Elevated Serum Levels of Acid Sphingomyelinase in Female Patients with Episodic and Chronic Migraine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Clinical Study Protocol
2.3. Laboratory Tests
2.4. Sphingolipidomics
2.5. Data and Statistical Analysis
3. Results
3.1. Elevated Acid Sphingomyelinase Concentrations in Patients with Migraine
ROC Curves Reveal That Serum Concentration of aSMase Is a Good Biomarker for Both Episodic and Chronic Migraine
3.2. Sphingolipidomics Demonstrated a Significant Reduction in Serum Sphingomyelin in Patients with Migraine
3.2.1. ROC Curves Demonstrated That Serum SM Levels Are a Good Biomarker for Both Episodic and Chronic Migraine
3.2.2. Increased Serum aSMase Levels Selectively Degrade the Major dhSM Species 18:0/16:0 in Patients with Migraine
3.3. No Alterations in Serum Ceramide Were Detected in Patients with Migraine Compared with Healthy Subjects
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
aSMase | Acid sphingomyelinase |
BBB | Blood–brain barrier |
C1P | Ceramide 1-phosphate |
Cer | Ceramide |
CGRP | Calcitonin-gene related peptide |
CM | Chronic migraine |
cPLA2 | Cytosolic phospholipase A2 |
dhCer | Dihydro-ceramide |
dhSM | Dihydro-sphingomyelin |
EM | Episodic migraine |
FIASMA | Functional Inhibitor of Acid SphingoMyelinAse |
IL-1β | Interleukin-1β |
NO | Nitric oxide |
NOS | Nitric oxide synthase |
ROS | Reactive oxygen species |
TNF-α | Tumor Necrosis Factor α |
References
- Ferrari, M.D.; Goadsby, P.J.; Burstein, R.; Kurth, T.; Ayata, C.; Charles, A.; Ashina, M.; van den Maagdenberg, A.M.J.M.; Dodick, D.W. Migraine. Nat. Rev. Dis. Primers 2022, 8, 2. [Google Scholar] [CrossRef]
- Allais, G.; Chiarle, G.; Sinigaglia, S.; Airola, G.; Schiapparelli, P.; Benedetto, C. Gender-Related Differences in Migraine. Neurol. Sci. 2020, 41, 429–436. [Google Scholar] [CrossRef]
- Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd Edition. Cephalalgia 2018, 38, 1–211. [CrossRef] [PubMed]
- Perini, F.; D’Andrea, G.; Galloni, E.; Pignatelli, F.; Billo, G.; Alba, S.; Bussone, G.; Toso, V. Plasma Cytokine Levels in Migraineurs and Controls. Headache 2005, 45, 926–931. [Google Scholar] [CrossRef] [PubMed]
- Edvinsson, L.; Haanes, K.A.; Warfvinge, K. Does Inflammation Have a Role in Migraine? Nat. Rev. Neurol. 2019, 15, 483–490. [Google Scholar] [CrossRef]
- Cowan, R.P.; Gross, N.B.; Sweeney, M.D.; Sagare, A.P.; Montagne, A.; Arakaki, X.; Fonteh, A.N.; Zlokovic, B.V.; Pogoda, J.M.; Harrington, M.G. Evidence That Blood–CSF Barrier Transport, but Not Inflammatory Biomarkers, Change in Migraine, While CSF SVCAM1 Associates with Migraine Frequency and CSF Fibrinogen. Headache J. Head Face Pain 2021, 61, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Jiménez, F.J.; Alonso-Navarro, H.; García-Martín, E.; Espada-Rubio, S.; Agúndez, J.A.G. Oxidative Stress and Migraine. Mol. Neurobiol. 2024, 61, 8344–8360. [Google Scholar] [CrossRef] [PubMed]
- Akerman, S.; Holland, P.R.; Goadsby, P.J. Diencephalic and Brainstem Mechanisms in Migraine. Nat. Rev. Neurosci. 2011, 12, 570–584. [Google Scholar] [CrossRef]
- Zhang, X.; Levy, D.; Kainz, V.; Noseda, R.; Jakubowski, M.; Burstein, R. Activation of Central Trigeminovascular Neurons by Cortical Spreading Depression. Ann. Neurol. 2011, 69, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Borkum, J.M. Migraine Triggers and Oxidative Stress: A Narrative Review and Synthesis. Headache 2016, 56, 12–35. [Google Scholar] [CrossRef]
- Durham, P.; Papapetropoulos, S. Biomarkers Associated with Migraine and Their Potential Role in Migraine Management. Headache 2013, 53, 1262–1277. [Google Scholar] [CrossRef] [PubMed]
