Microwave-Assisted Extraction of Bioactive Compounds from Mandarin Peel: A Comprehensive Biorefinery Strategy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organization of Conducted Research
2.2. Experimental Design for Optimizing Extraction of Antioxidants
2.3. Experimental Design for Determination of Pectin
2.4. Determination and Chemical Characterization of Antioxidants
2.4.1. Spectrophotometric Determination of Antioxidants
2.4.2. HPLC Analysis of Polymethoxyflavones
2.5. Characterization of Pectin
2.6. Energy Consumption
2.7. Statistical Analysis
3. Results
3.1. Optimization of Microwave-Assisted Extraction of Antioxidants
Optimization and Validation of the Predicted Model
3.2. Microwave-Assisted Extraction of Pectin
3.3. Comparison of MAE and CSE
3.3.1. Comparison of MAE and CSE for Antioxidant Extraction
3.3.2. Comparison of MAE and CSE for Pectin Extraction
3.4. Two-Step MAE of Antioxidants and Pectin—Development of Biorefinery Approach
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUA | Anhydrouronic acid content |
ABTS | 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging assay |
CSE | Conventional solvent extraction |
DAD | Diode-array detector |
DE | Degree of esterification |
DPPH | 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay |
EM | Equivalent mass |
FTIR | Fourier transform infrared spectroscopy |
GAE | Gallic acid equivalents |
HPLC | High-performance liquid chromatography |
MAE | Microwave-assisted extraction |
MC | Methoxyl content |
MP | Mandarin pectin obtained by optimized MAE from intact peel |
MP-BR | Mandarin pectin obtained using a biorefinery two-step process: optimized MAE of antioxidants from intact peel (extract 4, maximized all responses), followed by optimized MAE of pectin from the residue |
PMFs | Polymethoxyflavones |
QE | Quercetin equivalents |
RSM | Response surface methodology |
TCC | Total carotenoid content |
TE | Trolox equivalents |
TFC | Total flavonoid content |
TPC | Total phenolic content |
UAE | Ultrasound-assisted extraction |
References
- Mahato, N.; Sharma, K.; Sinha, M.; Baral, E.R.; Koteswararao, R.; Dhyani, A.; Hwan Cho, M.; Cho, S. Bio-Sorbents, Industrially Important Chemicals and Novel Materials from Citrus Processing Waste as a Sustainable and Renewable Bioresource: A Review. J. Adv. Res. 2020, 23, 61–82. [Google Scholar] [CrossRef] [PubMed]
- Državni Zavod Za Statistiku. Available online: https://podaci.dzs.hr/hr/search?q=proizvodnja%20voća (accessed on 9 May 2025).
- Medved, I.; Gaurina-Medimurec, N.; Mavar, K.N.; Mijić, P. Waste Mandarin Peel as an Eco-Friendly Water-Based Drilling Fluid Additive. Energies 2022, 15, 2591. [Google Scholar] [CrossRef]
- Anticona, M.; Blesa, J.; Frigola, A.; Esteve, M.J. High Biological Value Compounds Extraction from Citruswaste with Non-Conventional Methods. Foods 2020, 9, 811. [Google Scholar] [CrossRef]
- Polyphenols Market Size, Share, Growth & Trends Report, 2030. Available online: https://www.grandviewresearch.com/industry-analysis/polyphenols-market-analysis (accessed on 9 May 2025).
- Polyphenols Market Size, Share, Growth Forecast|2030. Available online: https://www.vynzresearch.com/food-beverages/polyphenols-market (accessed on 9 May 2025).
- Radić, K.; Galić, E.; Vinković, T.; Golub, N.; Vitali Čepo, D. Tomato Waste as a Sustainable Source of Antioxidants and Pectins: Processing, Pretreatment and Extraction Challenges. Sustainability 2024, 16, 9158. [Google Scholar] [CrossRef]
- Pectin Market Size, Share & Trends|Industry Growth Forecast, 2025. Available online: https://www.grandviewresearch.com/industry-analysis/pectin-market (accessed on 9 May 2025).
- Carotenoids Market Size, Share, Analysis & Forecast 2031. Available online: https://www.transparencymarketresearch.com/carotenoids-market.html (accessed on 9 May 2025).
