pompilio, G.; Capogrossi, M.C. Cyclophilin A: A key player for human disease. Cell Death Dis. 2013, 4, e888. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hsiao, C.C.; Lee, C.H.; Yang, R.C.; Chen, J.Y.; Su, T.C.; Chang, Y.J.; Lin, C.Y.; Tsai, Y.G. Heat Shock Protein-70 Levels Are Associated with a State of Oxidative Damage in the Development of Bronchopulmonary Dysplasia. Front. Pediatr. 2021, 9, 616452. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Loughran-Fowlds, A.; Leach, S.; Lin, J.; Oei, J.; Henry, R.; Day, A.S.; Lui, K. Respiratory disease and early serum S100A12 changes in very premature infants. Acta Paediatr. 2011, 100, 1538–1543. [Google Scholar] [CrossRef] [PubMed]
- Martinon, F.; Burns, K.; Tschopp, J. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 2002, 10, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Latz, E.; Xiao, T.S.; Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 2013, 13, 397–411. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Malik, A.; Kanneganti, T.D. Inflammasome activation and assembly at a glance. J. Cell Sci. 2017, 130, 3955–3963. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zheng, D.; Liwinski, T.; Elinav, E. Inflammasome activation and regulation: Toward a better understanding of complex mechanisms. Cell Discov. 2020, 6, 36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cho, S.; Ying, F.; Sweeney, G. Sterile inflammation and the NLRP3 inflammasome in cardiometabolic disease. Biomed. J. 2023, 46, 100624. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, R.; Kang, R.; Tang, D. The STING1 network regulates autophagy and cell death. Signal Transduct. Target. Ther. 2021, 6, 208. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schaefer, L. Complexity of danger: The diverse nature of damage-associated molecular patterns. J. Biol. Chem. 2014, 289, 35237–35245. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, W.T.; Wan, H.; Hu, L.; Chen, P.; Wang, X.; Huang, Z.; Yang, Z.H.; Zhong, C.Q.; Han, J. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015, 25, 1285–1298. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kamajaya, L.J.; Boucher, D. Gasdermin D Cleavage Assay Following Inflammasome Activation. Methods Mol. Biol. 2022, 2459, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Fukumura, D.; Gohongi, T.; Kadambi, A.; Izumi, Y.; Ang, J.; Yun, C.O.; Buerk, D.G.; Huang, P.L.; Jain, R.K. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc. Natl. Acad. Sci. USA 2001, 98, 2604–2609. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nisoli, E.; Clementi, E.; Paolucci, C.; Cozzi, V.; Tonello, C.; Sciorati, C.; Bracale, R.; Valerio, A.; Francolini, M.; Moncada, S.; et al. Mitochondrial biogenesis in mammals: The role of endogenous nitric oxide. Science 2003, 299, 896–899. [Google Scholar] [CrossRef] [PubMed]
- Teng, R.J.; Du, J.; Xu, H.; Bakhutashvili, I.; Eis, A.; Shi, Y.; Pritchard, K.A., Jr.; Konduri, G.G. Sepiapterin improves angiogenesis of pulmonary artery endothelial cells with in utero pulmonary hypertension by recoupling endothelial nitric oxide synthase. Am. J. Physiol. Lung Cell Mol. Physiol. 2011, 301, L334–L345. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Teng, R.J.; Wu, T.J.; Bisig, C.G.; Eis, A.; Pritchard, K.A.; Konduri, G.G. Nitrotyrosine impairs angiogenesis and uncouples eNOS activity of pulmonary artery endothelial cells isolated from developing sheep lungs. Pediatr. Res. 2011, 69, 112–117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Teng, R.J.; Wu, T.J.; Afolayan, A.J.; Konduri, G.G. Nitrotyrosine impairs mitochondrial function in fetal lamb pulmonary artery endothelial. Cells Am. J. Physiol. Cell Physiol. 