- Kurth, T.; Gaziano, J.M.; Cook, N.R.; Logroscino, G.; Diener, H.C.; Buring, J.E. Migraine and Risk of Cardiovascular Disease in Women. JAMA 2006, 296, 283–291. [Google Scholar] [CrossRef]
- Gursoy-Ozdemir, Y.; Qiu, J.; Matsuoka, N.; Bolay, H.; Bermpohl, D.; Jin, H.; Wang, X.; Rosenberg, G.A.; Lo, E.H.; Moskowitz, M.A. Cortical Spreading Depression Activates and Upregulates MMP-9. J. Clin. Investig. 2004, 113, 1447–1455. [Google Scholar] [CrossRef] [PubMed]
- Higashi, Y. Roles of Oxidative Stress and Inflammation in Vascular Endothelial Dysfunction-Related Disease. Antioxidants 2022, 11, 1958. [Google Scholar] [CrossRef] [PubMed]
- Paolucci, M.; Altamura, C.; Vernieri, F. The Role of Endothelial Dysfunction in the Pathophysiology and Cerebrovascular Effects of Migraine: A Narrative Review. J. Clin. Neurol. 2021, 17, 164. [Google Scholar] [CrossRef]
- González-Quintanilla, V.; Toriello, M.; Palacio, E.; González-Gay, M.A.; Castillo, J.; Montes, S.; Martínez-Nieto, R.; Fernandez, J.; Rojo, A.; Gutiérrez, S.; et al. Systemic and Cerebral Endothelial Dysfunction in Chronic Migraine. A Case-Control Study with an Active Comparator. Cephalalgia 2016, 36, 552–560. [Google Scholar] [CrossRef]
- Gross, E.C.; Putananickal, N.; Orsini, A.L.; Vogt, D.R.; Sandor, P.S.; Schoenen, J.; Fischer, D. Mitochondrial Function and Oxidative Stress Markers in Higher-Frequency Episodic Migraine. Sci. Rep. 2021, 11, 4543. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.W.; Meng, R.T.; Ko, C.Y. Modulating Oxidative Stress and Neurogenic Inflammation: The Role of Topiramate in Migraine Treatment. Front. Aging Neurosci. 2024, 16, 1455858. [Google Scholar] [CrossRef]
- Sojo, L.; Santos-González, E.; Riera, L.; Aguilera, A.; Barahona, R.; Pellicer, P.; Buxó, M.; Mayneris-Perxachs, J.; Fernandez-Balsells, M.; Fernández-Real, J.M. Plasma Lipidomics Profiles Highlight the Associations of the Dual Antioxidant/Pro-Oxidant Molecules Sphingomyelin and Phosphatidylcholine with Subclinical Atherosclerosis in Patients with Type 1 Diabetes. Antioxidants 2023, 12, 1132. [Google Scholar] [CrossRef] [PubMed]
- Summers, S.A.; Chaurasia, B.; Holland, W.L. Metabolic Messengers: Ceramides. Nat. Metab. 2019, 1, 1051–1058. [Google Scholar] [CrossRef] [PubMed]
- Quinville, B.M.; Deschenes, N.M.; Ryckman, A.E.; Walia, J.S. A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis. Int. J. Mol. Sci. 2021, 22, 5793. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Larrauri, A.; Presa, N.; Dominguez-Herrera, A.; Ouro, A.; Trueba, M.; Gomez-Munoz, A. Role of Bioactive Sphingolipids in Physiology and Pathology. Essays Biochem. 2020, 64, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Hannun, Y.A.; Obeid, L.M. Principles of Bioactive Lipid Signalling: Lessons from Sphingolipids. Nat. Rev. Mol. Cell Biol. 2008, 9, 139–150. [Google Scholar] [CrossRef]
- Gomez-Larrauri, A.; Gangoiti, P.; Presa, N.; Dominguez-Herrera, A.; Donati, C.; Bruni, P.; Trueba, M.; Gomez-Muñoz, A.; Ouro, A. Phosphatidic Acid Stimulates Myoblast Proliferation through Interaction with Lpa1 and Lpa2 Receptors. Int. J. Mol. Sci. 2021, 22, 1452. [Google Scholar] [CrossRef] [PubMed]
- Ouro, A.; Arana, L.; Riazy, M.; Zhang, P.; Gomez-Larrauri, A.; Steinbrecher, U.; Duronio, V.; Gomez-Muñoz, A. Vascular Endothelial Growth Factor Mediates Ceramide 1-Phosphate-Stimulated Macrophage Proliferation. Exp. Cell Res. 2017, 361, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Walsh, M.T.; Hammad, S.M.; Hussain, M.M. Sphingolipids and Lipoproteins in Health and Metabolic Disorders. Trends Endocrinol. Metab. 2017, 28, 506–518. [Google Scholar] [CrossRef]
- Gomez-Larrauri, A.; Das Adhikari, U.; Aramburu-Nuñez, M.; Custodia, A.; Ouro, A. Ceramide Metabolism Enzymes—Therapeutic Targets against Cancer. Medicina 2021, 57, 729. [Google Scholar] [CrossRef] [PubMed]