- Teigiserova, D.A.; Hamelin, L.; Thomsen, M. Review of High-Value Food Waste and Food Residues Biorefineries with Focus on Unavoidable Wastes from Processing. Resour. Conserv. Recycl. 2019, 149, 413–426. [Google Scholar] [CrossRef]
- Kaur, S.; Singh, V.; Chopra, H.K.; Panesar, P.S. Extraction and Characterization of Phenolic Compounds from Mandarin Peels Using Conventional and Green Techniques: A Comparative Study. Discov. Food 2024, 4, 60. [Google Scholar] [CrossRef]
- Inoue, T.; Tsubaki, S.; Ogawa, K.; Onishi, K.; Azuma, J.-i. Isolation of Hesperidin from Peels of Thinned Citrus Unshiu Fruits by Microwave-Assisted Extraction. Food Chem. 2010, 123, 542–547. [Google Scholar] [CrossRef]
- Nishad, J.; Saha, S.; Dubey, A.K.; Varghese, E.; Kaur, C. Optimization and Comparison of Non-Conventional Extraction Technologies for Citrus paradisi L. Peels: A Valorization Approach. J. Food Sci. Technol. 2019, 56, 1221–1233. [Google Scholar] [CrossRef]
- Hayat, K.; Zhang, X.; Chen, H.; Xia, S.; Jia, C.; Zhong, F. Liberation and Separation of Phenolic Compounds from Citrus Mandarin Peels by Microwave Heating and Its Effect on Antioxidant Activity. Sep. Purif. Technol. 2010, 73, 371–376. [Google Scholar] [CrossRef]
- Ethos X Microwave Extraction System—ATS Scientific. Available online: https://ats-scientific.com/products/ethos-ex-microwave-extraction (accessed on 9 May 2025).
- Liu, L.; Xu, X.; Cheng, D.; Yao, X.; Pan, S. Structure-Activity Relationship of Citrus Polymethoxylated Flavones and Their Inhibitory Effects on Aspergillus Niger. J. Agric. Food Chem. 2012, 60, 4336–4341. [Google Scholar] [CrossRef]
- Stuetz, W.; Prapamontol, T.; Hongsibsong, S.; Biesalski, H.K. Polymethoxylated Flavones, Flavanone Glycosides, Carotenoids, and Antioxidants in Different Cultivation Types of Tangerines (Citrus reticulata Blanco Cv. Sainampueng) from Northern Thailand. J. Agric. Food Chem. 2010, 58, 6069–6074. [Google Scholar] [CrossRef] [PubMed]
- Mitani, R.; Tashiro, H.; Arita, E.; Ono, K.; Haraguchi, M.; Tokunaga, S.; Sharmin, T.; Aida, T.M.; Mishima, K. Extraction of Nobiletin and Tangeretin with Antioxidant Activity from Peels of Citrus poonensis Using Liquid Carbon Dioxide and Ethanol Entrainer. Sep. Sci. Technol. 2021, 56, 290–300. [Google Scholar] [CrossRef]
- Rey, F.; Zacarías, L.; Rodrigo, M.J. Carotenoids, Vitamin C, and Antioxidant Capacity in the Peel of Mandarin Fruit in Relation to the Susceptibility to Chilling Injury during Postharvest Cold Storage. Antioxidants 2020, 9, 1296. [Google Scholar] [CrossRef] [PubMed]
- Kadi, A.; Boudries, H.; Bachir-Bey, M.; Teffane, M.; Taibi, A.; Arroul, Y.; Boulekbache-Makhlouf, L. Optimisation of Ultrasound-Assisted Extraction of Carotenoids and Antioxidant Activity from Citrus reticulata Blanco Peels (Wilking Mandarin). Acta Aliment. 2023, 52, 378–389. [Google Scholar] [CrossRef]
- Anticona, M.; Blesa, J.; Lopez-Malo, D.; Frigola, A.; Esteve, M.J. Effects of Ultrasound-Assisted Extraction on Physicochemical Properties, Bioactive Compounds, and Antioxidant Capacity for the Valorization of Hybrid Mandarin Peels. Food Biosci. 2021, 42, 101185. [Google Scholar] [CrossRef]
- Maslov Bandić, L.; Vlahoviček Kahlina, K.; Jurić, S. Optimization of Solid–Liquid Extraction Technique for Carotenoids from Mandarin Peels Using Green Solvents. J. Anal. Chem. 2023, 78, 1480–1486. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Y.-F.; Zhou, Z.Q. Phenolic and Flavonoid Contents of Mandarin (Citrus reticulata Blanco) Fruit Tissues and Their Antioxidant Capacity as Evaluated by DPPH and ABTS Methods. J. Integr. Agric. 2018, 17, 256–263. [Google Scholar] [CrossRef]