2016, 310, C80–C88. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jing, X.; Huang, Y.W.; Jarzembowski, J.; Shi, Y.; Konduri, G.G.; Teng, R.J. Caffeine ameliorates hyperoxia-induced lung injury by protecting GCH1 function in neonatal rat pups. Pediatr. Res. 2017, 82, 483–489. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huie, R.E.; Padmaja, S. The reaction of no with superoxide. Free Radic Res Commun. 1993, 18, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Dikshit, M. Nitric Oxide: Regulation and Function in Neutrophil Immune Responses. Antioxid Redox Signal. 2024, 40, 998–1024. [Google Scholar] [CrossRef] [PubMed]
- Chishti, A.D.; Shenton, B.K.; Kirby, J.A.; Baudouin, S.V. Neutrophil chemotaxis and receptor expression in clinical septic shock. Intensive Care Med. 2004, 30, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Galkina, S.I.; Golenkina, E.A.; Viryasova, G.M.; Romanova, Y.M.; Sud’ina, G.F. Nitric Oxide in Life and Death of Neutrophils. Curr. Med. Chem. 2019, 26, 5764–5780. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, K.A., Jr.; Jing, X.; Teng, M.; Wells, C.; Jia, S.; Afolayan, A.J.; Jarzembowski, J.; Day, B.W.; Naylor, S.; Hessner, M.J.; et al. Role of endoplasmic reticulum stress in impaired neonatal lung growth and bronchopulmonary dysplasia. PLoS ONE 2022, 17, e0269564. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Degechisa, S.T.; Dabi, Y.T.; Gizaw, S.T. The mitochondrial associated endoplasmic reticulum membranes: A platform for the pathogenesis of inflammation-mediated metabolic diseases. Immun. Inflamm. Dis. 2022, 10, e647. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Malhotra, J.D.; Kaufman, R.J. ER stress and its functional link to mitochondria: Role in cell survival and death. Cold Spring Harb. Perspect. Biol. 2011, 3, a004424. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garg, A.D.; Kaczmarek, A.; Krysko, O.; Vandenabeele, P.; Krysko, D.V.; Agostinis, P. ER stress-induced inflammation: Does it aid or impede disease progression? Trends Mol. Med. 2012, 18, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Tam, A.B.; Mercado, E.L.; Hoffmann, A.; Niwa, M. ER stress activates NF-κB by integrating functions of basal IKK activity, IRE1 and PERK. PLoS ONE 2012, 7, e45078. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kitamura, M. Biphasic, bidirectional regulation of NF-kappaB by endoplasmic reticulum stress. Antioxid. Redox Signal. 2009, 11, 2353–2364. [Google Scholar] [CrossRef] [PubMed]
- Thorburn, J.; Horita, H.; Redzic, J.; Hansen, K.; Frankel, A.E.; Thorburn, A. Autophagy regulates selective HMGB1 release in tumor cells that are destined to die. Cell Death Differ. 2009, 16, 175–183. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deng, J.; Lu, P.D.; Zhang, Y.; Scheuner, D.; Kaufman, R.J.; Sonenberg, N.; Harding, H.P.; Ron, D. Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol. Cell Biol. 2004, 24, 10161–10168. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, K.; Kaufman, R.J. From endoplasmic-reticulum stress to the inflammatory response. Nature 2008, 454, 455–462. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lerner, A.G.; Upton, J.P.; Praveen, P.V.; Ghosh, R.; Nakagawa, Y.; Igbaria, A.; Shen, S.; Nguyen, V.; Backes, B.J.; Heiman, M.; et al. IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab. 2012, 16, 250–264. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Injarabian, L.; Skerniskyte, J.; Giai Gianetto, Q.; Witko-Sarsat, V.; Marteyn, B.S. Reducing neutrophil exposure to oxygen allows their basal state maintenance. Immunol. Cell Biol. 2021, 99, 782–789. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Janssens, S.; Pulendran, B.; Lambrecht, B.N. Emerging functions of the unfolded protein response in immunity. Nat. Immunol. 2014, 15, 910–919. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, W.; Hickson, L.J.; Eirin, A.; Kirkland, J.L.; Lerman, L.O. Cellular senescence: The good, the bad and the unknown. Nat. Rev. Nephrol. 2022, 18, 611–627. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reimann, M.; Lee, S.; Schmitt, C.A. Cellular senescence: Neither irreversible nor reversible. J. Exp. Med. 2024, 221, e20232136. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Regulski, M.J. Cellular Senescence: What, Why, and How. Wounds 2017, 29, 168–174. [Google Scholar] [PubMed]
- Sabbatinelli, J.; Prattichizzo, F.; Olivieri, F.; Procopio, A.D.; Rippo, M.R.; Giuliani, A. Where Metabolism Meets Senescence: Focus on Endothelial Cells. Front. Physiol. 2019, 10, 1523. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Childs, B.G.; Gluscevic, M.; Baker, D.J.; Laberge, R.M.; Marquess, D.; Dananberg, J.; van Deursen, J.M. Senescent cells: An emerging target for diseases of ageing. Nat. Rev. Drug Discov. 2017, 16, 718–735. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gonzalez-Meljem, J.M.; Apps, J.R.; Fraser, H.C.; Martinez-Barbera, J.P. Paracrine roles of cellular senescence in promoting tumourigenesis. Br. J. Cancer. 2018, 118, 1283–1288. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dennery, P.A.; Yao, H. Emerging role of cellular senescence in normal lung development and perinatal lung injury. Chin. Med. J. Pulm. Crit. Care Med. 2024, 2, 10–16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Demaria, M.; Ohtani, N.; Youssef, S.A.; Rodier, F.; Toussaint, W.; Mitchell, J.R.; Laberge, R.M.; Vijg, J.; Van Steeg, H.; Dollé, M.E.; et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 2014, 31, 722–733. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- von Zglinicki, T. Oxidative stress and cell senescence as drivers of ageing: Chicken and egg. Ageing Res. Rev. 2024, 102, 102558. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Wang, K.; Ding, S.; Zhang, M. Cross-talk of inflammation and cellular senescence: A new insight into the occurrence and progression of osteoarthritis. Bone Res. 2024, 12, 69. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sofiadis, K.; Josipovic, N.; Nikolic, M.; Kargapolova, Y.; Übelmesser, N.; Varamogianni-Mamatsi, V.; Zirkel, A.; Papadionysiou, I.; Loughran, G.; Keane, J.; et al. HMGB1 coordinates SASP-related chromatin folding and RNA homeostasis on the path to senescence. Mol. Syst. Biol. 2021, 17, e9760. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yue, L.; Lu, X.; Dennery, P.A.; Yao, H. Metabolic dysregulation in bronchopulmonary dysplasia: Implications for identification of biomarkers and therapeutic approaches. Redox Biol. 2021, 48, 102104. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ratner, V.; Starkov, A.; Matsiukevich, D.; Polin, R.A.; Ten, V.S. Mitochondrial dysfunction contributes to alveolar developmental arrest in hyperoxia-exposed mice. Am. J. Respir. Cell Mol. Biol. 2009, 40, 511–518. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gong, J.; Feng, Z.; Peterson, A.L.; Carr, J.F.; Lu, X.; Zhao, H.; Ji, X.; Zhao, Y.Y.; De Paepe, M.E.; Dennery, P.A.; et al. The pentose phosphate pathway mediates hyperoxia-induced lung vascular dysgenesis and alveolar simplification in neonates. JCI Insight. 