- Custodia, A.; Romaus-Sanjurjo, D.; Aramburu-Núñez, M.; Álvarez-Rafael, D.; Vázquez-Vázquez, L.; Camino-Castiñeiras, J.; Leira, Y.; Pías-Peleteiro, J.M.; Aldrey, J.M.; Sobrino, T.; et al. Ceramide/Sphingosine 1-Phosphate Axis as a Key Target for Diagnosis and Treatment in Alzheimer’s Disease and Other Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 8082. [Google Scholar] [CrossRef] [PubMed]
- Ouro, A.; Correa-Paz, C.; Maqueda, E.; Custodia, A.; Aramburu-Núñez, M.; Romaus-Sanjurjo, D.; Posado-Fernández, A.; Candamo-Lourido, M.; Alonso-Alonso, M.L.; Hervella, P.; et al. Involvement of Ceramide Metabolism in Cerebral Ischemia. Front. Mol. Biosci. 2022, 9, 864618. [Google Scholar] [CrossRef]
- Garcia-Ruiz, C.; Mato, J.M.; Vance, D.; Kaplowitz, N.; Fernández-Checa, J.C. Acid Sphingomyelinase-Ceramide System in Steatohepatitis: A Novel Target Regulating Multiple Pathways. J. Hepatol. 2015, 62, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Pieragostino, D.; Cicalini, I.; Lanuti, P.; Ercolino, E.; Di Ioia, M.; Zucchelli, M.; Zappacosta, R.; Miscia, S.; Marchisio, M.; Sacchetta, P. Enhanced Release of Acid Sphingomyelinase-Enriched Exosomes Generates a Lipidomics Signature in CSF of Multiple Sclerosis Patients. Sci. Rep. 2018, 8, 3071. [Google Scholar] [CrossRef] [PubMed]
- Mielke, M.M.; Bandaru, V.V.R.; Haughey, N.J.; Rabins, P.V.; Lyketsos, C.G.; Carlson, M.C. Serum Sphingomyelins and Ceramides Are Early Predictors of Memory Impairment. Neurobiol. Aging 2010, 31, 17–24. [Google Scholar] [CrossRef]
- Mielke, M.M.; Haughey, N.J.; Bandaru, V.V.R.; Weinberg, D.D.; Darby, E.; Zaidi, N.; Pavlik, V.; Doody, R.S.; Lyketsos, C.G. Plasma Sphingomyelins Are Associated with Cognitive Progression in Alzheimer’s Disease. J. Alzheimer’s Dis. 2011, 27, 259–269. [Google Scholar] [CrossRef]
- Mohamud Yusuf, A.; Hagemann, N.; Hermann, D.M.; Yusuf, A.M.; Hagemann, N.; Hermann, D.M.; Mohamud Yusuf, A.; Hagemann, N.; Hermann, D.M. The Acid Sphingomyelinase/ Ceramide System as Target for Ischemic Stroke Therapies. Neurosignals 2019, 27, 32–43. [Google Scholar] [CrossRef]
- Panchal, M.; Gaudin, M.; Lazar, A.N.; Salvati, E.; Rivals, I.; Ayciriex, S.; Dauphinot, L.; Dargère, D.; Auzeil, N.; Masserini, M. Ceramides and Sphingomyelinases in Senile Plaques. Neurobiol. Dis. 2014, 65, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Ruisanchez, É.; Janovicz, A.; Panta, R.C.; Kiss, L.; Párkányi, A.; Straky, Z.; Korda, D.; Liliom, K.; Tigyi, G.; Benyó, Z. Enhancement of Sphingomyelinase-Induced Endothelial Nitric Oxide Synthase-Mediated Vasorelaxation in a Murine Model of Type 2 Diabetes. Int. J. Mol. Sci. 2023, 24, 8375. [Google Scholar] [CrossRef]
- Custodia, A.; Aramburu-Núñez, M.; Correa-Paz, C.; Posado-Fernández, A.; Gómez-Larrauri, A.; Castillo, J.; Gómez-Muñoz, A.; Sobrino, T.; Ouro, A. Ceramide Metabolism and Parkinson’s Disease-Therapeutic Targets. Biomolecules 2021, 11, 945. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Liu, J.; Zhou, J.; Liang, H.; Wang, Y.; Sun, Y.; Ma, B.; Yin, Y. Lipidomic Analysis of Serum Samples from Migraine Patients. Lipids Health Dis. 2018, 17, 22. [Google Scholar] [CrossRef] [PubMed]
- Castor, K.; Dawlaty, J.; Arakaki, X.; Gross, N.; Woldeamanuel, Y.W.; Harrington, M.G.; Cowan, R.P.; Fonteh, A.N. Plasma Lipolysis and Changes in Plasma and Cerebrospinal Fluid Signaling Lipids Reveal Abnormal Lipid Metabolism in Chronic Migraine. Front Mol. Neurosci. 2021, 14, 181. [Google Scholar] [CrossRef] [PubMed]
- Peterlin, B.L.; Mielke, M.M.; Dickens, A.M.; Chatterjee, S.; Dash, P.; Alexander, G.; Vieira, R.V.A.; Bandaru, V.V.R.; Dorskind, J.M.; Tietjen, G.E.; et al. Interictal, Circulating Sphingolipids in Women with Episodic Migraine. Neurology 2015, 85, 1214–1223. [Google Scholar] [CrossRef] [PubMed]
