The Influence of 2.45 GHz Wi-Fi Exposure Duration on Sperm Quality and Testicular Histopathology: An Exploration of Peroxidative Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Study Groups
- Control: non-operating device;
- Test 1: device operating for 4 h daily;
- Test 2: device operating for 8 h daily;
- Test 3: device operating for 24 h daily (continuously).
2.3. Testis and Epididymis Collection
2.4. Reproductive Organ Coefficient
2.5. Serum Collection
2.6. Sperm Collection
2.7. MDA Analysis
2.8. Sperm Parameters
2.8.1. Sperm Concentration
2.8.2. Sperm Motility
2.8.3. Sperm Viability
2.9. Histopathology of Testes
2.9.1. Tissue Processing and Sectioning
2.9.2. H&E Histological Staining
- Deparaffinization Process: Previously prepared glass slides were air-dried using an XH-2001 tissue dryer (C&A Scientific-Premiere, Sterling, VA, USA) at 60 °C until completely dry. Subsequently, the deparaffinization process was carried out via immersion in Xylene (2×), 100% Ethanol, 80% Ethanol, and 70% Ethanol.
- H&E Staining Process: The H&E staining process was performed accordingly: Hematoxylin, tap water, Xylene, tap water, Scott’s tap water, tap water, and Eosin.
- Dehydration and Clearing Process: The Dehydration and Clearing process was carried out as mentioned: 80% Alcohol, 90% Alcohol, 100% Alcohol (2×), and Xylene (2×).
2.10. Statistical Analysis
3. Results
3.1. MDA Level
3.2. Reproductive Organ Coefficient
3.3. Sperm Parameters
3.3.1. Sperm Concentration
3.3.2. Sperm Motility
3.3.3. Sperm Viability
3.4. Correlation Between MDA and Sperm Parameters
3.5. Histopathology of Testes
3.5.1. Johnsen Score
3.5.2. Seminiferous Tubule Diameter
3.5.3. Seminiferous Epithelium Height
4. Discussions
4.1. MDA
4.2. Sperm Parameters
4.3. Histopathology of Testes
4.4. Organ Coefficient
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kapoor, D.; Singh, S.; Kumar, V.; Romero, R.; Prasad, R.; Singh, J. Antioxidant Enzymes Regulation In Plants In Reference To Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS). Plant Gene 2019, 19, 100182. [Google Scholar] [CrossRef]
- Ibrahim, R.A.; Ali, A.H.; Khamis, N.H.; Mohammed, H.H. Effect of Exposure to Wi-Fi Router Radiation On The Lung Of Adult Male Albino Rats: Histological And Immunohistochemical Study. Egypt. J. Histol. 2019, 42, 1059–1069. [Google Scholar] [CrossRef]
- Nisbet, H.O.; Nisbet, C.; Akar, A.; Cevik, M.; Karayigit, M.O. Effects of Exposure to Electromagnetic Field (1.8/0.9 GHz) on Testicular Function and Structure in Growing Rats. Res. J. Vet. Sci. 2012, 93, 1001–1005. [Google Scholar] [CrossRef]
- Akbari, B.; Najafi, F.; Bahmaei, M.; Mahmoodi, N.M.; Sherman, J.H. Modelling and Optimisation of Malondialdehyde (MDA) Absorbance Behaviour Through Response Surface Methodology (RSM) and Artificial Intelligence Network (AIN): An Endeavour to Estimate Lipid Peroxidation by Determination of MDA. J. Chemom. 2023, 37, e3468. [Google Scholar] [CrossRef]