2021, 6, e137594. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Herbert, S.P.; Cheung, J.Y.; Stainier, D.Y. Determination of endothelial stalk versus tip cell potential during angiogenesis by H2.0-like homeobox-1. Curr. Biol. 2012, 22, 1789–1794. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gillich, A.; Zhang, F.; Farmer, C.G.; Travaglini, K.J.; Tan, S.Y.; Gu, M.; Zhou, B.; Feinstein, J.A.; Krasnow, M.A.; Metzger, R.J. Capillary cell-type specialization in the alveolus. Nature 2020, 586, 785–789. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Godoy, R.S.; Cober, N.D.; Cook, D.P.; McCourt, E.; Deng, Y.; Wang, L.; Schlosser, K.; Rowe, K.; Stewart, D.J. Single-cell transcriptomic atlas of lung microvascular regeneration after targeted endothelial cell ablation. eLife 2023, 12, e80900. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cooke, J.P.; Losordo, D.W. Nitric oxide and angiogenesis. Circulation 2002, 105, 2133–2135. [Google Scholar] [CrossRef] [PubMed]
- Citrin, K.M.; Chaube, B.; Fernández-Hernando, C.; Suárez, Y. Intracellular endothelial cell metabolism in vascular function and dysfunction. Trends Endocrinol. Metab. 2024. [Google Scholar] [CrossRef] [PubMed]
- Chandler, K.B.; Leon, D.R.; Kuang, J.; Meyer, R.D.; Rahimi, N.; Costello, C.E. N-Glycosylation regulates ligand-dependent activation and signaling of vascular endothelial growth factor receptor 2 (VEGFR2). J. Biol. Chem. 2019, 294, 13117–13130. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bayona-Bafaluy, M.P.; Esteban, O.; Ascaso, J.; Montoya, J.; Ruiz-Pesini, E. Oxidative phosphorylation inducers fight pathological angiogenesis. Drug Discov. Today 2019, 24, 1731–1734. [Google Scholar] [CrossRef] [PubMed]
- Yetkin-Arik, B.; Vogels, I.M.C.; Neyazi, N.; van Duinen, V.; Houtkooper, R.H.; van Noorden, C.J.F.; Klaassen, I.; Schlingemann, R.O. Endothelial tip cells in vitro are less glycolytic and have a more flexible response to metabolic stress than non-tip. Cells Sci. Rep. 2019, 9, 10414. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Crapo, J.D.; Barry, B.E.; Gehr, P.; Bachofen, M.; Weibel, E.R. Cell number and cell characteristics of the normal human lung. Am. Rev. Respir. Dis. 1982, 126, 332–337. [Google Scholar]
- Dumas, S.J.; García-Caballero, M.; Carmeliet, P. Metabolic Signatures of Distinct Endothelial Phenotypes. Trends Endocrinol. Metab. 2020, 31, 580–595. [Google Scholar] [CrossRef]
- Crespo-Garcia, S.; Tsuruda, P.R.; Dejda, A.; Ryan, R.D.; Fournier, F.; Chaney, S.Y.; Pilon, F.; Dogan, T.; Cagnone, G.; Patel, P.; et al. Pathological angiogenesis in retinopathy engages cellular senescence and is amenable to therapeutic elimination via BCL-xL inhibition. Cell Metab. 2021, 33, 818–832.e7. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Kim, S.Y. Endothelial senescence in vascular diseases: Current understanding and future opportunities in senotherapeutics. Exp. Mol. Med. 2023, 55, 1–12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chang, H.; Rha, S.Y.; Jeung, H.C.; Park, K.H.; Kim, T.S.; Kim, Y.B.; Chung, H.C. Telomerase- and angiogenesis-related gene responses to irradiation in human umbilical vein endothelial. Cells Int. J. Mol. Med. 2013, 31, 1202–1208. [Google Scholar] [CrossRef] [PubMed]
