Molecular and Physiological Responses of Litopenaeus vannamei to Nitrogen and Phosphorus Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Shrimp and Chemical Procedures
2.2. Experimental Design and Sampling
2.3. Histological Examination
2.4. Biochemical Analysis
2.5. RNA Extraction, Library Construction, and Sequencing Analysis
2.6. Transcriptome Data Processing and Analysis
2.7. qRT-PCR and Statistical Analysis
3. Results
3.1. Growth Tests and Histopathological Analysis Under Nitrogen and Phosphorus Stress
3.2. Biochemical Parameters Under Nitrogen and Phosphorus Stress
3.3. Transcriptomic Profiling and Identification of DEGs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liao, I.C.; Chien, Y.-H. The Pacific White Shrimp, Litopenaeus vannamei, in Asia: The World’s Most Widely Cultured Alien Crustacean. In In the Wrong Place—Alien Marine Crustaceans: Distribution, Biology and Impacts; Galil, B.S., Clark, P.F., Carlton, J.T., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 489–519. ISBN 978-94-007-0591-3. [Google Scholar]
- Wang, H.; Teng, M.; Liu, P.; Zhao, M.; Wang, S.; Hu, J.; Bao, Z.; Zeng, Q. Selection Signatures of Pacific White Shrimp Litopenaeus vannamei Revealed by Whole-Genome Resequencing Analysis. Front. Mar. Sci. 2022, 9, 844597. [Google Scholar] [CrossRef]
- Han, S.; Wang, B.; Wang, M.; Liu, Q.; Zhao, W.; Wang, L. Effects of Ammonia and Nitrite Accumulation on the Survival and Growth Performance of White Shrimp Litopenaeus vannamei. Invertebr. Surviv. J. 2017, 14, 221–232. [Google Scholar]
- Ritvo, G.; Kochba, M.; Avnimelech, Y. The Effects of Common Carp Bioturbation on Fishpond Bottom Soil. Aquaculture 2004, 242, 345–356. [Google Scholar] [CrossRef]
- Cui, L.; Zhu, B.; Zhang, X.; Zhao, C.; Wang, S.; Ke, C.; Yang, S. Influences of Organic Nitrogen on the Removal of Inorganic Nitrogen from Complicated Marine Aquaculture Water by Marichromatium gracile YL28. J. Biosci. Bioeng. 2020, 130, 179–186. [Google Scholar] [CrossRef]
- Barbieri, E. Acute Toxicity of Ammonia in White Shrimp (Litopenaeus schmitti) (Burkenroad, 1936, Crustacea) at Different Salinity Levels. Aquaculture 2010, 306, 329–333. [Google Scholar] [CrossRef]
- Romano, N.; Zeng, C. Toxic Effects of Ammonia, Nitrite, and Nitrate to Decapod Crustaceans: A Review on Factors Influencing Their Toxicity, Physiological Consequences, and Coping Mechanisms. Rev. Fish. Sci. 2013, 21, 1–21. [Google Scholar] [CrossRef]
- Valencia-Castañeda, G.; Frías-Espericueta, M.G.; Vanegas-Pérez, R.C.; Pérez-Ramírez, J.A.; Chávez-Sánchez, M.C.; Páez-Osuna, F. Acute Toxicity of Ammonia, Nitrite and Nitrate to Shrimp Litopenaeus vannamei Postlarvae in Low-Salinity Water. Bull. Environ. Contam. Toxicol. 2018, 101, 229–234. [Google Scholar] [CrossRef]
- Valencia-Castañeda, G.; Frías-Espericueta, M.G.; Vanegas-Pérez, R.C.; Chávez-Sánchez, M.C.; Páez-Osuna, F. Toxicity of Ammonia, Nitrite and Nitrate to Litopenaeus vannamei Juveniles in Low-Salinity Water in Single and Ternary Exposure Experiments and Their Environmental Implications. Environ. Toxicol. Pharmacol. 2019, 70, 103193. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Peter, M.; Hur, J.; Gao, Y.; Chu, Z. Effects of Ammonia Exposure on Oxidative Stress, Immune Enzyme Activities, and Intestinal Microbiota of Pacific White Shrimp Litopenaeus vannamei. Aquac. Int. 2021, 29, 2605–2618. [Google Scholar] [CrossRef]
