Redox Homeostasis in Poultry/Animal Production
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 8-OHdG | 8-hydroxy-2′-deoxyguanosine |
| 25-OH-D3 | 25-Hydroxycholecalciferol |
| ADG | average daily gain |
| AO | antioxidant |
| CAT | catalase |
| CCL4 | chemokine (C-C motif) ligand 4 |
| CXCL10 | C-X-C motif chemokine ligand 10 |
| COX2 | cyclooxygenase-2 |
| ELE | Eucommia ulmoides leaf extract |
| ER | endoplasmic reticulum |
| ERKs | extracellular signal-regulated kinases |
| GSH | glutathione |
| GPX4 | glutathione peroxidase 4 |
| GPX6 | glutathione peroxidase 6 |
| GSH-Px | glutathione peroxidase |
| HOR | high ovulation rate |
| IFN-γ | interferon-gamma |
| IL | interleukin |
| ITMs | inorganic trace minerals |
| LOR | low ovulation rate |
| LPS | lipopolysaccharide |
| MDA | malondialdehyde |
| NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
| NLRP3 | nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 |
| Nrf2 | nuclear factor erythroid-2 related factor 2 |
| OH-SeMet | hydroxy-selenomethionine |
| OTMs | organic trace minerals |
| OS | oxidative stress |
| RIHR | Radix isatidis residual material |
| ROS | reactive oxygen species |
| SELENON | selenoprotein N |
| SELS | selenoprotein S |
| SOD | superoxide dismutase |
| SB | silibinin/silybin |
| SM | silymarin |
| SeNa | sodium selenite |
| SeY | selenium-enriched yeast |
| STAT | signal transducers and activators of transcription |
| T-AOC | total antioxidant capacity |
| TGF-β | transforming growth factor-beta |
| TNF-α | tumour necrosis factor-alpha |
| TLR4 | toll-like receptor 4 |
| TXNRD | thioredoxin reductase |
| ZO-1 | zonula occludens-1 |
References
- Surai, P.F. Vitagenes in Avian Biology and Poultry Health; Wageningen Academic Publishers: Wageningen, The Netherlands, 2020. [Google Scholar]
- Chiang, S.-K.; Sin, M.-Y.; Lin, J.-W.; Siregar, M.; Valdez, G.; Chen, Y.-H.; Chung, T.K.; Walzem, R.L.; Chang, L.-C.; Chen, S.-E. 25-Hydroxycholecalciferol Improves Cardiac Metabolic Adaption, Mitochondrial Biogenetics, and Redox Status to Ameliorate Pathological Remodelling and Functional Failure in Obese Chickens. Antioxidants 2024, 13, 1426. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, J.; Piao, X. Potential Effects of 25-Hydroxycholecalciferol on the Growth Performance, Blood Antioxidant Capacity, Intestinal Barrier Function and Microbiota in Broilers under Lipopolysaccharide Challenge. Antioxidants 2022, 11, 2094. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Long, S.; Wang, H.; Piao, X. Dietary 25-hydroxycholecalciferol modulates gut microbiota and improves the growth, meat quality, and antioxidant status of growing-finishing pigs. Front. Microbiol. 2023, 13, 1095509. [Google Scholar] [CrossRef] [PubMed]
- Long, S.; Mahfuz, S.; Piao, X. Dietary 25-Hydroxycholecalciferol Supplementation from Day 85 of Gestation to Farrowing Enhances Performance, Antioxidant Capacity, and Immunoglobulins of Sows and Newborn Piglets. Animals 2024, 14, 3378. [Google Scholar] [CrossRef]
- Kwon, C.H.; Safaie, E.S.; Locke, S.L.; Torres, J.A.; Yang, Z.; Chen, X.; Jang, Y.D. Effects of dietary 25-hydroxycholecalciferol supplementation on growth performance, blood vitamin D and antioxidant status in nursery pigs. Anim. Biosci. 2025, 38, 1943–1952. [Google Scholar] [CrossRef]