- Mammoto, T.; Torisawa, Y.S.; Muyleart, M.; Hendee, K.; Anugwom, C.; Gutterman, D.; Mammoto, A. Effects of age-dependent changes in cell size on endothelial cell proliferation and senescence through YAP1. Aging 2019, 11, 7051–7069. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baar, M.P.; Brandt, R.M.C.; Putavet, D.A.; Klein, J.D.D.; Derks, K.W.J.; Bourgeois, B.R.M.; Stryeck, S.; Rijksen, Y.; van Willigenburg, H.; Feijtel, D.A.; et al. Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell 2017, 169, 132–147.e16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Laughon, M.M.; Benjamin, D.K., Jr.; Capparelli, E.V.; Kearns, G.L.; Berezny, K.; Paul, I.M.; Wade, K.; Barrett, J.; Smith, P.B.; Cohen-Wolkowiez, M. Innovative clinical trial design for pediatric therapeutics. Expert. Rev. Clin. Pharmacol. 2011, 4, 643–652. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ward, R.M.; Benjamin, D.K., Jr.; Davis, J.M.; Gorman, R.L.; Kauffman, R.; Kearns, G.L.; Murphy, M.D.; Sherwin, C.M.T. The Need for Pediatric Drug Development. J. Pediatr. 2018, 192, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Jensen, E.A.; Wiener, L.E.; Rysavy, M.A.; Dysart, K.C.; Gantz, M.G.; Eichenwald, E.C.; Greenberg, R.G.; Harmon, H.M.; Laughon, M.M.; Watterberg, K.L.; et al. Assessment of Corticosteroid Therapy and Death or Disability According to Pretreatment Risk of Death or Bronchopulmonary Dysplasia in Extremely Preterm Infants. JAMA Netw. Open. 2023, 6, e2312277. [Google Scholar] [CrossRef]
- Palace, V.P.; Khaper, N.; Qin, Q.; Singal, P.K. Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. Free Radic. Biol. Med. 1999, 26, 746–761. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Basafa Roodi, P.; Abaj, F.; Shab-Bidar, S.; Saedisomeolia, A.; Asbaghi, O.; Lak, M. Influence of Vitamin A supplementation on inflammatory biomarkers in adults: A systematic review and meta-analysis of randomized clinical trials. Sci. Rep. 2022, 12, 21384. [Google Scholar] [CrossRef]
- Manapurath, R.M.; Kumar, M.; Pathak, B.G.; Chowdhury, R.; Sinha, B.; Choudhary, T.; Chandola, N.; Mazumdar, S.; Taneja, S.; Bhandari, N.; et al. Enteral Low-Dose Vitamin A Supplementation in Preterm or Low Birth Weight Infants to Prevent Morbidity and Mortality: A Systematic Review and Meta-analysis. Pediatrics 2022, 150 (Suppl. S1), e2022057092L. [Google Scholar] [CrossRef]
- Endesfelder, S.; Strauß, E.; Scheuer, T.; Schmitz, T.; Bührer, C. Antioxidative effects of caffeine in a hyperoxia-based rat model of bronchopulmonary dysplasia. Respir. Res. 2019, 20, 88. [Google Scholar] [CrossRef]
- Endesfelder, S.; Strauß, E.; Bendix, I.; Schmitz, T.; Bührer, C. Prevention of Oxygen-Induced Inflammatory Lung Injury by Caffeine in Neonatal Rats. Oxid Med. Cell. Longev. 2020, 2020, 3840124. [Google Scholar] [CrossRef] [PubMed]
- Köroğlu, O.A.; MacFarlane, P.M.; Balan, K.V.; Zenebe, W.J.; Jafri, A.; Martin, R.J.; Kc, P. Anti-inflammatory effect of caffeine is associated with improved lung function after lipopolysaccharide-induced amnionitis. Neonatology 2014, 106, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Yang, Y.; Lei, X.; Dong, W. Caffeine and bronchopulmonary dysplasia: Clinical benefits and the mechanisms involved. Pediatr. Pulmonol. 2022, 57, 1392–1400. [Google Scholar] [CrossRef] [PubMed]
- Omar, S.A.; Abdul-Hafez, A.; Ibrahim, S.; Pillai, N.; Abdulmageed, M.; Thiruvenkataramani, R.P.; Mohamed, T.; Madhukar, B.V.; Uhal, B.D. Stem-Cell Therapy for Bronchopulmonary Dysplasia (BPD) in Newborns. Cells 2022, 11, 1275. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saneh, H.; Wanczyk, H.; Walker, J.; Finck, C. Stem cell-derived extracellular vesicles: A potential intervention for Bronchopulmonary Dysplasia. Pediatr. Res. 2025, 97, 497–509. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, X.; Xia, Y.; Zhou, O.; Song, Y.; Zhang, X.; Tian, D.; Li, Q.; Shu, C.; Liu, E.; Yuan, X.; et al. Allogeneic human umbilical cord-derived mesenchymal stem cells for severe bronchopulmonary dysplasia in children: Study protocol for a randomized controlled trial (MSC-BPD trial). Trials 2020, 21, 125. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cerro Marín, M.J.D.; Ormazábal, I.G.; Gimeno-Navarro, A.; Álvarez-Fuente, M.; López-Ortego, P.; Avila-Alvarez, A.; Arruza Gómez, L.; González-Menchen, C.; Labrandero de Lera, C.; Lozano Balseiro, M.; et al. Repeated intravenous doses of human umbilical cord-derived mesenchymal stromal cells for bronchopulmonary dysplasia: Results of a phase 1 clinical trial with 2-year follow-up. Cytotherapy 2024, 26, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Xian, P.; Wang, T.; Wu, S.; Sun, T.; Wang, W.; Wang, B.; Yang, H.; Yang, Y.; Wang, H.; et al. Antioxidant activity of mesenchymal stem cell-derived extracellular vesicles restores hippocampal neurons following seizure damage. Theranostics 2021, 11, 5986–6005. [Google Scholar] [CrossRef]
- Stavely, R.; Nurgali, K. The emerging antioxidant paradigm of mesenchymal stem cell therapy. Stem Cells Transl. Med. 2020, 9, 985–1006. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Mulder, C.; Riddle, S.; Song, R.; Yue, D. Mesenchymal stromal/stem cells and bronchopulmonary dysplasia. Front. Cell Dev. Biol. 2023, 11, 1247339. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kandoi, S.; Misra, R.; Vijayalakshmi, S.; Rajagopal, K.; Verma, R.S. The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor. Rev. 2019, 46, 1–9. [Google Scholar]
- Mendt, M.; Rezvani, K.; Shpall, E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant. 2019, 54 (Suppl. S2), 789–792. [Google Scholar] [CrossRef] [PubMed]
- Simones, A.A.; Beisang, D.J.; Panoskaltsis-Mortari, A.; Roberts, K.D. Mesenchymal stem cells in the pathogenesis and treatment of bronchopulmonary dysplasia: A clinical review. Pediatr. Res. 2018, 83, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.J.; Jing, X.; Teng, M.; Pritchard, K.A., Jr.; Day, B.W.; Naylor, S.; Teng, R.J. Role of Myeloperoxidase, Oxidative Stress, and Inflammation in Bronchopulmonary Dysplasia. Antioxidants 2024, 13, 889. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berger, S.I.; Iyengar, R. Role of systems pharmacology in understanding drug adverse events. Wiley Interdiscip. Rev. Syst. Biol. Med. 2011, 3, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.; Singh, P.K.; Katiyar, A. Systems pharmacology in the spotlight: Trending technologies in network biology and drug discovery. Front. Pharmacol. 2024, 15, 1298712. [Google Scholar] [CrossRef] [PubMed]
- van der Greef, J.; McBurney, R.N. Rescuing drug discovery: In vivo systems pathology and systems pharmacology. Nat. Rev. Drug Discov. 2006, 4, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Talevi, A. Multi-target pharmacology: Possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front. Pharmacol. 2015, 6, 205. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wei, Y.; Zhao, H. Network pharmacology-driven therapeutic interventions for interstitial lung diseases. Pharmacol. Res. 2024, 198, 106274. [Google Scholar]
- Ramasubbu, M.K.; Paleja, B.; Srinivasan, A.; Maiti, R.; Kumar, R. Applying Quantitative and Systems Pharmacology to Drug Development and Beyond: An Introduction for Clinical Pharmacologists. Indian. J. Pharmacol. 2024, 56, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, K.A.; Martin, D.P.; Naylor, S. US20220409692A1. Available online: https://www.patentguru.com/assignee/medical-college-of-wisconsin?page=24 (accessed on 14 June 2025).