- Jadoon, S.; Malik, A. A Review Article on The Formation, Mechanism and Biochemistry of MDA and MDA as A Biomarker of Oxidative Stress. Int. J. Adv. Res. 2017, 5, 811–818. [Google Scholar] [CrossRef]
- Oyewopo, A.O.; Olaniyi, S.K.; Oyewopo, C.I.; Jimoh, A.T. Radiofrequency Electromagnetic Radiation from Cell Phone Causes Defective Testicular Function in Male Wistar Rats. Andrologia 2017, 49, e12772. [Google Scholar] [CrossRef]
- Dharmajaya, R.; Sari, D.K. Malondialdehyde Value as Radical Oxidative Marker and Endogenous Antioxidant Value Analysis in Brain Tumor. Ann. Med. Surg. 2022, 77, 103231. [Google Scholar] [CrossRef]
- Akdag, M.Z.; Dasdag, S.; Canturk, F.; Karabulut, D.; Caner, Y.; Adalier, N. Does Prolonged Radiofrequency Radiation Emitted from Wi-Fi Devices Induce DNA Damage in Various Tissues of Rats? J. Chem. Neuroanat. 2016, 75, 116–122. [Google Scholar] [CrossRef]
- Ajayi, A.M.; John, K.A.; Emmanuel, I.B.; Chidebe, E.O.; Adedapo, A.D. High-fat diet-induced Memory Impairment and Anxiety-Like Behaviour in Rats Attenuated by Peel Extract of Ananas Comosus Fruit via Atheroprotective, Antioxidant and Anti-Inflammatory Actions. Metab. Open 2021, 9, 100077. [Google Scholar] [CrossRef]
- Khoshbakht, S.; Motejaded, F.; Karimi, S.; Jalilvand, N.; Ebrahimzadeh-Bideskan, A. Protective Effects of Selenium on Electromagnetic field-induced Apoptosis, Aromatase P450 Activity, and Leptin Receptor Expression in Rat Testis. Iran. J. Basic Med. Sci. 2021, 24, 322. [Google Scholar] [CrossRef]
- Qin, F.; Cao, H.; Yuan, H.; Guo, W.; Pei, H.; Cao, Y. 1800 MHz Radiofrequency Fields Inhibits Testosterone Production via CaMKI/RORα Pathway. Reprod. Toxicol. 2018, 81, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Saygin, M.; Asci, H.; Ozmen, O.; Cankara, F.N.; Dincoglu, D.; Ilhan, I. Impact of 2.45 GHz Microwave Radiation on The Testicular Inflammatory Pathway Biomarkers in Young Rats: The Role of Gallic Acid. Environ. Toxicol. 2016, 31, 1771–1784. [Google Scholar] [CrossRef] [PubMed]
- Azimzadeh, M.; Jelodar, G. Alteration of Testicular Regulatory and Functional Molecules Following Long-Time Exposure to 900 MHz RFW Emitted from BTS. Andrologia 2019, 51, e13372. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Gao, P.; Xu, S.C.; Wang, Y.; Chen, C.H.; He, M.D. Mobile Phone Radiation Induces Mode-Dependent DNA Damage in A Mouse Spermatocyte-Derived Cell Line: A Protective Role of Melatonin. Int. J. Radiat. Biol. 2013, 89, 993–1001. [Google Scholar] [CrossRef]
- Ozguner, M.; Koyu, A.; Cesur, G.; Ural, M.; Gokcimen, A.; Delibas, N. Biological and Morphological Effects on The Reproductive Organ of Rats After Exposure to Electromagnetic Field. Saudi Med. J. 2005, 26, 405–410. [Google Scholar]
- MCMC. Internet User Survey 2020-Infographic. 2020. Available online: https://mcmc.gov.my/skmmgovmy/media/General/DSRG_no9_2021/MCMC_MediaReport_Vol-4.pdf (accessed on 24 June 2024).