- Zhao, Q.; Feng, K.; Zhang, L.; Bai, Y.; Yao, W. Effects of Acute Ammonia Stress on Antioxidant Responses, Histopathology and Ammonia Detoxification Metabolism in Triangle Sail Mussels (Hyriopsis cumingii). Water 2021, 13, 425. [Google Scholar] [CrossRef]
- Liu, C.-H.; Chen, J.-C. Effect of Ammonia on the Immune Response of White Shrimp Litopenaeus vannamei and Its Susceptibility to Vibrio Alginolyticus. Fish Shellfish Immunol. 2004, 16, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Zhang, Y.; Zhuo, H.; Li, J.; Fu, S.; Zhou, X.; Wu, G.; Guo, C.; Liu, J. Integrated Histological, Physiological, and Transcriptome Analysis Reveals the Post-Exposure Recovery Mechanism of Nitrite in Litopenaeus vannamei. Ecotoxicol. Environ. Saf. 2024, 281, 116673. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-H.; Su, Y.-L.; Ma, H.-L.; Deng, Y.-Q.; Feng, J.; Chen, X.-L.; Jie, Y.-K.; Guo, Z.-X. Effect of Nitrite Exposure on Oxidative Stress, DNA Damage and Apoptosis in Mud Crab (Scylla paramamosain). Chemosphere 2020, 239, 124668. [Google Scholar] [CrossRef]
- Kuhn, D.D.; Smith, S.A.; Boardman, G.D.; Angier, M.W.; Marsh, L.; Flick, G.J. Chronic Toxicity of Nitrate to Pacific White Shrimp, Litopenaeus vannamei: Impacts on Survival, Growth, Antennae Length, and Pathology. Aquaculture 2010, 309, 109–114. [Google Scholar] [CrossRef]
- Grommen, R.; Van Hauteghem, I.; Van Wambeke, M.; Verstraete, W. An Improved Nitrifying Enrichment to Remove Ammonium and Nitrite from Freshwater Aquaria Systems. Aquaculture 2002, 211, 115–124. [Google Scholar] [CrossRef]
- Davis, D.A.; Gatlin, D.M. Dietary Mineral Requirements of Fish and Marine Crustaceans. Rev. Fish. Sci. 1996, 4, 75–99. [Google Scholar] [CrossRef]
- Lin, P.; Klump, J.V.; Guo, L. Dynamics of Dissolved and Particulate Phosphorus Influenced by Seasonal Hypoxia in Green Bay, Lake Michigan. Sci. Total Environ. 2016, 541, 1070–1082. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Yoo, S.; Ro, H.-Y.; Han, H.-J.; Baek, Y.-W.; Eom, I.-C.; Kim, H.-M.; Kim, P.; Choi, K. Aquatic Toxicity Assessment of Phosphate Compounds. Environ. Health Toxicol. 2013, 28, e2013002. [Google Scholar] [CrossRef]
- Schneider, O.; Sereti, V.; Eding, E.H.; Verreth, J.A.J. Analysis of Nutrient Flows in Integrated Intensive Aquaculture Systems. Aquac. Eng. 2005, 32, 379–401. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, M.; Zheng, L.; Nguyen, H.; Ni, L.; Song, S.; Sui, Y. Antioxidant Responses of Triangle Sail Mussel Hyriopsis cumingii Exposed to Toxic Microcystis Aeruginosa and Thermal Stress. Sci. Total Environ. 2020, 743, 140754. [Google Scholar] [CrossRef]
- Vijayavel, K.; Balasubramanian, M.P. Changes in Oxygen Consumption and Respiratory Enzymes as Stress Indicators in an Estuarine Edible Crab Scylla serrata Exposed to Naphthalene. Chemosphere 2006, 63, 1523–1531. [Google Scholar] [CrossRef]