- Fonteh, A.N.; Castor, K.; Kershaw, K.; Im, E.J.; Dawlaty, J.; Gross, N.; Arakaki, X.; Woldeamanuel, Y.; Harrington, M.; Cowan, R. Dysfunctional Plasma Lipid Metabolism Contributes to Chronic Migraine Pathology. FASEB J. 2018, 32, 767.14. [Google Scholar] [CrossRef]
- Huang, Z.; Yao, J.; Nie, L.; Nie, X.; Xiong, X.; Kõks, S.; Quinn, J.P.; Kanhere, A.; Wang, M. Gender-Different Effect of Src Family Kinases Antagonism on Photophobia and Trigeminal Ganglion Activity. J. Headache Pain 2024, 25, 175. [Google Scholar] [CrossRef] [PubMed]
- Onderwater, G.L.J.; Ligthart, L.; Bot, M.; Demirkan, A.; Fu, J.; Van Der Kallen, C.J.H.; Vijfhuizen, L.S.; Pool, R.; Liu, J.; Vanmolkot, F.H.M.; et al. Large-Scale Plasma Metabolome Analysis Reveals Alterations in HDL Metabolism in Migraine. Neurology 2019, 92, E1899–E1911. [Google Scholar] [CrossRef] [PubMed]
- Simbari, F.; McCaskill, J.; Coakley, G.; Millar, M.; Maizels, R.M.; Fabriás, G.; Casas, J.; Buck, A.H. Plasmalogen Enrichment in Exosomes Secreted by a Nematode Parasite versus Those Derived from Its Mouse Host: Implications for Exosome Stability and Biology. J. Extracell. Vesicles 2016, 5, 30741. [Google Scholar] [CrossRef]
- Domínguez-Vivero, C.; Leira, Y.; López-Ferreiro, A.; Saavedra, M.; Rodríguez-Osorio, X.; Sobrino, T.; Campos, F.; Castillo, J.; Leira, R. Pentraxin 3 (PTX3): A Molecular Marker of Endothelial Dysfunction in Chronic Migraine. J. Clin Med. 2020, 9, 849. [Google Scholar] [CrossRef]
- Domínguez, C.; Vieites-Prado, A.; Pérez-Mato, M.; Sobrino, T.; Rodríguez-Osorio, X.; López, A.; Campos, F.; Martínez, F.; Castillo, J.; Leira, R. CGRP and PTX3 as Predictors of Efficacy of Onabotulinumtoxin Type A in Chronic Migraine: An Observational Study. Headache J. Head Face Pain 2018, 58, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Samet, D.; Barenholz, Y. Characterization of Acidic and Neutral Sphingomyelinase Activities in Crude Extracts of HL-60 Cells. Chem. Phys. Lipids 1999, 102, 65–77. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, M.; Choi, S.H.; You, S.H.; Yoo, R.E.; Kang, K.M.; Yun, T.J.; Lee, S.T.; Moon, J.; Shin, Y.W. Altered Vascular Permeability in Migraine-Associated Brain Regions: Evaluation with Dynamic Contrastenhanced MRI. Radiology 2019, 292, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Mason, B.N.; Russo, A.F. Vascular Contributions to Migraine: Time to Revisit? Front Cell Neurosci. 2018, 12, 233. [Google Scholar] [CrossRef] [PubMed]
- Demartini, C.; Francavilla, M.; Zanaboni, A.M.; Facchetti, S.; De Icco, R.; Martinelli, D.; Allena, M.; Greco, R.; Tassorelli, C. Biomarkers of Migraine: An Integrated Evaluation of Preclinical and Clinical Findings. Int. J. Mol. Sci. 2023, 24, 5334. [Google Scholar] [CrossRef] [PubMed]
- Close, L.N.; Eftekhari, S.; Wang, M.; Charles, A.C.; Russo, A.F. Cortical Spreading Depression as a Site of Origin for Migraine: Role of CGRP. Cephalalgia 2019, 39, 428–434. [Google Scholar] [CrossRef]
- Kursun, O.; Yemisci, M.; van den Maagdenberg, A.M.J.M.; Karatas, H. Migraine and Neuroinflammation: The Inflammasome Perspective. J. Headache Pain 2021, 22, 55. [Google Scholar] [CrossRef] [PubMed]
- Wijesinghe, D.S.; Massiello, A.; Subramanian, P.; Szulc, Z.; Bielawska, A.; Chalfant, C.E. Substrate Specificity of Human Ceramide Kinase. J. Lipid Res. 2005, 46, 2706–2716. [Google Scholar] [CrossRef]
- Maabady, M.; Abdelazim, G.; El Madbouly, A. Interictal Ceramide Kinase in Migraine. Al-Azhar Assiut Med. J. 2017, 15, 163. [Google Scholar] [CrossRef]
- Ouro, A.; Arana, L.; Gangoiti, P.; Gomez-Muñoz, A. Role of Ceramide 1-Phosphate in the Regulation of Cell Survival and Inflammation. Biochemistry 2012, 4, 32849. [Google Scholar] [CrossRef]