- Zhang, H.; Jing, X.; Shi, Y.; Xu, H.; Du, J.; Guan, T.; Weihrauch, D.; Jones, D.W.; Wang, W.; Gourlay, D.; et al. N-acetyl lysyltyrosylcysteine amide inhibits myeloperoxidase, a novel tripeptide inhibitor. J. Lipid Res. 2013, 54, 3016–3029. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Teng, R.J.; Jing, X.; Martin, D.P.; Hogg, N.; Haefke, A.; Konduri, G.G.; Day, B.W.; Naylor, S.; Pritchard, K.A., Jr. N-acetyl-lysyltyrosylcysteine amide, a novel systems pharmacology agent, reduces bronchopulmonary dysplasia in hyperoxic neonatal rat pups. Free Radic. Biol. Med. 2021, 166, 73–89. [Google Scholar] [CrossRef]
- Rarick, K.R.; Li, K.; Teng, R.J.; Jing, X.; Martin, D.P.; Xu, H.; Jones, D.W.; Hogg, N.; Hillery, C.A.; Garcia, G.; et al. Sterile inflammation induces vasculopathy and chronic lung injury in murine sickle cell disease. Free Radic. Biol. Med. 2024, 215, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Kato, S.; Saito, M.; Miyahara, N.; Arai, H.; Namba, F.; Ota, E.; Nakanishi, H. Bronchopulmonary Dysplasia in Extremely Premature Infants: A Scoping Review for Identifying Risk Factors. Biomedicines 2023, 11, 553. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berger, J.; Bhandari, V. Animal models of bronchopulmonary dysplasia. The term mouse models. Am. J. Physiol. Lung Cell Mol. Physiol. 2014, 307, L936–L947. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- O’Reilly, M.; Thébaud, B. Animal models of bronchopulmonary dysplasia. The term rat models. Am. J. Physiol. Lung Cell Mol. Physiol. 2014, 307, L948–L958. [Google Scholar] [CrossRef] [PubMed]
SPT Attribute | KYC Alignment |
---|---|
Multinodal Network Engagement | Modifies multiple proximal targets (e.g., HMGB1, Keap1) through a shared chemical mechanism (thiyl radical formation). |
Context-Dependent Activation | Selectively activated by MPO in inflamed tissues, limiting off-target effects and enhancing safety. |
Systemic Rebalancing | Reprograms redox and inflammatory signaling pathways (e.g., NRF2 activation, DAMP suppression). |
Emergent Properties | Results in improved alveolarization and lung function not attributable to single-target inhibition. |
Mechanism-Guided Design | Engineered with chemical features (thiol, tyrosine) for specific redox activation and network modulation. |
Translational Scalability | Mechanistic pathway—MPO activation and downstream NRF2/DAMP effects—relevant to multiple diseases beyond BPD. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, M.; Wu, T.-J.; Pritchard, K.A., Jr.; Day, B.W.; Naylor, S.; Teng, R.-J. The Destructive Cycle in Bronchopulmonary Dysplasia: The Rationale for Systems Pharmacology Therapeutics. Antioxidants 2025, 14, 844. https://doi.org/10.3390/antiox14070844
Teng M, Wu T-J, Pritchard KA Jr., Day BW, Naylor S, Teng R-J. The Destructive Cycle in Bronchopulmonary Dysplasia: The Rationale for Systems Pharmacology Therapeutics. Antioxidants. 2025; 14(7):844. https://doi.org/10.3390/antiox14070844
Chicago/Turabian StyleTeng, Mia, Tzong-Jin Wu, Kirkwood A. Pritchard, Jr., Billy W. Day, Stephen Naylor, and Ru-Jeng Teng. 2025. "The Destructive Cycle in Bronchopulmonary Dysplasia: The Rationale for Systems Pharmacology Therapeutics" Antioxidants 14, no. 7: 844. https://doi.org/10.3390/antiox14070844
APA StyleTeng, M., Wu, T.-J., Pritchard, K. A., Jr., Day, B. W., Naylor, S., & Teng, R.-J. (2025). The Destructive Cycle in Bronchopulmonary Dysplasia: The Rationale for Systems Pharmacology Therapeutics. Antioxidants, 14(7), 844. https://doi.org/10.3390/antiox14070844