- Jaffar, F.H.; Osman, K.; Hui, C.K.; Zulkefli, A.F.; Ibrahim, S.F. Long-Term Wi-Fi Exposure from Pre-Pubertal to Adult Age on the Spermatogonia Proliferation and Protective Effects of Edible Bird’s Nest Supplementation. Front. Physiol. 2022, 13, 828578. [Google Scholar] [CrossRef]
- Thanh, T.N.; Van, P.D.; Cong, T.D.; Le Minh, T.; Vu, Q.H.N. Assessment of testis histopathological changes and spermatogenesis in male mice exposed to chronic scrotal heat stress. J. Anim. Behav. Biometeorol. 2020, 8, 174–180. [Google Scholar] [CrossRef]
- Shahin, N.N.; El-Nabarawy, N.A.; Gouda, A.S.; Megarbane, B. The Protective Role of Spermine Against Male Reproductive Aberrations Induced by Exposure to Electromagnetic Field—An Experimental Investigation in The Rat. Toxicol. Appl. Pharmacol. 2019, 370, 117–130. [Google Scholar] [CrossRef]
- Jonwal, C.; Sisodia, R.; Saxena, V.K.; Kesari, K.K. Effect of 2.45 GHz microwave radiation on the fertility pattern in male mice. Gen. Physiol. Biophys. 2018, 37, 453–600. [Google Scholar] [CrossRef]
- El-Bediwi, A.; El-Kott, A.F.; Saad, M.; Eid, E. Effects of Electromagnetic Radiation Produced by Mobile Phone on Some Visceral Organs of Rat. J. Med. Sci. 2011, 11, 256–260. [Google Scholar] [CrossRef]
- Yahyazadeh, A.; Altunkaynak, B.Z.; Kaplan, S. Biochemical, Immunohistochemical and Morphometrical Investigation of The Effect of Thymoquinone on The Rat Testis Following Exposure to a 900-MHz Electromagnetic Field. Acta Histochem. 2020, 122, 151467. [Google Scholar] [CrossRef] [PubMed]
- Shahin, S.; Mishra, V.; Singh, S.; Chaturvedi, C.M. 2.45-GHz Microwave Irradiation Adversely Affects Reproductive Function in Male Mouse, Mus Musculus by Inducing Oxidative and Nitrosative Stress. Free Radic. Res. 2014, 48, 511–525. [Google Scholar] [CrossRef] [PubMed]
- Shokri, M.; Shamsaei, M.E.; Malekshah, A.K.; Amiri, F.T. The Protective Effect of Melatonin on Radiofrequency Electromagnetic Fields of Mobile Phone-Induced Testicular Damage in An Experimental Mouse Model. Andrologia 2020, 52, e13834. [Google Scholar] [CrossRef] [PubMed]
- Gevrek, F.; Aydin, D.; Ozsoy, S.; Aygun, H.; Bicer, C. Inhibition by Egb761 of the effect of cellphone radiation on the male reproductive system. Bratisl. Lek. Listy. 2017, 118, 676–683. [Google Scholar] [CrossRef]
- Lee, H.J.; Jin, Y.B.; Kim, T.H.; Pack, J.K.; Kim, N.; Choi, H.D. The Effects of Simultaneous Combined Exposure to CDMA and WCDMA Electromagnetic Fields on Rat Testicular Function. Bioelectromagnetics 2012, 33, 356–364. [Google Scholar] [CrossRef]
- Farag, E.; Yousry, M.M.; Omar, A.I. Histological Study on the Detrimental Influences of White LED Light on The Retina of Adult Albino Rat and The Potential Effect of Simultaneous Nicotine Administration with Highlighting Their Possible Mechanisms. Egypt. J. Histol. 2017, 40, 328–344. [Google Scholar] [CrossRef]
- Dong, G.; Zhou, H.; Gao, Y.; Zhao, X.; Liu, Q.; Li, Z. Effects of 1.5-GHz High-Power Microwave Exposure on the Reproductive Systems of Male Mice. Electromagn. Biol. Med. 2021, 40, 311–320. [Google Scholar] [CrossRef]