- Gangoiti, P.; Granado, M.H.; Wei, S.; Kong, J.Y.; Steinbrecher, U.P.; Gómez-muñoz, A. Ceramide 1-Phosphate Stimulates Macrophage Proliferation through Activation of the PI3-Kinase/PKB, JNK and ERK1/2 Pathways. Cell. Signal. 2008, 20, 726–736. [Google Scholar] [CrossRef]
- Coant, N.; Sakamoto, W.; Mao, C.; Hannun, Y.A. Ceramidases, Roles in Sphingolipid Metabolism and in Health and Disease. Adv. Biol. Regul. 2017, 63, 122–131. [Google Scholar] [CrossRef]
- Parveen, F.; Bender, D.; Law, S.H.; Mishra, V.K.; Chen, C.C.; Ke, L.Y. Role of Ceramidases in Sphingolipid Metabolism and Human Diseases. Cells 2019, 8, 1573. [Google Scholar] [CrossRef] [PubMed]
- Rother, N.; Yanginlar, C.; Prévot, G.; Jonkman, I.; Jacobs, M.; van Leent, M.M.; van Heck, J.; Matzaraki, V.; Azzun, A.; Morla-Folch, J.; et al. Acid Ceramidase Regulates Innate Immune Memory. CellReports 2023, 42, 113458. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.I.; Haq, I.J.; John Simpson, A.; Becker, K.A.; Gallagher, J.; Saint-Criq, V.; Verdon, B.; Mavin, E.; Trigg, A.; Gray, M.A.; et al. Recombinant Acid Ceramidase Reduces Inflammation and Infection in Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2020, 202, 1133–1145. [Google Scholar] [CrossRef]
- Wu, Y.; Li, C.; Peng, H.; Swaidan, A.; Riehle, A.; Pollmeier, B.; Zhang, Y.; Gulbins, E.; Grassmé, H. Acid Sphingomyelinase Contributes to the Control of Mycobacterial Infection via a Signaling Cascade Leading from Reactive Oxygen Species to Cathepsin D. Cells 2020, 9, 2406. [Google Scholar] [CrossRef]
- Medvedev, R.Y.; Turner, D.G.P.; Thompson, B.W.; Glukhov, A.V. Sphingomyelinase-Induced ROS Production Suppresses Cardiac Performance. Biophys. J. 2024, 123, 386a. [Google Scholar] [CrossRef]
- Buitkamp, S.; Schwalm, S.; Jakobi, K.; Ferreiros, N.; Wünsche, C.; Zeuzem, S.; Gulbins, E.; Sarrazin, C.; Pfeilschifter, J.; Grammatikos, G. Acid Sphingomyelinase Activation and ROS Generation Potentiate Antiproliferative Effects of Mitomycin in HCC. Int. J. Mol. Sci. 2024, 25, 12175. [Google Scholar] [CrossRef]
- Chung, H.Y.; Hupe, D.C.; Otto, G.P.; Sprenger, M.; Bunck, A.C.; Dorer, M.J.; Bockmeyer, C.L.; Deigner, H.P.; Gräler, M.H.; Claus, R.A. Acid Sphingomyelinase Promotes Endothelial Stress Response in Systemic Inflammation and Sepsis. Mol. Med. 2016, 22, 412–423. [Google Scholar] [CrossRef]
- Mohamud Yusuf, A.; Borbor, M.; Hussner, T.; Weghs, C.; Kaltwasser, B.; Pillath-Eilers, M.; Walkenfort, B.; Kolesnick, R.; Gulbins, E.; Hermann, D.M.; et al. Acid Sphingomyelinase Inhibition Induces Cerebral Angiogenesis Post-Ischemia/Reperfusion in an Oxidative Stress-Dependent Way and Promotes Endothelial Survival by Regulating Mitochondrial Metabolism. Cell Death Dis. 2024, 15, 650. [Google Scholar] [CrossRef]
- Li, X.; Gulbins, E.; Zhang, Y. Oxidative Stress Triggers Ca-Dependent Lysosome Trafficking and Activation of Acid Sphingomyelinase. Cell. Physiol. Biochem. 2012, 30, 815–826. [Google Scholar] [CrossRef] [PubMed]
- Coliva, G.; Lange, M.; Colombo, S.; Chervet, J.P.; Rosario Domingues, M.; Fedorova, M. Sphingomyelins Prevent Propagation of Lipid Peroxidation—LC-MS/MS Evaluation of Inhibition Mechanisms. Molecules 2020, 25, 1925. [Google Scholar] [CrossRef]
- Lee, Y.; Im, E. Regulation of MiRNAs by Natural Antioxidants in Cardiovascular Diseases: Focus on SIRT1 and ENOS. Antioxidants 2021, 10, 377. [Google Scholar] [CrossRef] [PubMed]
- Karsan, N.; Gosalia, H.; Goadsby, P.J. Molecular Mechanisms of Migraine: Nitric Oxide Synthase and Neuropeptides. Int. J. Mol. Sci. 2023, 24, 11993. [Google Scholar] [CrossRef]