- Nordberg, J.; Arnér, E.S. Reactive Oxygen Species, Antioxidants, and the Mammalian Thioredoxin System. Free Radic. Biol. Med. 2001, 31, 1287–1312. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.Q.; Ren, J.; Liu, J. Responses of Antioxidant Systems and LPO Level to Benzo(a)Pyrene and Benzo(k)Fluoranthene in the Haemolymph of the Scallop Chlamys Ferrari. Environ. Pollut. 2006, 141, 443–451. [Google Scholar] [CrossRef]
- Lin, L.; Li, J.; Liu, J.; Zhuo, H.; Zhang, Y.; Zhou, X.; Wu, G.; Guo, C.; Zhao, X. Single and Combined Effects of Ammonia and Nitrite on Litopenaeus vannamei: Histological, Physiological and Molecular Responses. Aquac. Rep. 2024, 35, 102014. [Google Scholar] [CrossRef]
- Garlock, T.M.; Asche, F.; Anderson, J.L.; Eggert, H.; Anderson, T.M.; Che, B.; Chávez, C.A.; Chu, J.; Chukwuone, N.; Dey, M.M.; et al. Environmental, Economic, and Social Sustainability in Aquaculture: The Aquaculture Performance Indicators. Nat. Commun. 2024, 15, 5274. [Google Scholar] [CrossRef]
- Papadopoulos, D.K.; Alvanou, M.V.; Lattos, A.; Ouroulis, K.; Giantsis, I.A. Tropical Shrimp Biofloc Aquaculture within Greenhouses in the Mediterranean: Preconditions, Perspectives, and a Prototype Description. Fishes 2024, 9, 208. [Google Scholar] [CrossRef]
- Lushchak, V.I. Environmentally Induced Oxidative Stress in Aquatic Animals. Aquat. Toxicol. 2011, 101, 13–30. [Google Scholar] [CrossRef]
- Ighodaro, O.M.; Akinloye, O.A. First Line Defence Antioxidants-Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPX): Their Fundamental Role in the Entire Antioxidant Defence Grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Zhang, R.; Shi, X.; Liu, Z.; Sun, J.; Sun, T.; Lei, M. Histological, Physiological and Transcriptomic Analysis Reveal the Acute Alkalinity Stress of the Gill and Hepatopancreas of Litopenaeus vannamei. Mar. Biotechnol. 2023, 25, 588–602. [Google Scholar] [CrossRef]
- Miao, M.; Li, S.; Yu, Y.; Liu, Y.; Li, F. Comparative Transcriptome Analysis of Hepatopancreas Reveals the Potential Mechanism of Shrimp Resistant to Vibrio parahaemolyticus Infection. Fish Shellfish Immunol. 2024, 144, 109282. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Jayasundara, N.; Zhang, J.; Ren, X.; Gao, B.; Li, J.; Liu, P. Integrated Physiological, Transcriptome and Metabolome Analyses of the Hepatopancreas of the Female Swimming Crab Portunus trituberculatus under Ammonia Exposure. Ecotoxicol. Environ. Saf. 2021, 228, 113026. [Google Scholar] [CrossRef]
- Mu, H.; Chen, J.; Huang, W.; Huang, G.; Deng, M.; Hong, S.; Ai, P.; Gao, C.; Zhou, H. OmicShare Tools: A Zero-Code Interactive Online Platform for Biological Data Analysis and Visualization. iMeta 2024, 3, e228. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, K.R.; Wasielesky, W.; Abreu, P.C. Nitrogen and Phosphorus Dynamics in the Biofloc Production of the Pacific White Shrimp, Litopenaeus vannamei. J. World Aquac. Soc 2013, 44, 30–41. [Google Scholar] [CrossRef]
- Preena, P.G.; Rejish Kumar, V.J.; Singh, I.S.B. Nitrification and Denitrification in Recirculating Aquaculture Systems: The Processes and Players. Rev. Aquac. 2021, 13, 2053–2075. [Google Scholar] [CrossRef]