- Suri, S.; Singh, A.; Nema, P.K. Current Applications of Citrus Fruit Processing Waste: A Scientific Outlook. Appl. Food Res. 2022, 2, 100050. [Google Scholar] [CrossRef]
- Duan, X.; Zhu, Y.; Shu, C.; Gao, J.; Liu, F.; Pan, S. Extraction of Pectin from Satsuma Mandarin Peel: A Comparison of High Hydrostatic Pressure and Conventional Extractions in Different Acids. Molecules 2022, 27, 3747. [Google Scholar] [CrossRef]
- Karbuz, P.; Tugrul, N. Microwave and Ultrasound Assisted Extraction of Pectin from Various Fruits Peel. J. Food Sci. Technol. 2021, 58, 641–650. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Sharma, P.C.; Nambi, V.E. Aqueous and Microwave Assisted Extraction of Pectin from Grapefruit and Nagpur Mandarin. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 1938–1949. [Google Scholar] [CrossRef]
- Herrero, M.; Ibañez, E. Green Extraction Processes, Biorefineries and Sustainability: Recovery of High Added-Value Products from Natural Sources. J. Supercrit. Fluids 2018, 134, 252–259. [Google Scholar] [CrossRef]
- Chen, X.; Ding, J.; Ji, D.; He, S.; Ma, H. Optimization of Ultrasonic-Assisted Extraction Conditions for Bioactive Components from Coffee Leaves Using the Taguchi Design and Response Surface Methodology. J. Food Sci. 2020, 85, 1742–1751. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Ma, J.; Tang, Y.; Wang, X.; Zhang, J.; Yao, X.; Jiang, W.; Duan, J.A. Optimization of Ultrasound-Assisted Extraction Followed by Macroporous Resin Purification for Maximal Recovery of Functional Components and Removal of Toxic Components from Ginkgo Biloba Leaves. Biomed Res. Int. 2018, 2018, 4598067. [Google Scholar] [CrossRef]
- Fakayode, O.A.; Aboagarib, E.A.A.; Yan, D.; Li, M.; Wahia, H.; Mustapha, A.T.; Zhou, C.; Ma, H. Novel Two-Pot Approach Ultrasonication and Deep Eutectic Solvent Pretreatments for Watermelon Rind Delignification: Parametric Screening and Optimization via Response Surface Methodology. Energy 2020, 203, 117872. [Google Scholar] [CrossRef]
- Salazar Ripoll, C.S.; Hincapié-Llanos, G.A. Evaluation of Sources and Methods of Pectin Extraction from Fruit and Vegetable Wastes: A Systematic Literature Review (SLR). Food Biosci. 2023, 51, 102278. [Google Scholar] [CrossRef]
- Patil, B.; Patel, D.; Patil, J.; Nibe, R.L. Extraction of Pectin from Citrus Peels—A Review. Int. J. Adv. Res. Sci. Commun. Technol. 2022, 2, 631–637. [Google Scholar] [CrossRef]
- Casas-Orozco, D.; Villa, A.L.; Bustamante, F.; González, L.M. Process Development and Simulation of Pectin Extraction from Orange Peels. Food Bioprod. Process. 2015, 96, 86–98. [Google Scholar] [CrossRef]
- Barros, L.; Cruz, T.; Baptista, P.; Estevinho, L.M.; Ferreira, I.C.F.R. Wild and Commercial Mushrooms as Source of Nutrients and Nutraceuticals. Food Chem. Toxicol. 2008, 46, 2742–2747. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of Total Phenolic Content and Other Oxidation Substrates in Plant Tissues Using Folin-Ciocalteu Reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Ivanova, V.; Stefova, M.; Chinnici, F. Determination of the Polyphenol Contents in Macedonian Grapes and Wines by Standardized Spectrophotometric Methods. J. Serb. Chem. Soc 2010, 75, 45–59. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Khamsucharit, P.; Laohaphatanalert, K.; Gavinlertvatana, P.; Sriroth, K.; Sangseethong, K. Characterization of Pectin Extracted from Banana Peels of Different Varieties. Food Sci. Biotechnol. 2018, 27, 623–629. [Google Scholar] [CrossRef]