- Harriott, A.M.; Strother, L.C.; Vila-Pueyo, M.; Holland, P.R. Animal Models of Migraine and Experimental Techniques Used to Examine Trigeminal Sensory Processing. J. Headache Pain 2019, 20, 91. [Google Scholar] [CrossRef]
- Al-Hassany, L.; Goadsby, P.J.; Danser, A.H.J.; MaassenVanDenBrink, A. Calcitonin Gene-Related Peptide-Targeting Drugs for Migraine: How Pharmacology Might Inform Treatment Decisions. Lancet Neurol. 2022, 21, 284–294. [Google Scholar] [CrossRef]
- Pahan, K.; Sheikh, F.G.; Khan, M.; Namboodiri, A.M.S.; Singh, I. Sphingomyelinase and Ceramide Stimulate the Expression of Inducible Nitric-Oxide Synthase in Rat Primary Astrocytes. J. Biol. Chem. 1998, 273, 2591–2600. [Google Scholar] [CrossRef] [PubMed]
- May, A.; Goadsby, P.J. The Trigeminovascular System in Humans: Pathophysiologic Implications for Primary Headache Syndromes of the Neural Influences on the Cerebral Circulation. J. Cereb. Blood Flow Metab. 1999, 19, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Schulz, M.K.; Gutterman, D.K.; Freed, J.K. Activation of Neutral Sphingomyelinase Contributes to Nitric Oxide-Mediated Flow-Induced Dilation in the Human Microvasculature. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Haghjooy-Javanmard, S.; Haghdoost, F.; Gharzi, M.; Faez, F.; Hosseinzadeh, E.; Tajaddini, M.; Rafiei, L.; Asgari, F.; Banihashemi, M.; Sadat Masjedi, S.; et al. Association between Ala379Val Polymorphism of Lipoprotein-Associated Phospholipase A2 and Migraine without Aura in Iranian Population. Iran J. Neurol. 2016, 15, 80. [Google Scholar]
- Sudershan, A.; Sudershan, S.; Sharma, I.; Kumar, H.; Panjaliya, R.K.; Kumar, P. Role of TNF -α in the Pathogenesis of Migraine. Pain Res. Manag. 2024, 2024, 1377143. [Google Scholar] [CrossRef]
- Biscetti, L.; De Vanna, G.; Cresta, E.; Bellotti, A.; Corbelli, I.; Cupini, M.L.; Calabresi, P.; Sarchielli, P. Immunological Findings in Patients with Migraine and Other Primary Headaches: A Narrative Review. Clin Exp. Immunol. 2022, 207, 11–26. [Google Scholar] [CrossRef]
- Rodríguez-Osorio, X.; Sobrino, T.; Brea, D.; Martínez, F.; Castillo, J.; Leira, R. Endothelial Progenitor Cells a New Key for Endothelial Dysfunction in Migraine. Neurology 2012, 79, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Kornhuber, J.; Tripal, P.; Reichel, M.; Mühle, C.; Rhein, C.; Muehlbacher, M.; Groemer, T.W.; Gulbins, E. Functional Inhibitors of Acid Sphingomyelinase (FIASMAS): A Novel Pharmacological Group of Drugs with Broad Clinical Applications. Cell. Physiol. Biochem. 2010, 26, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, R.; LeBleu, V.S. The Biology, Function, and Biomedical Applications of Exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef]
- Ghadami, S.; Dellinger, K. The Lipid Composition of Extracellular Vesicles: Applications in Diagnostics and Therapeutic Delivery. Front Mol. Biosci. 2023, 10, 1198044. [Google Scholar] [CrossRef] [PubMed]
Variable | Ctrl N = 23 | EM N = 31 | CM N = 28 | p |
---|---|---|---|---|
Age, years | ||||
Ctrl vs. EM | 40.2 ± 11.4 | 41.1 ± 11.6 | 42.1 ± 10.5 | n.s. |
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
Females, % (Freq.) | 100 (23) | 100 (31) | 100 (28) | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
Time diagnostics (months) | - | 16.5 ± 13.3 | 21.2 ± 13.4 | n.s. |
EM vs. CM | ||||
Aura, % (Freq.) | - | 55 (17) | 46 (13) | n.s. |
EM vs. CM | ||||
Pain (days/month) | - | 8.2 ± 5.4 | 21.1 ± 4.4 | p < 0.0001 |
EM vs. CM | ||||
Visual Analogue Scale (VAS) | - | 8.5 ± 1.2 | 8.6 ± 1.4 | n.s. |
EM vs. CM | ||||
Treatment, % (Freq.) | ||||
Non-steroidal anti-inflammatories (NSAIDs) | - | 87 (27) | 82 (23) | n.s. |
Triptans | - | 48 (15) | 54 (15) | n.s. |
Beta blockers | - | 19 (6) | 43 (12) | p < 0.05 |
Calcium antagonists | - | 13 (4) | 46 (13) | p < 0.001 |