- De Melo Filho, M.E.S.; Owatari, M.S.; Mouriño, J.L.P.; Lapa, K.R.; Soares, H.M. Application of Nitrification and Denitrification Processes in a Direct Water Reuse System for Pacific White Shrimp Farmed in Biofloc System. Aquac. Eng. 2020, 88, 102043. [Google Scholar] [CrossRef]
- Yang, P.; Yang, H.; Lai, D.Y.F.; Jin, B.; Tong, C. Production and Uptake of Dissolved Carbon, Nitrogen, and Phosphorus in Overlying Water of Aquaculture Shrimp Ponds in Subtropical Estuaries, China. Environ. Sci. Pollut. Res. 2019, 26, 21565–21578. [Google Scholar] [CrossRef]
- Bai, D.; Li, X.; Liu, Z.; Wan, L.; Song, C.; Zhou, Y.; Cao, X. Nitrogen and Phosphorus Turnover and Coupling in Ponds with Different Aquaculture Species. Aquaculture 2023, 563, 738997. [Google Scholar] [CrossRef]
- Ariadi, H.; Fadjar, M.; Mahmudi, M. The Relationships between Water Quality Parameters and the Growth Rate of White Shrimp (Litopenaeus vannamei) in Intensive Ponds. Aquac. Aquar. Conserv. Legis. 2019, 12, 2103–2116. [Google Scholar]
- Jia, X.; Zhang, D.; Wang, F.; Dong, S. Immune Responses of Litopenaeus vannamei to Non-Ionic Ammonia Stress: A Comparative Study on Shrimps in Freshwater and Seawater Conditions. Aquac. Res. 2017, 48, 177–188. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Yang, F.-F.; Ling, R.-Z.; Liao, S.-A.; Miao, Y.-T.; Ye, C.-X.; Wang, A.-L. Effects of Ammonia Exposure on Apoptosis, Oxidative Stress and Immune Response in Pufferfish (Takifugu obscurus). Aquat. Toxicol. 2015, 164, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Basha, P.S.; Rani, A.U. Cadmium-Induced Antioxidant Defense Mechanism in Freshwater Teleost Oreochromis mossambicus (Tilapia). Ecotoxicol. Environ. Saf. 2003, 56, 218–221. [Google Scholar] [CrossRef]
- Vijayavel, K.; Kashian, D.R. Toxic Effect and Physiological Disruption of Sodium Phosphate to the Quagga Mussel (Dreissena bugensis). Environ. Sci. Pollut. Res. 2019, 26, 1576–1583. [Google Scholar] [CrossRef]
- Wu, J.-P.; Chen, H.-C.; Huang, D.-J. Histopathological and Biochemical Evidence of Hepatopancreatic Toxicity Caused by Cadmium and Zinc in the White Shrimp, Litopenaeus vannamei. Chemosphere 2008, 73, 1019–1026. [Google Scholar] [CrossRef]
- Liang, Z.; Chen, T.; Yang, F.; Li, S.; Zhang, S.; Guo, H. Toxicity of Chronic Waterborne Zinc Exposure in the Hepatopancreas of White Shrimp Litopenaeus vannamei. Chemosphere 2022, 309, 136553. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ni, D.; Song, L.; Zhao, J.; Zhang, H.; Li, L. Molecular Cloning and Characterization of a Catalase Gene from Zhikong Scallop Chlamys farreri. Fish Shellfish Immunol. 2008, 24, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Nan, Y.; Zhu, X.; Yang, Y.; Xing, Y. The Adverse Impacts of Ammonia Stress on the Homeostasis of Intestinal Health in Pacific White Shrimp (Litopenaeus vannamei). Environ. Pollut. 2024, 340, 122762. [Google Scholar] [CrossRef]