- Boateng, I.D.; Kumar, R.; Daubert, C.R.; Flint-Garcia, S.; Mustapha, A.; Kuehnel, L.; Agliata, J.; Li, Q.; Wan, C.; Somavat, P. Sonoprocessing Improves Phenolics Profile, Antioxidant Capacity, Structure, and Product Qualities of Purple Corn Pericarp Extract. Ultrason. Sonochem. 2023, 95, 106418. [Google Scholar] [CrossRef]
- Nonglait, D.L.; Gokhale, J.S. Review Insights on the Demand for Natural Pigments and Their Recovery by Emerging Microwave-Assisted Extraction (MAE). Food Bioprocess Technol. 2024, 17, 1681–1705. [Google Scholar] [CrossRef]
- Maslov Bandić, L.; Vlahoviček-Kahlina, K.; Sigurnjak Bureš, M.; Sopko Stracenski, K.; Jalšenjak, N.; Fruk, G.; Antolković, A.M.; Jurić, S. Fruit Quality of Satsuma Mandarins from Neretva Valley and Their Flavonoid and Carotenoid Content. Horticulturae 2023, 9, 383. [Google Scholar] [CrossRef]
- Wang, Y.C.; Chuang, Y.C.; Hsu, H.W. The Flavonoid, Carotenoid and Pectin Content in Peels of Citrus Cultivated in Taiwan. Food Chem. 2008, 106, 277–284. [Google Scholar] [CrossRef]
- Murador, D.C.; Salafia, F.; Zoccali, M.; Martins, P.L.G.; Ferreira, A.G.; Dugo, P.; Mondello, L.; de Rosso, V.V.; Giuffrida, D. Green Extraction Approaches for Carotenoids and Esters: Characterization of Native Composition from Orange Peel. Antioxidants 2019, 8, 613. [Google Scholar] [CrossRef]
- Beg, Q.K.; Sahai, V.; Gupta, R. Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process Biochem 2003, 39, 203–209. [Google Scholar] [CrossRef]
- Prakash Maran, J.; Sivakumar, V.; Thirugnanasambandham, K.; Sridhar, R. Optimization of Microwave Assisted Extraction of Pectin from Orange Peel. Carbohydr. Polym. 2013, 97, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Lovrić, V.; Putnik, P.; Bursać Kovačević, D.; Jukić, M.; Dragović-Uzelac, V. The Effect of Microwave-Assisted Extraction on the Phenolic Compounds and Antioxidant Capacity of Blackthorn Flowers. Food Technol. Biotechnol. 2017, 55, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Almaiman, S.A.; Albadr, N.A.; Alsulaim, S.; Alhuthayli, H.F.; Osman, M.A.; Hassan, A.B. Effects of Microwave Heat Treatment on Fungal Growth, Functional Properties, Total Phenolic Content, and Antioxidant Activity of Sorghum (Sorghum bicolor L.) Grain. Food Chem. 2021, 348, 128979. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.; Kumar, A.Y.N.; Kumar, R.; Maurya, V.K.; Mahesh, M.S.; Singh, A.K.; Yadav, P.K.; Ghosh, M. Optimization of Microwave Parameters to Enhance Phytochemicals, Antioxidants and Metabolite Profile of de-Oiled Rice Bran. Sci. Rep. 2024, 14, 23959. [Google Scholar] [CrossRef]
- García-Martín, J.F.; Feng, C.H.; Domínguez-Fernández, N.M.; Álvarez-Mateos, P. Microwave-Assisted Extraction of Polyphenols from Bitter Orange Industrial Waste and Identification of the Main Compounds. Life 2023, 13, 1864. [Google Scholar] [CrossRef]
- Kumar, A.; Rout, R.K.; Rao, P.S. Effect of Drying Methods on Physico-Chemical and Bioactive Compounds of Mandarin (Citrus reticulata) Peel. Int. J. Food Eng. 2022, 18, 689–700. [Google Scholar] [CrossRef]