Antidepressants | - | 23 (7) | 82 (23) | p < 0.0001 |
BOTOX | - | 19 (6) | 71 (20) | p < 0.0001 |
aSMase (ng/mL) | 1.57 ± 0.72 | 3.62 ± 1.25 | 3.07 ± 0.96 | |
Ctrl vs. EM | p < 0.0001 | |||
Ctrl vs. CM | p < 0.0001 | |||
EM vs. CM | n.s. |
Variable | Ctrl | EM | CM | p |
---|---|---|---|---|
N = 21 | N = 31 | N = 28 | ||
SM Total (pmol equiv/mL) | 219,721 ± 36,949 | 173,534 ± 39,096 | 158,458 ± 40,009 | |
Ctrl vs. EM | p < 0.01 | |||
Ctrl vs. CM | p < 0.0001 | |||
EM vs. CM | n.s. | |||
SM 14:0 (pmol equiv/mL) | 6879 ± 1478 | 5066 ± 1229 | 5383 ± 1092 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
SM 14:1 (pmol equiv/mL) | 918 ± 231 | 747 ± 252 | 916 ± 338 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
SM 16:0 (pmol equiv/mL) | 61,004 ± 14,331 | 43,457 ± 14,043 | 38,280 ± 18,334 | |
Ctrl vs. EM | p < 0.0001 | |||
Ctrl vs. CM | p < 0.0001 | |||
EM vs. CM | p < 0.01 | |||
SM 16:1 (pmol equiv/mL) | 10,917 ± 2113 | 8771 ± 2080 | 8117 ± 1743 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
SM 18:0 (pmol/mL) | 15,646 ± 3027 | 13,317 ± 4120 | 11612 ± 2842 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | p < 0.05 | |||
EM vs. CM | n.s. | |||
SM 18:1 (pmol equiv/mL) | 8784 ± 1985 | 7240 ± 2125 | 6803 ± 1716 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
SM 20:0 (pmol equiv/mL) | 12,533 ± 3107 | 10,314 ± 2395 | 11,346 ± 2743 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
SM 20:1 (pmol equiv/mL) | 6216 ± 1284 | 4980 ± 1267 | 4983 ± 1150 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
SM 22:0 (pmol equiv/mL) | 20,405 ± 5891 | 15,575 ± 5508 | 15,365 ± 6447 | |
Ctrl vs. EM | p < 0.01 | |||
Ctrl vs. CM | p < 0.01 | |||
EM vs. CM | n.s. | |||
SM 22:1 (pmol equiv/mL) | 12,893 ± 3526 | 10,229 ± 2599 | 10,327 ± 3949 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
SM 24:0 (pmol/mL) | 16,298 ± 3978 | 12,624 ± 4960 | 10,669 ± 2997 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | p < 0.01 | |||
EM vs. CM | n.s. | |||
SM 24:1 (pmol/mL) | 24,351 ± 4164 | 22,100 ± 9921 | 17,234 ± 8593 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | p < 0.0001 | |||
EM vs. CM | p < 0.01 | |||
SM 24:2 (pmol equiv/mL) | 19,424 ± 4164 | 16,182 ± 4982 | 14,349 ± 5170 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | p < 0.01 | |||
EM vs. CM | n.s. | |||
SM 24:3 (pmol equiv/mL) | 3447 ± 718 | 2930 ± 634 | 3075 ± 928 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
dhSM (pmol equiv/mL) | 8518 ± 1966 | 7215 ± 2076 | 7817 ± 2057 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
dhSM 14:0 (pmol/mL) | 330 ± 146 | 245 ± 98 | 303 ± 120 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
dhSM 16:0 (pmol equiv/mL) | 3872 ± 909 | 3160 ± 838 | 3284 ± 739 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | p < 0.0001 | |||
EM vs. CM | p < 0.0001 | |||
dhSM 18:0 (pmol equiv/mL) | 1004 ± 341 | 842 ± 331 | 1006 ± 500 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
dhSM 20:0 (pmol equiv/mL) | 366 ± 155 | 332 ± 160 | 416 ± 201 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
dhSM 22:0 (pmol/mL) | 528 ± 235 | 470 ± 298 | 544 ± 296 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
dhSM 24:0 (pmol equiv/mL) | 140 ± 76 | 146 ± 89 | 163 ± 93 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
dhSM 24:1 (pmol equiv/mL) | 2241 ± 531 | 2017 ± 547 | 2099 ± 624 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
Cer Total (pmol equiv/mL) | 15,213 ± 5718 | 12,501 ± 5153 | 14,333 ± 6160 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
Cer 14:0 (pmol equiv/mL) | 56 ± 27 | 44 ± 15 | 62 ± 23 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
Cer 16:0 (pmol/mL) | 512 ± 180 | 400 ± 122 | 465 ± 133 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