- Vázquez-Lorente, H.; Herrera-Quintana, L.; Jiménez-Sánchez, L.; Fernández-Perea, B.; Plaza-Diaz, J. Antioxidant Functions of Vitamin D and CYP11A1-Derived Vitamin D, Tachysterol, and Lumisterol Metabolites: Mechanisms, Clinical Implications, and Future Directions. Antioxidants 2024, 13, 996. [Google Scholar] [CrossRef]
- Della Nera, G.; Sabatino, L.; Gaggini, M.; Gorini, F.; Vassalle, C. Vitamin D Determinants, Status, and Antioxidant/Anti-inflammatory-Related Effects in Cardiovascular Risk and Disease: Not the Last Word in the Controversy. Antioxidants 2023, 12, 948. [Google Scholar] [CrossRef]
- Zhang, G.; Huang, J.; Sun, Z.; Guo, Y.; Lin, G.; Zhang, Z.; Zhao, J. Effects of Trace Mineral Source on Growth Performance, Antioxidant Activity, and Meat Quality of Pigs Fed an Oxidized Soy Oil Supplemented Diet. Antioxidants 2024, 13, 1227. [Google Scholar] [CrossRef]
- Byrne, L.; Murphy, R.A. Relative Bioavailability of Trace Minerals in Production Animal Nutrition: A Review. Animals 2022, 12, 1981. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhao, F.; Li, Y.; Wu, Q.; Xiao, H.; Cao, S.; Yang, X.; Gao, K.; Jiang, Z.; Hu, S.; et al. Impact of Low-Dose Amino Acid-Chelated Trace Minerals on Performance, Antioxidant Capacity, and Fecal Excretion in Growing-Finishing Pigs. Animals 2025, 15, 1213. [Google Scholar] [CrossRef]
- Chen, Z.; Dai, G.; Wu, X.; Li, L.; Tian, Y.; Tan, L. Protective effects of Fagopyrum dibotrys on oxidized oil-induced oxidative stress, intestinal barrier impairment, and altered cecal microbiota in broiler chickens. Poult. Sci. 2023, 102, 102472. [Google Scholar] [CrossRef]
- Arbabi-Motlagh, M.M.; Ghasemi, H.A.; Hajkhodadadi, I.; Ebrahimi, M. Effect of chelated source of additional zinc and selenium on performance, yolk fatty acid composition, and oxidative stability in laying hens fed with oxidised oil. Br. Poult. Sci. 2022, 63, 680–690. [Google Scholar] [CrossRef]
- Wang, D.; Dong, B.; Xing, T.; Xiang, X.E.; Zhao, L.; Gao, F.; Zhang, L. Effects of dietary metabolizable energy density and inclusion of oxidized soybean oil on the growth performance, serum biochemical parameters, redox status, and wooden breast incidence of broilers. J. Anim. Sci. 2025, 103, skaf086. [Google Scholar] [CrossRef] [PubMed]
- Arowolo, F.K.; Yang, X.; Blaser, M.E.; Nicholson, A.M.; Hosokawa, E.; Booth, J.R.; Jobsis, C.T.; Russell, R.L.; Meudt, J.J.; Reichert, J.L.; et al. Presence of lipid oxidation products in swine diet lowers pork quality and stability during storage. Meat Sci. 2020, 160, 107946. [Google Scholar] [CrossRef] [PubMed]
- Wilson, V.C.; Kerr, B.J. Feeding nursery pigs diets containing peroxidized soybean oil has minimal effects on oxidative status but dramatically reduces serum vitamin E concentrations. J. Anim. Sci. 2025, 103, skaf016. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhao, J.; Deng, W.; Li, K.; Liu, H. Effects of chlorogenic acid-enriched extract from Eucommia ulmoides Oliver leaf on growth performance and quality and oxidative status of meat in finishing pigs fed diets containing fresh or oxidized corn oil. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1116–1125. [Google Scholar] [CrossRef]
- Koo, B.; Nyachoti, C.M. Effects of thermally oxidized canola oil and tannic acid supplementation on nutrient digestibility and microbial metabolites in finishing pigs1. J. Anim. Sci. 2019, 97, 2468–2478. [Google Scholar] [CrossRef]