- Lee, S.; Kim, H.J. Antioxidant Activities of Premature and Mature Mandarin (Citrus unshiu) Peel and Juice Extracts. Food Sci. Biotechnol. 2022, 31, 627–633. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, D.; Tan, C.; Hu, Y.; Sundararajan, B.; Zhou, Z. Profiling of Flavonoid and Antioxidant Activity of Fruit Tissues from 27 Chinese Local Citrus Cultivars. Plants 2020, 9, 196. [Google Scholar] [CrossRef]
- Marey, S.; Shoughy, M. Effect of Temperature on the Drying Behavior and Quality of Citrus Peels. Int. J. Food Eng. 2016, 12, 661–671. [Google Scholar] [CrossRef]
- Liyana-Pathirana, C.M.; Shahidi, F.; Alasalvar, C. Antioxidant Activity of Cherry Laurel Fruit (Laurocerasus Officinalis Roem.) and Its Concentrated Juice. Food Chem. 2006, 99, 121–128. [Google Scholar] [CrossRef]
- Zhang, H.; Xi, W.; Yang, Y.; Zhou, X.; Liu, X.; Yin, S.; Zhang, J.; Zhou, Z. An On-Line HPLC-FRSD System for Rapid Evaluation of the Total Antioxidant Capacity of Citrus Fruits. Food Chem. 2015, 172, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Chaaban, H.; Ioannou, I.; Chebil, L.; Slimane, M.; Gérardin, C.; Paris, C.; Charbonnel, C.; Chekir, L.; Ghoul, M. Effect of Heat Processing on Thermal Stability and Antioxidant Activity of Six Flavonoids. J. Food Process. Preserv. 2017, 41, e13203. [Google Scholar] [CrossRef]
- Ricarte, G.N.; Coelho, M.A.Z.; Marrucho, I.M.; Ribeiro, B.D. Enzyme-Assisted Extraction of Carotenoids and Phenolic Compounds from Sunflower Wastes Using Green Solvents. 3 Biotech 2020, 10, 405. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Ferreira, S.L.C.; Novaes, C.G.; dos Santos, A.M.P.; Valasques, G.S.; da Mata Cerqueira, U.M.F.; dos Santos Alves, J.P. Simultaneous Optimization of Multiple Responses and Its Application in Analytical Chemistry—A Review. Talanta 2019, 194, 941–959. [Google Scholar] [CrossRef]
- Akpabli-Tsigbe, N.D.K.; Ma, Y.; Ekumah, J.N.; Osabutey, J.; Hu, J.; Xu, M.; Johnson, N.A.N. Novel Solid-State Fermentation Extraction of 5-O-Caffeoylquinic Acid from Heilong48 Soybean Using Lactobacillus helviticus: Parametric Screening and Optimization. LWT 2021, 149, 111809. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Xi, W.; Shen, Y.; Qiao, L.; Zhong, L.; Ye, X.; Zhou, Z. Phenolic Compositions and Antioxidant Capacities of Chinese Wild Mandarin (Citrus reticulata Blanco) Fruits. Food Chem. 2014, 145, 674–680. [Google Scholar] [CrossRef]
- Chen, X.M.; Tait, A.R.; Kitts, D.D. Flavonoid Composition of Orange Peel and Its Association with Antioxidant and Anti-Inflammatory Activities. Food Chem. 2017, 218, 15–21. [Google Scholar] [CrossRef]
- Pérez, J.; Gómez, K.; Vega, L. Optimization and Preliminary Physicochemical Characterization of Pectin Extraction from Watermelon Rind (Citrullus lanatus) with Citric Acid. Int. J. Food Sci. 2022, 2022, 3068829. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.S.; Khodaiyan, F.; Yarmand, M.S. Optimization of Microwave Assisted Extraction of Pectin from Sour Orange Peel and Its Physicochemical Properties. Carbohydr. Polym. 2016, 140, 59–65. [Google Scholar] [CrossRef]
- Iñiguez-Moreno, M.; Pizaña-Aranda, J.J.P.; Ramírez-Gamboa, D.; Ramírez-Herrera, C.A.; Araújo, R.G.; Parra-Saldívar, R.; Melchor-Martínez, E.M. Multitarget Optimization of Citrus Pectin Extraction Using Microwave-Assisted Technique and Citric Acid. Biomass Convers. Biorefinery 2025, 1–15. [Google Scholar] [CrossRef]
- Mahmud, M.M.; Belal, M.; Ahmed, S.; Hoque, M.M.; Zzaman, W. Microwave-Assisted Extraction and Characterization of Pectin from Citrus Fruit Wastes for Commercial Application. Food Res. 2021, 5, 80–88. [Google Scholar] [CrossRef]