Cer 16:1 (pmol equiv/mL) | 71 ± 18 | 62 ± 16 | 69 ± 19 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
Cer 18:0 (pmol/mL) | 177 ± 54 | 187 ± 75 | 195 ± 75 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
Cer 18:1 (pmol equiv/mL) | 49 ± 13 | 54 ± 33 | 50 ± 18 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
Cer 20:0 (pmol equiv/mL) | 165 ± 50 | 162 ± 50 | 178 ± 50 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
Cer 20:1 (pmol equiv/mL) | 42 ± 13 | 41 ± 12 | 45 ± 16 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
Cer 22:0 (pmol equiv/mL) | 1716 ± 771 | 1678 ± 515 | 1658 ± 680 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
Cer 22:1 (pmol equiv/mL) | 198 ± 61 | 211 ± 65 | 202 ± 78 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
Cer 24:0 (pmol/mL) | 10,409 ± 4950 | 7813 ± 4690 | 9395 ± 5560 | |
Ctrl vs. EM | p < 0.0001 | |||
Ctrl vs. CM | p < 0.05 | |||
EM vs. CM | p < 0.001 | |||
Cer 24:1 (pmol/mL) | 1371 ± 504 | 1369 ± 514 | 1547 ± 647 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
Cer 24:2 (pmol equiv/mL) | 445 ± 130 | 479 ± 164 | 467 ± 185 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
dhCer (pmol equiv/mL) | 1991 ± 709 | 1690 ± 487 | 2238 ± 833 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | p < 0.05 | |||
dhCer 16:0 (pmol/mL) | 118 ± 85 | 54 ± 20 | 136 ± 77 | |
Ctrl vs. EM | p < 0.05 | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | p < 0.01 | |||
dhCer 18:0 (pmol/mL) | 68 ± 66 | 21 ± 7 | 102 ± 79 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | p < 0.01 | |||
dhCer 20:0 (pmol equiv/mL) | 21 ± 21 | 22 ± 7 | 39 ± 30 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
dhCer 22:0 (pmol equiv/mL) | 55 ± 14 | 57 ± 17 | 58 ± 17 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
dhCer 22:1 (pmol equiv/mL) | 33 ± 11 | 34 ± 12 | 33 ± 12 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | n.s. | |||
EM vs. CM | n.s. | |||
dhCer 24:0 (pmol/mL) | 329 ± 158 | 334 ± 145 | 399 ± 205 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | p < 0.05 | |||
EM vs. CM | p < 0.05 | |||
dhCer 24:1 (pmol/mL) | 296 ± 92 | 296 ± 104 | 381 ± 172 | |
Ctrl vs. EM | n.s. | |||
Ctrl vs. CM | p < 0.01 | |||
EM vs. CM | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouro, A.; Castro-Mosquera, M.; Rodríguez-Arrizabalaga, M.; Debasa-Mouce, M.; Custodia, A.; Aramburu-Núñez, M.; Romaus-Sanjurjo, D.; Casas, J.; Lema, I.; Castillo, J.; et al. Elevated Serum Levels of Acid Sphingomyelinase in Female Patients with Episodic and Chronic Migraine. Antioxidants 2025, 14, 159. https://doi.org/10.3390/antiox14020159
Ouro A, Castro-Mosquera M, Rodríguez-Arrizabalaga M, Debasa-Mouce M, Custodia A, Aramburu-Núñez M, Romaus-Sanjurjo D, Casas J, Lema I, Castillo J, et al. Elevated Serum Levels of Acid Sphingomyelinase in Female Patients with Episodic and Chronic Migraine. Antioxidants. 2025; 14(2):159. https://doi.org/10.3390/antiox14020159
Chicago/Turabian StyleOuro, Alberto, Mónica Castro-Mosquera, Mariña Rodríguez-Arrizabalaga, Manuel Debasa-Mouce, Antía Custodia, Marta Aramburu-Núñez, Daniel Romaus-Sanjurjo, Josefina Casas, Isabel Lema, José Castillo, and et al. 2025. "Elevated Serum Levels of Acid Sphingomyelinase in Female Patients with Episodic and Chronic Migraine" Antioxidants 14, no. 2: 159. https://doi.org/10.3390/antiox14020159
APA StyleOuro, A., Castro-Mosquera, M., Rodríguez-Arrizabalaga, M., Debasa-Mouce, M., Custodia, A., Aramburu-Núñez, M., Romaus-Sanjurjo, D., Casas, J., Lema, I., Castillo, J., Leira, R., & Sobrino, T. (2025). Elevated Serum Levels of Acid Sphingomyelinase in Female Patients with Episodic and Chronic Migraine. Antioxidants, 14(2), 159. https://doi.org/10.3390/antiox14020159