- Wang, J.; Sun, H.; Peng, Z.; Wang, S.-Q.; Yan, Y.-Q.; Luo, W.-C.; Yang, R.-G.; Bei, W.-C.; Sun, L.-H.; Yang, J.-C. Hydroxy-Selenomethionine Supplementation During Gestation and Lactation Improve Reproduction of Sows by Enhancing the Antioxidant Capacity and Immunity Under Heat Stress Conditions. Antioxidants 2025, 14, 525. [Google Scholar] [CrossRef]
- Mou, D.; Ding, D.; Li, S.; Yan, H.; Qin, B.; Li, Z.; Zhao, L.; Che, L.; Fang, Z.; Xu, S.; et al. Effect of maternal organic selenium supplementation during pregnancy on sow reproductive performance and long-term effect on their progeny. J. Anim. Sci. 2020, 98, skaa366. [Google Scholar] [CrossRef]
- Mou, D.; Ding, D.; Yan, H.; Qin, B.; Dong, Y.; Li, Z.; Che, L.; Fang, Z.; Xu, S.; Lin, Y.; et al. Maternal supplementation of organic selenium during gestation improves sows and offspring antioxidant capacity and inflammatory status and promotes embryo survival. Food Funct. 2020, 11, 7748–7761. [Google Scholar] [CrossRef]
- Sun, H.; Zhao, L.; Xu, Z.-J.; De Marco, M.; Briens, M.; Yan, X.-H.; Sun, L.-H. Hydroxy-Selenomethionine Improves the Selenium Status and Helps to Maintain Broiler Performances under a High Stocking Density and Heat Stress Conditions through a Better Redox and Immune Response. Antioxidants 2021, 10, 1542. [Google Scholar] [CrossRef]
- Campo-Sabariz, J.; García-Vara, A.; Moral-Anter, D.; Briens, M.; Hachemi, M.A.; Pinloche, E.; Ferrer, R.; Martín-Venegas, R. Hydroxy-selenomethionine, an organic selenium source, increases selenoprotein expression and positively modulates the inflammatory response of LPS-stimulated macrophages. Antioxidants 2022, 11, 1876. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, Y.; Tang, J.; Jia, G.; Liu, G.; Tian, G.; Chen, X.; Cai, J.; Kang, B.; Zhao, H. Selenium exerts protective effects against heat stress-induced barrier disruption and inflammation response in jejunum of growing pigs. J. Sci. Food Agric. 2022, 102, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Mou, D.; Ding, D.; Yang, M.; Jiang, X.; Zhao, L.; Che, L.; Fang, Z.; Xu, S.; Lin, Y.; Zhuo, Y.; et al. Maternal organic selenium supplementation during gestation improves the antioxidant capacity and reduces the inflammation level in the intestine of offspring through the NF-κB and ERK/Beclin-1 pathways. Food Funct. 2021, 12, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Mou, D.; Zhao, L.; Jiang, X.; Che, L.; Fang, Z.; Xu, S.; Lin, Y.; Zhuo, Y.; Li, J.; et al. Maternal organic selenium supplementation alleviates LPS induced inflammation, autophagy and ER stress in the thymus and spleen of offspring piglets by improving the expression of selenoproteins. Food Funct. 2021, 12, 11214–11228. [Google Scholar] [CrossRef]
- Ding, D.; Mou, D.; Zhu, H.; Jiang, X.; Che, L.; Fang, Z.; Xu, S.; Lin, Y.; Zhuo, Y.; Li, J.; et al. Maternal organic selenium supplementation relieves intestinal endoplasmic reticulum stress in piglets by enhancing the expression of glutathione peroxidase 4 and selenoprotein S. Front. Nutr. 2022, 9, 900421. [Google Scholar] [CrossRef]
- Jing, J.; Xiang, X.; Tang, J.; Wang, L.; Jia, G.; Liu, G.; Chen, X.; Tian, G.; Cai, J.; Kang, B.; et al. Hydroxy Selenomethionine Exert Different Protective Effects Against Dietary Oxidative Stress–Induced Inflammatory Responses in Spleen and Thymus of Pigs. Biol. Trace Elem. Res. 2024, 202, 3107–3118. [Google Scholar] [CrossRef]