- Putnik, P.; Bursać Kovačević, D.; Režek Jambrak, A.; Barba, F.J.; Cravotto, G.; Binello, A.; Lorenzo, J.M.; Shpigelman, A. Innovative “Green” and Novel Strategies for the Extraction of Bioactive Added Value Compounds from Citruswastes—A Review. Molecules 2017, 22, 680. [Google Scholar] [CrossRef]
- Yeoh, S.; Shi, J.; Langrish, T.A.G. Comparisons between Different Techniques for Water-Based Extraction of Pectin from Orange Peels. Desalination 2008, 218, 229–237. [Google Scholar] [CrossRef]
- Rodsamran, P.; Sothornvit, R. Microwave Heating Extraction of Pectin from Lime Peel: Characterization and Properties Compared with the Conventional Heating Method. Food Chem. 2019, 278, 364–372. [Google Scholar] [CrossRef]
- Gnanasambandam, R.; Proctor, A. Determination of Pectin Degree of Esterification by Diffuse Reflectance Fourier Transform Infrared Spectroscopy. Food Chem. 2000, 68, 327–332. [Google Scholar] [CrossRef]
- Baraiya, K.; Yadav, V.K.; Choudhary, N.; Ali, D.; Raiyani, D.; Chowdhary, V.A.; Alooparampil, S.; Pandya, R.V.; Sahoo, D.K.; Patel, A.; et al. A Comparative Analysis of the Physico-Chemical Properties of Pectin Isolated from the Peels of Seven Different Citrus Fruits. Gels 2023, 9, 908. [Google Scholar] [CrossRef] [PubMed]
- Spinei, M.; Oroian, M. Microwave-Assisted Extraction of Pectin from Grape Pomace. Sci. Rep. 2022, 12, 12722. [Google Scholar] [CrossRef]
- Golub, N.; Galić, E.; Radić, K.; Smigic, N.; Djekic, I.; Pedisic, S.; Vitali Čepo, D. Microwave-Assisted Valorization of Tomato Pomace for Pectin Recovery: Improving Yields and Environmental Footprint. Foods 2025, 14, 1516. [Google Scholar] [CrossRef]
- Joglekar, S.N.; Pathak, P.D.; Mandavgane, S.A.; Kulkarni, B.D. Process of Fruit Peel Waste Biorefinery: A Case Study of Citrus Waste Biorefinery, Its Environmental Impacts and Recommendations. Environ. Sci. Pollut. Res. 2019, 26, 34713–34722. [Google Scholar] [CrossRef]
- Boukroufa, M.; Boutekedjiret, C.; Petigny, L.; Rakotomanomana, N.; Chemat, F. Bio-Refinery of Orange Peels Waste: A New Concept Based on Integrated Green and Solvent Free Extraction Processes Using Ultrasound and Microwave Techniques to Obtain Essential Oil, Polyphenols and Pectin. Ultrason. Sonochem. 2015, 24, 72–79. [Google Scholar] [CrossRef]
- Ángel Siles López, J.; Li, Q.; Thompson, I.P. Biorefinery of Waste Orange Peel. Crit. Rev. Biotechnol. 2010, 30, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Guandalini, B.B.V.; Rodrigues, N.P.; Marczak, L.D.F. Sequential Extraction of Phenolics and Pectin from Mango Peel Assisted by Ultrasound. Food Res. Int. 2019, 119, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Figueira, O.; Pereira, V.; Castilho, P.C. A Two-Step Approach to Orange Peel Waste Valorization: Consecutive Extraction of Pectin and Hesperidin. Foods 2023, 12, 3834. [Google Scholar] [CrossRef] [PubMed]
- Talekar, S.; Patti, A.F.; Vijayraghavan, R.; Arora, A. An Integrated Green Biorefinery Approach towards Simultaneous Recovery of Pectin and Polyphenols Coupled with Bioethanol Production from Waste Pomegranate Peels. Bioresour. Technol. 2018, 266, 322–334. [Google Scholar] [CrossRef]
- Podetti, C.; Riveros-Gomez, M.; Román, M.C.; Zalazar-García, D.; Fabani, M.P.; Mazza, G.; Rodríguez, R. Polyphenol-Enriched Pectin from Pomegranate Peel: Multi-Objective Optimization of the Eco-Friendly Extraction Process. Molecules 2023, 28, 7656. [Google Scholar] [CrossRef]