- Frías-Espericueta, M.G.; Harfush-Melendez, M.; Páez-Osuna, F. Effects of Ammonia on Mortality and Feeding of Postlarvae Shrimp Litopenaeus vannamei. Bull. Environ. Contam. Toxicol. 2000, 65, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Liu, H.; Yang, S.; Zhou, M.; Zhang, S.; Tan, B.; Yang, Y.; Zhang, H.; Xie, R.; Dong, X. Effects of High-Lipid Dietary Protein Ratio on Growth, Antioxidant Parameters, Histological Structure, and Expression of Antioxidant-and Immune-Related Genes of Hybrid Grouper. Animals 2023, 13, 3710. [Google Scholar] [CrossRef]
- Zhang, H.; Zeng, R.; Chen, D.; Liu, J. A Pivotal Role of Vacuolar H+-ATPase in Regulation of Lipid Production in Phaeodactylum tricornutum. Sci. Rep. 2016, 6, 31319. [Google Scholar] [CrossRef] [PubMed]
- Nishi, T.; Forgac, M. The Vacuolar (H+)-ATPases—Nature’s Most Versatile Proton Pumps. Nat. Rev. Mol. Cell Biol. 2002, 3, 94–103. [Google Scholar] [CrossRef]
- Xiao, J.; Li, Q.-Y.; Tu, J.-P.; Chen, X.-L.; Chen, X.-H.; Liu, Q.-Y.; Liu, H.; Zhou, X.-Y.; Zhao, Y.-Z.; Wang, H.-L. Stress Response and Tolerance Mechanisms of Ammonia Exposure Based on Transcriptomics and Metabolomics in Litopenaeus vannamei. Ecotoxicol. Environ. Saf. 2019, 180, 491–500. [Google Scholar] [CrossRef]
- Zhang, T.; Yan, Z.; Zheng, X.; Fan, J.; Wang, S.; Wei, Y.; Yang, L.; Wang, P.; Guo, S. Transcriptome Analysis of Response Mechanism to Ammonia Stress in Asian Clam (Corbicula fluminea). Aquat. Toxicol. 2019, 214, 105235. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Luo, S.-S.; Du, J.-H.; Liu, Q.-Y.; Huang, Y.; Wang, W.-F.; Chen, X.-L.; Chen, X.-H.; Liu, H.; Zhou, X.-Y.; et al. Transcriptomic Analysis of Gills in Nitrite-Tolerant and -Sensitive Families of Litopenaeus vannamei. Comp. Biochem. Physiol. Toxicol. Pharmacol. 2022, 253, 109212. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Markiewicz, M.; Yamanaka, M.; Bielawska, A.; Mao, C.; Obeid, L.M.; Hannun, Y.A.; Trojanowska, M. Modulation of Transforming Growth Factor-β (TGF-β) Signaling by Endogenous Sphingolipid Mediators. J. Biol. Chem. 2003, 278, 9276–9282. [Google Scholar] [CrossRef]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yan, Z.; Zheng, X.; Wang, S.; Fan, J.; Liu, Z. Effects of Acute Ammonia Toxicity on Oxidative Stress, DNA Damage and Apoptosis in Digestive Gland and Gill of Asian Clam (Corbicula fluminea). Fish Shellfish Immunol. 2020, 99, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Cui, C.; Liu, Q.; Sun, J.; He, K.; Adam, A.A.; Luo, J.; Li, Z.; Wang, Y.; Yang, S. Combined Exposure to Hypoxia and Ammonia Aggravated Biological Effects on Glucose Metabolism, Oxidative Stress, Inflammation and Apoptosis in Largemouth Bass (Micropterus salmoides). Aquat. Toxicol. 2020, 224, 105514. [Google Scholar] [CrossRef]
- Airola, M.V.; Hannun, Y.A. Sphingolipid Metabolism and Neutral Sphingomyelinases. In Sphingolipids: Basic Science and Drug Development; Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2013; pp. 57–76. [Google Scholar] [CrossRef]
- Yue, F.; Pan, L.; Xie, P.; Zheng, D.; Li, J. Immune Responses and Expression of Immune-Related Genes in Swimming Crab Portunus Trituberculatus Exposed to Elevated Ambient Ammonia-N Stress. Comp. Biochem. Physiology. Part A Mol. Integr. Physiol. 2010, 157, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Kim, J.-H.; Park, M.-A.; Hwang, S.D.; Kang, J.-C. The Toxic Effects of Ammonia Exposure on Antioxidant and Immune Responses in Rockfish, Sebastes schlegelii during Thermal Stress. Environ. Toxicol. Pharmacol. 2015, 40, 954–959. [Google Scholar] [CrossRef]