- Mohamed, A.O.; Abdel-Hafez, S.M.N.; Ibrahim, R.A.; Refaai, R.A. The Possible Effects of Electromagnetic Waves of Wi-Fi Router on the Hippocampus of Male Rats. Minia J. Med. Res. 2020, 33, 1–6. [Google Scholar] [CrossRef]
- Owjfard, M.; Fard, M.S. Effects of Long-Term Exposure to Radiofrequency Radiations Emitted by Mobile Jammers on Reproduction Parameters in Rats. Asian Pac. J. Reprod. 2017, 6, 164–171. [Google Scholar] [CrossRef]
- Pardhiya, S.; Gaharwar, U.S.; Gautam, R.; Priyadarshini, E.; Nirala, J.P.; Rajamani, P. Cumulative Effects of Manganese Nanoparticle and Radiofrequency Radiation in Male Wistar Rats. Drug Chem. Toxicol. 2022, 45, 1395–1407. [Google Scholar] [CrossRef]
- Pinto, F.R.; Mourato, M.P.; Sales, J.R.; Moreira, I.N.; Martins, L.L. Oxidative Stress Response in Spinach Plants Induced by Cadmium. J. Plant Nutr. 2017, 40, 268–276. [Google Scholar] [CrossRef]
- Pandey, N.; Giri, S. Melatonin Attenuates Radiofrequency Radiation (900 MHz)-induced Oxidative Stress, DNA Damage and Cell Cycle Arrest in Germ Cells of Male Swiss Albino Mice. Toxicol. Ind. Health 2018, 34, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Stephen, S.A.; Kelechi, L.N.; Adeola, A.A. The effect of Electromagnetic Radiation (EMR) from Laptop on Reproductive Hormones, Sperm Quality and Prostate Specific Antigen of Male Albino Rats (Rattus norvegicus). Ecol. Saf. Balanc. Use Resour. 2019, 19, 43–52. [Google Scholar] [CrossRef]
- Dasdag, S.; Taş, M.; Akdag, M.Z.; Yegin, K. Effect of Long-Term Exposure of 2.4 GHz Radiofrequency Radiation Emitted from Wi-Fi Equipment on Testes Functions. Electromagn. Biol. Med. 2015, 34, 37–42. [Google Scholar] [CrossRef]
Group/Organ | Control | Test 1 (4 h) | Test 2 (8 h) | Test 3 (24 h) |
---|---|---|---|---|
Testis (right) | 0.32 ± 0.01 | 0.18 ± 0.02 a | 0.18 ± 0.03 a | 0.32 ± 0.04 |
Testis (left) | 0.32 ± 0.01 | 0.19 ± 0.02 a | 0.18 ± 0.03 a | 0.30 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamaludin, N.; Ibrahim, S.F.; Jaffar, F.H.F.; Zulkefli, A.F.; Osman, K. The Influence of 2.45 GHz Wi-Fi Exposure Duration on Sperm Quality and Testicular Histopathology: An Exploration of Peroxidative Injury. Antioxidants 2025, 14, 179. https://doi.org/10.3390/antiox14020179
Jamaludin N, Ibrahim SF, Jaffar FHF, Zulkefli AF, Osman K. The Influence of 2.45 GHz Wi-Fi Exposure Duration on Sperm Quality and Testicular Histopathology: An Exploration of Peroxidative Injury. Antioxidants. 2025; 14(2):179. https://doi.org/10.3390/antiox14020179
Chicago/Turabian StyleJamaludin, Norazurashima, Siti Fatimah Ibrahim, Farah Hanan Fathihah Jaffar, Aini Farzana Zulkefli, and Khairul Osman. 2025. "The Influence of 2.45 GHz Wi-Fi Exposure Duration on Sperm Quality and Testicular Histopathology: An Exploration of Peroxidative Injury" Antioxidants 14, no. 2: 179. https://doi.org/10.3390/antiox14020179
APA StyleJamaludin, N., Ibrahim, S. F., Jaffar, F. H. F., Zulkefli, A. F., & Osman, K. (2025). The Influence of 2.45 GHz Wi-Fi Exposure Duration on Sperm Quality and Testicular Histopathology: An Exploration of Peroxidative Injury. Antioxidants, 14(2), 179. https://doi.org/10.3390/antiox14020179