- Li, Z.; Dong, Y.; Chen, S.; Jia, X.; Jiang, X.; Che, L.; Lin, Y.; Li, J.; Feng, B.; Fang, Z.; et al. Organic selenium increased gilts antioxidant capacity, immune function, and changed intestinal microbiota. Front. Microbiol. 2021, 12, 723190. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, S.; He, Y.; Tang, J.; Pu, J.; Jia, G.; Liu, G.; Tian, G.; Chen, X.; Cai, J.; et al. Hydroxy-Selenomethionine mitigated chronic heat stress-induced porcine splenic damage via activation of Nrf2/Keap1 signal and suppression of NFκb and STAT signal. Int. J. Mol. Sci. 2023, 24, 6461. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, S.; Tang, J.; Liu, Y.; Jia, G.; Liu, G.; Tian, G.; Chen, X.; Cai, J.; Kang, B.; et al. Hydroxy selenomethionine improves meat quality through optimal skeletal metabolism and functions of selenoproteins of pigs under chronic heat stress. Antioxidants 2021, 10, 1558. [Google Scholar] [CrossRef]
- de Brito, A.N.E.F.; Kaneko, I.N.; Cavalcante, D.T.; Cardoso, A.S.; Fagundes, N.S.; Fontinhas-Netto, G.; de Lima, M.R.; da Silva, J.H.V.; Givisiez, P.E.N.; Costa, F.G.P. Hydroxy-selenomethionine enhances the productivity and egg quality of 50-to 70-week-old semi-heavy laying hens under heat stress. Poult. Sci. 2023, 102, 102320. [Google Scholar] [CrossRef] [PubMed]
- Manafi, A.; Ebrahimnezhad, Y.; Shahryar, H.A.; Teli, A.S.; Gorbani, A.; Maheri-Sis, N. The effect of hydroxy-selenomethionine on the productive and reproductive performance of old broiler breeders. Vet. Med. Sci. 2024, 10, e1538. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F. (Ed.) Selenium in Pig Nutrition and Health; Wageningen Academic Publishers: Wageningen, The Netherlands, 2021. [Google Scholar]
- Surai, P.F. (Ed.) Selenium in Ruminant Nutrition and Health; Brill Wageningen Academic: Wageningen, The Netherlands, 2024. [Google Scholar]
- Han, M.; Yin, Y.; Gong, S.; Shi, H.; Li, Q.; Lian, X.; Duan, Y.; Li, F.; Guo, Q. Effects of Dietary Eucommia ulmoides Leaf Extract Supplementation on Growth Performance, Meat Quality, Antioxidant Capacity, and Lipid Metabolism of Finishing Pigs. Antioxidants 2024, 13, 320. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Yan, Z.; Shi, P.; Wang, D.; Liu, Z.; Lu, M.; Li, C.; Yin, Y.; Huang, P. The Effects of Radix isatidis Raw Material on Egg Quality, Serum Biochemistry, Gut Morphology and Gut Flora. Antioxidants 2023, 12, 2084. [Google Scholar] [CrossRef]
- Hernández-García, P.A.; Granados-Rivera, L.D.; Orzuna-Orzuna, J.F.; Vázquez-Silva, G.; Díaz-Galván, C.; Razo-Ortíz, P.B. Meta-Analysis of Dietary Curcumin Supplementation in Broiler Chickens: Growth Performance, Antioxidant Status, Intestinal Morphology, and Meat Quality. Antioxidants 2025, 14, 460. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, R.; Jin, S.; Feng, X. Curcumin, a plant polyphenol with multiple physiological functions of improving antioxidation, anti-inflammation, immunomodulation and its application in poultry production. J. Anim. Physiol. Anim. Nutr. 2024, 108, 1890–1905. [Google Scholar] [CrossRef]
- Pan, S.; Yan, J.; Xu, X.; Chen, Y.; Chen, X.; Li, F.; Xing, H. Current Development and Future Application Prospects of Plants-Derived Polyphenol Bioactive Substance Curcumin as a Novel Feed Additive in Livestock and Poultry. Int. J. Mol. Sci. 2022, 23, 11905. [Google Scholar] [CrossRef]
- Yu, L.; Li, N.; Li, B.; Ye, K.X.; Guo, J.; Shan, J.; Cao, L.; Song, M.; Wang, Y.; Lee, T.S.; et al. Targeting cognitive aging with curcumin supplementation: A systematic review and meta-analysis. J. Prev. Alzheimer’s Dis. 2025, 12, 100248. [Google Scholar] [CrossRef]