- El-Sayed, A.-F.M. Use of Biofloc Technology in Shrimp Aquaculture: A Comprehensive Review, with Emphasis on the Last Decade. Rev. Aquac. 2021, 13, 676–705. [Google Scholar] [CrossRef]
- Montoya, R.A.; Lawrence, A.L.; Grant, W.E.; Velasco, M. Simulation of Phosphorus Dynamics in an Intensive Shrimp Culture System: Effects of Feed Formulations and Feeding Strategies. Ecol. Model. 2000, 129, 131–142. [Google Scholar] [CrossRef]
Gene Accession Number | Primer Names | Primer Sequences (5′-3′) |
---|---|---|
XM_027375354.1 | CYPIXE2-Fw | TGGCGATGCTGAAGGAATCTCA |
CYPIXE2-Rv | GGCGACCAGGAACAAGACACT | |
XM_027372322.1 | V-ATPase-Fw | AAGCTGCCATCCACACTCACAA |
V-ATPase-Rv | CCTGGAGCGACCGAGCAATT | |
XM_027364773.1 | SPT-Fw | ACGCACACCGACCTGGACTA |
SPT-Rv | GAGCGGACTCATCTCGTGGTTG | |
XM_027354349.1 | HNRNP 40-Fw | TATGGCGGATACGGTGGCTACG |
HNRNP 40-Rv | AGTATGGCTGGTGCCTCGTCTG | |
XM_027367407.1 | HSD3B-Fw | AGCACTCTCGCCGTCAAGATG |
HSD3B-Rv | GCCATTGTGAGCCTCCAGGA | |
XM_027383834.1 | Caspase1-Fw | AGCGTGGTGGTGGTGGTGAT |
Caspase1-Rv | GCGGCAGAAGTTGAACAGGAAC | |
XM_027359957.1 | CYP450-Fw | TACCGATGCTGCCGCTGATAGG |
CYP450-Rv | GCCTGCGAGAACACCTCCTTGA | |
XM_027359199.1 | C-IAP2-Fw | CAACGCCGCCAAGAACAACAG |
C-IAP2-Rv | ATAACGCTGGTGTCTGCTGGAA | |
XM_027375397.1 | LRP-Fw | CCACAGCAGAGGAGGCATTAGT |
LRP-Rv | TGGTGAGCAAGGAGAGCATGTT | |
XM_027357917.1 | LAL-Fw | TCGGCGGACTTCCAGAGCAT |
LAL-Rv | CGTGGTGAACGGTGAGGACATA |
Concentration (mg/L) | Weight Gain (g) | Length Increment (mm) | |
---|---|---|---|
Nitrogen | Control | 7.00 a ± 1.82 | 25.79 a ± 3.57 |
20 | 5.50 ab ± 1.00 | 17.78 b ± 1.40 | |
40 | 4.75 b ± 1.70 | 13.27 b ± 6.00 | |
60 | 4.25 b ± 0.50 | 16.40 b ± 4.10 | |
80 | 3.75 b ± 0.96 | 11.90 b ± 3.52 | |
Phosphorus | Control | 7.00 a ± 1.82 | 25.80 a ± 3.58 |
10 | 5.75 a ± 1.00 | 16.56 b ± 3.34 | |
20 | 6.50 a ± 1.70 | 13.84 b ± 5.99 | |
30 | 4.25 ab ± 0.95 | 12.40 b ± 4.11 | |
40 | 3.75 b ± 1.50 | 11.89 b ± 3.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Wei, C.; Dou, J.; Sun, Y.; Zeng, Q.; Bao, Z. Molecular and Physiological Responses of Litopenaeus vannamei to Nitrogen and Phosphorus Stress. Antioxidants 2025, 14, 194. https://doi.org/10.3390/antiox14020194
Zhao Q, Wei C, Dou J, Sun Y, Zeng Q, Bao Z. Molecular and Physiological Responses of Litopenaeus vannamei to Nitrogen and Phosphorus Stress. Antioxidants. 2025; 14(2):194. https://doi.org/10.3390/antiox14020194
Chicago/Turabian StyleZhao, Qianqian, Cun Wei, Jiangling Dou, Yue Sun, Qifan Zeng, and Zhenmin Bao. 2025. "Molecular and Physiological Responses of Litopenaeus vannamei to Nitrogen and Phosphorus Stress" Antioxidants 14, no. 2: 194. https://doi.org/10.3390/antiox14020194
APA StyleZhao, Q., Wei, C., Dou, J., Sun, Y., Zeng, Q., & Bao, Z. (2025). Molecular and Physiological Responses of Litopenaeus vannamei to Nitrogen and Phosphorus Stress. Antioxidants, 14(2), 194. https://doi.org/10.3390/antiox14020194