Factor | Factor Level | ||
---|---|---|---|
−1 | 0 | 1 | |
Numeric Factors | |||
A: power (W) | 400 | 600 | 800 |
B: solvent (%) | 30 | 60 | 90 |
C: raw material (%) | 0.1 | 0.2 | 0.3 |
Factor | Factor Level | ||
---|---|---|---|
−1 | 0 | 1 | |
Numeric Factors | |||
A: time (min) | 1 | 3 | 5 |
B: power (W) | 1000 | 1400 | 1800 |
C: pH | 1 | 1.5 | 2 |
F1 | F2 | F3 | R1 | R2 | R3 | R4 | R5 | |
---|---|---|---|---|---|---|---|---|
Run | Power (W) | Solvent (%) | Raw Material (%) | TCC (µg Beta-Carotene/g) | TPC (mg GAE/g) | TFC (mg QE/g) | ABTS (mmol TE/g) | DPPH (mmol TE/g) |
1 | 600 | 60 | 0.2 | 71.98 ± 7.11 | 19.84 ± 0.89 | 74.06 ± 0.42 | 0.23 ± 0.02 | 0.03 ± 0.00 |
2 | 800 | 90 | 0.2 | 325.68 ± 4.79 | 12.31 ± 1.07 | 64.25 ± 1.58 | 0.31 ± 0.01 | 0.03 ± 0.00 |
3 | 600 | 60 | 0.2 | 75.94 ± 7.61 | 20.36 ± 1.60 | 73.46 ± 0.46 | 0.26 ± 0.02 | 0.03 ± 0.00 |
4 | 600 | 30 | 0.1 | 70.17 ± 7.07 | 21.10 ± 1.81 | 69.19 ± 2.45 | 0.27 ± 0.02 | 0.03 ± 0.00 |
5 | 800 | 30 | 0.2 | 48.68 ± 3.35 | 19.04 ± 0.43 | 70.59 ± 4.00 | 0.29 ± 0.02 | 0.03 ± 0.00 |
6 | 400 | 60 | 0.1 | 87.38 ± 2.99 | 21.83 ± 1.31 | 81.56 ± 3.33 | 0.37 ± 0.02 | 0.03 ± 0.00 |
7 | 600 | 30 | 0.3 | 45.57 ± 4.32 | 17.53 ± 0.87 | 62.61 ± 1.23 | 0.20 ± 0.01 | 0.02 ± 0.00 |
8 | 800 | 60 | 0.3 | 64.77 ± 2.48 | 20.00 ± 1.24 | 76.96 ± 3.38 | 0.29 ± 0.01 | 0.03 ± 0.00 |
9 | 600 | 60 | 0.2 | 60.47 ± 5.67 | 20.55 ± 1.10 | 79.62 ± 2.65 | 0.24 ± 0.02 | 0.03 ± 0.00 |
10 | 600 | 90 | 0.1 | 335.59 ± 10.79 | 19.29 ± 1.23 | 61.10 ± 0.81 | 0.25 ± 0.01 | 0.02 ± 0.00 |
11 | 800 | 60 | 0.1 | 84.14 ± 3.34 | 20.67 ± 0.74 | 71.95 ± 4.06 | 0.37 ± 0.02 | 0.03 ± 0.00 |
12 | 600 | 90 | 0.3 | 307.45 ± 14.17 | 15.94 ± 1.36 | 59.41 ± 0.98 | 0.19 ± 0.01 | 0.02 ± 0.00 |
13 | 400 | 90 | 0.2 | 352.39 ± 2.64 | 18.82 ± 0.98 | 73.83 ± 2.57 | 0.32 ± 0.01 | 0.02 ± 0.00 |
14 | 400 | 30 | 0.2 | 47.16 ± 2.50 | 19.13 ± 1.22 | 71.63 ± 1.70 | 0.31 ± 0.02 | 0.03 ± 0.00 |
15 | 400 | 60 | 0.3 | 70.04 ± 2.81 | 19.93 ± 1.17 | 82.94 ± 1.35 | 0.28 ± 0.01 | 0.02 ± 0.00 |
16 | 600 | 60 | 0.2 | 65.57 ± 2.99 | 20.94 ± 0.33 | 76.20 ± 0.17 | 0.25 ± 0.01 | 0.03 ± 0.00 |
17 | 600 | 60 | 0.2 | 77.73 ± 7.12 | 21.25 ± 1.43 | 77.77 ± 2.98 | 0.25 ± 0.02 | 0.03 ± 0.00 |
TCC (µg β-Carotene/g d.w.) | TFC (mg QE/g d.w.) | TPC (mg GAE/g d.w.) | DPPH (mmol TE/g d.w.) | ABTS (mmol TE/g d.w.) | Desirability | |
---|---|---|---|---|---|---|
Predicted TCC | 354.064 | 1.000 | ||||
Predicted TFC/TPC | 83.283 | 21.878 | 1.000 | |||
Predicted DPPH/ABTS | 0.032 | 0.367 | 0.991 | |||
Predicted TCC/TFC/TPC/DPPH/ABTS | 201.245 | 80.191 | 20.803 | 0.025 | 0.335 | 0.711 |
Experimental TCC | 352.267 ± 17.402 | |||||
Experimental FC/TPC | 83.128 ± 1.979 | 21.764 ± 0.456 | ||||
Experimental DPPH/ABTS | 0.033 ± 0.001 | 0.366 ± 0.016 | ||||
Experimental TCC/TFC/TPC/DPPH/ABTS | 189.230 ± 16.498 | 77.050 ± 1.557 | 21.230 ± 0.993 | 0.026 ± 0.001 | 0.244 ± 0.010 | |
Predicted vs. experimental 1 (%) | 0.508 | |||||
Predicted vs. experimental 2 (%) | 0.186 | 0.521 | ||||
Predicted vs. experimental 3 (%) | −3.125 | 0.272 | ||||
Predicted vs. experimental 4 (%) | 5.971 | 3.917 | −2.053 | −4.000 | 27.164 |
Optimal Conditions | Nobiletin (µg/g d.w.) | Tangeretin (µg/g d.w.) |
---|---|---|
Extract 1 | 703.62 ± 51.72 a | 134.22 ± 8.96 a |
Extract 2 | 570.47 ± 25.00 b | 138.24 ± 4.65 a |
Extract 3 | 592.00 ± 4.86 b | 139.7 ± 2.28 a |