- Islam, M.R.; Rauf, A.; Akter, S.; Akter, H.; Al-Imran, M.I.K.; Fakir, M.N.H.; Thufa, G.K.; Islam, M.T.; Hemeg, H.A.; Abdulmonem, W.A.; et al. Neuroprotective Potential of Curcumin in Neurodegenerative Diseases: Clinical Insights Into Cellular and Molecular Signaling Pathways. J. Biochem. Mol. Toxicol. 2025, 39, e70369. [Google Scholar] [CrossRef]
- Kehinde, S.A.; Lin, W.P.; Lay, B.B.; Phyo, K.Y.; San, M.M.; Pattanayaiying, R.; Chusri, S. Curcumin and Dementia: A Systematic Review of Its Effects on Oxidative Stress and Cognitive Outcomes in Animal Models. Int. J. Mol. Sci. 2025, 26, 7026. [Google Scholar] [CrossRef]
- Amingad, S.P.; Hakkimane, S.S. Plant-based natural compounds as novel therapeutic avenues against tuberculosis: Emphasis on curcumin. Microb. Pathog. 2025, 206, 107787. [Google Scholar] [CrossRef] [PubMed]
- Moon, D.O. Curcumin as a Dual Modulator of Pyroptosis: Mechanistic Insights and Therapeutic Potential. Int. J. Mol. Sci. 2025, 26, 7590. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Lian, H.; Zhou, R.; Gu, Z.; Wu, J.; Wu, Y.; Li, Z. Curcumin and multiple health outcomes: Critical umbrella review of intervention meta-analyses. Front. Pharmacol. 2025, 16, 1601204. [Google Scholar] [CrossRef] [PubMed]
- Hao, M.; Zhang, C.; Wang, T.; Hu, H. Pharmacological effects, formulations, and clinical research progress of curcumin. Front. Pharmacol. 2025, 16, 1509045. [Google Scholar] [CrossRef]
- Surai, P.F.; Surai, A.; Earle-Payne, K. Silymarin and Inflammation: Food for Thoughts. Antioxidants 2024, 13, 98. [Google Scholar] [CrossRef]
- Surai, P.F.; Surai, A. Silymarin Puzzle. From Basic Science to Practical Applications in Human and Veterinary Medicine and Nutrition; Wageningen Academic Publishers: Wageningen, The Netherlands, 2023. [Google Scholar]
- Zhao, Y.; Zhou, Y.; Gong, T.; Liu, Z.; Yang, W.; Xiong, Y.; Xiao, D.; Cifuentes, A.; Ibáñez, E.; Lu, W. The clinical anti-inflammatory effects and underlying mechanisms of silymarin. iScience 2024, 27, 111109. [Google Scholar] [CrossRef]
- Frounchi, N.; Mahmoodpoor, F.; Zakavi, S.S.; Eyvazova, K.; Yagubova, S.; Ardalan, M.; Ahmadian, E.; Gareev, I.; Beylerli, O.; Roumiantsev, S. Nephroprotective Effects of Silymarin: A Systematic Review and Meta-Analysis. Biochem. Biokhimiia 2025, 90, 1140–1152. [Google Scholar] [CrossRef]
- Mardani-Nafchi, H.; Heidari-Soureshjani, S.; Rostamian, S. A systematic review of silymarin and silibinin mechanisms for attenuating cerebral ischemia-reperfusion injuries. Avicenna J. Phytomed. 2025, 15, 1279–1297. [Google Scholar]
- Cho, S.; Nyachoti, C.M.; Kim, I.H. Silymarin as a feed additive in swine and poultry production: A comprehensive review. J. Anim. Sci. Biotechnol. 2025, 16, 12. [Google Scholar] [CrossRef]
- Gu, S.; Huang, Q.; Jie, Y.; Sun, C.; Wen, C.; Yang, N. Transcriptomic and epigenomic landscapes of muscle growth during the postnatal period of broilers. J. Anim. Sci. Biotechnol. 2024, 15, 91. [Google Scholar] [CrossRef]
- Metcalfe, N.B.; Monaghan, P. Growth versus lifespan: Perspectives from evolutionary ecology. Exp. Gerontol. 2003, 38, 935–940. [Google Scholar] [CrossRef]
- Coudert, E.; Baéza, E.; Chartrin, P.; Jimenez, J.; Cailleau-Audouin, E.; Bordeau, T.; Berri, C. Slow and Fast-Growing Chickens Use Different Antioxidant Pathways to Maintain Their Redox Balance during Postnatal Growth. Animals 2023, 13, 1160. [Google Scholar] [CrossRef]