Extract 4 | 610.07 ± 2.06 ab | 135.24 ± 0.51 a |
Run | F1 | F2 | F3 | R1 | R2 | R3 |
---|---|---|---|---|---|---|
Time (min) | Power (W) | pH | Yield (%) | AUA (%) | DE (%) | |
1 | 3 | 1400 | 1.5 | 24.26 ± 3.46 | 59.74 ± 0.24 | 47.84 ± 0.62 |
2 | 3 | 1000 | 2 | 9.23 ± 0.54 | 55.70 ± 0.05 | 62.76 ± 1.25 |
3 | 5 | 1800 | 1.5 | 7.89 ± 1.04 | 60.52 ± 0.71 | 64.56 ± 0.41 |
4 | 5 | 1400 | 2 | 23.47 ± 0.94 | 59.39 ± 1.17 | 54.03 ± 0.75 |
5 | 3 | 1400 | 1.5 | 24.97 ± 1.33 | 63.11 ± 0.72 | 43.91 ± 0.75 |
6 | 3 | 1800 | 1 | 19.57 ± 1.19 | 78.84 ± 0.74 | 39.28 ± 0.35 |
7 | 3 | 1000 | 1 | 18.07 ± 1.09 | 61.25 ± 2.28 | 53.78 ± 1.78 |
8 | 1 | 1800 | 1.5 | 10.53 ± 0.18 | 60.97 ± 3.38 | 61.50 ± 1.92 |
9 | 3 | 1400 | 1.5 | 23.07 ± 2.27 | 66.83 ± 1.55 | 49.53 ± 1.19 |
10 | 1 | 1000 | 1.5 | 6.42 ± 0.02 | 64.88 ± 3.39 | 61.96 ± 1.14 |
11 | 3 | 1800 | 2 | 22.57 ± 2.43 | 63.86 ± 2.53 | 53.64 ± 2.46 |
12 | 1 | 1400 | 1 | 11.32 ± 0.86 | 64.25 ± 1.59 | 54.20 ± 0.86 |
13 | 3 | 1400 | 1.5 | 24.49 ± 3.85 | 68.96 ± 3.21 | 46.13 ± 3.30 |
14 | 3 | 1400 | 1.5 | 25.16 ± 1.64 | 65.76 ± 1.51 | 47.59 ± 0.93 |
15 | 5 | 1000 | 1.5 | 24.93 ± 0.67 | 65.99 ± 0.85 | 48.87 ± 0.45 |
16 | 1 | 1400 | 2 | 4.19 ± 0.17 | 60.15 ± 1.17 | 68.39 ± 2.45 |
17 | 5 | 1400 | 1 | 11.57 ± 1.23 | 78.69 ± 1.02 | 38.20 ± 0.38 |
Yield (%) | AUA (%) | DE (%) | |
---|---|---|---|
Predicted | 25.072 | 65 | 51.089 |
Experimental | 27.277 | 71.525 | 42.354 |
Predicted vs. experimental (%) | −8.794 | −10.038 | −20.623 |
Extraction Method | Content of Observed Outputs (Extract 4) | ||||||
---|---|---|---|---|---|---|---|
TPC (mg GAE/g d.w.) | TFC (mg QE/g d.w.) | TCC (µg β-Carotene/g d.w.) | ABTS (µmol TE/g d.w.) | DPPH (µmol TE/g d.w.) | Nobiletin (µg/g d.w.) | Tangeretin (µg/g d.w.) | |
CSE | 28.24 ± 1.16 a | 82.91 ± 1.07 a | 214.11 ± 15.49 a | 189.61 ± 2.81 a | 32.15 ± 1.15 a | 881.28 ± 12.13 a | 158.23 ± 2.30 a |
MAE | 21.23 ± 0.99 b | 77.05 ± 1.56 b | 189.21 ± 16.50 a | 244.21 ± 9.69 b | 26.07 ± 0.53 b | 610.07 ± 2.06 b | 135.24 ± 0.51 b |
Energy Consumption (kWh/kg) | Time (min) | |||
---|---|---|---|---|
CSE | MAE | CSE | MAE | |
Extract 1 | 162 | 32.3 | 30 | 4 |
Extract 2 | 286 | 25.4 | 30 | 4 |
Extract 3 | 0.05 | 35.6 | 30 | 4 |
Extract 4 | 374 | 22.2 | 30 | 4 |
Pectin extract | 29.6 | 2.2 | 120 | 3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurić, M.; Golub, N.; Galić, E.; Radić, K.; Maslov Bandić, L.; Vitali Čepo, D. Microwave-Assisted Extraction of Bioactive Compounds from Mandarin Peel: A Comprehensive Biorefinery Strategy. Antioxidants 2025, 14, 722. https://doi.org/10.3390/antiox14060722
Jurić M, Golub N, Galić E, Radić K, Maslov Bandić L, Vitali Čepo D. Microwave-Assisted Extraction of Bioactive Compounds from Mandarin Peel: A Comprehensive Biorefinery Strategy. Antioxidants. 2025; 14(6):722. https://doi.org/10.3390/antiox14060722
Chicago/Turabian StyleJurić, Marina, Nikolina Golub, Emerik Galić, Kristina Radić, Luna Maslov Bandić, and Dubravka Vitali Čepo. 2025. "Microwave-Assisted Extraction of Bioactive Compounds from Mandarin Peel: A Comprehensive Biorefinery Strategy" Antioxidants 14, no. 6: 722. https://doi.org/10.3390/antiox14060722
APA StyleJurić, M., Golub, N., Galić, E., Radić, K., Maslov Bandić, L., & Vitali Čepo, D. (2025). Microwave-Assisted Extraction of Bioactive Compounds from Mandarin Peel: A Comprehensive Biorefinery Strategy. Antioxidants, 14(6), 722. https://doi.org/10.3390/antiox14060722