- Soumeh, E.A.; Bottje, W.G.; Hudson, N.J. How low can you go? Broiler breast muscle possesses a mitochondrial content of just 2%. Acta Agric. Scand. Sect. A—Anim. Sci. 2024, 73, 22–27. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Jian, C.; Gagaoua, M.; Estévez, M.; Puolanne, E.; Ertbjerg, P. Oxidative stress-induced changes in wooden breast and mitigation strategies: A review. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70148. [Google Scholar] [CrossRef] [PubMed]
- Greene, E.S.; Chen, P.R.; Walk, C.; Bedford, M.; Dridi, S. Mitochondrial dysfunction is a hallmark of woody breast myopathy in broiler chickens. Front. Physiol. 2025, 16, 1543788. [Google Scholar] [CrossRef] [PubMed]
- Hatefi, A.; Zare Shahneh, A.; Ansari Pirsaraie, Z.; Alizadeh, A.M.; Atashnak, M.P.; Masoudi, R.; Pio, F. Pro-and anti-inflammatory effects of glucocorticoid Fluticasone on ovarian and immune functions in commercial-aged laying hens. Sci. Rep. 2021, 11, 21603. [Google Scholar] [CrossRef]
- Chang, Y.; Feng, J.; Zhang, M.; Jiang, L.; Zhai, L.; Yang, X. Effects of massive ovulation on oxidation state and function of the ovaries in laying hens. Turk. J. Vet. Anim. Sci. 2017, 41, 161–166. [Google Scholar] [CrossRef]
- Chen, L.; Li, X.; Wu, Y.; Wang, J.; Pi, J. Differential analysis of ovarian tissue between high and low-yielded laying hens in the late laying stage and the effect of LECT2 gene on follicular granulosa cells proliferation. Mol. Biol. Rep. 2024, 51, 240. [Google Scholar] [CrossRef]
- Isa, A.M.; Sun, Y.; Wang, Y.; Li, Y.; Yuan, J.; Ni, A.; Ma, H.; Shi, L.; Tesfay, H.H.; Zong, Y.; et al. Transcriptome analysis of ovarian tissues highlights genes controlling energy homeostasis and oxidative stress as potential drivers of heterosis for egg number and clutch size in crossbred laying hens. Poult. Sci. 2024, 103, 103163. [Google Scholar] [CrossRef]
- Li, H.; Gu, Y.; Jin, R.; He, Q.; Zhou, Y. Effects of dietary rutin supplementation on the intestinal morphology, antioxidant capacity, immunity, and microbiota of aged laying hens. Antioxidants 2022, 11, 1843. [Google Scholar] [CrossRef]
- Liu, J.; Fu, Y.; Zhou, S.; Zhao, P.; Zhao, J.; Yang, Q.; Wu, H.; Ding, M.; Li, Y. Comparison of the effect of quercetin and daidzein on production performance, anti-oxidation, hormones, and cecal microflora in laying hens during the late laying period. Poult. Sci. 2023, 102, 102674. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Yuan, J.; Yin, H.; Jing, B.; Sun, C.; Tsopmejio, I.S.N.; Jin, Z.; Song, H. Flammulina velutipes stem regulates oxidative damage and synthesis of yolk precursors in aging laying hens by regulating the liver–blood–ovary axis. Poult. Sci. 2023, 102, 102261. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Lu, M.; Ma, L.; Zhang, H.; Wu, S.; Qiu, K.; Min, Y.; Qi, G.; Wang, J. Uterine inflammation status modulates eggshell mineralization via calcium transport and matrix protein synthesis in laying hens. Anim. Nutr. 2023, 13, 411–425. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Sun, W.; Liu, H.; Wang, K.; Gao, M.; Guo, L.; Xu, S. SeMet alleviates LPS-induced eggshell gland necroptosis mediated inflammation by regulating the Keap1/Nrf2/HO-1 pathway. Arch. Biochem. Biophys. 2024, 751, 109847. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Xu, A.; Zhao, B.; Xia, Y.; He, Y.; Xue, H.; Li, S. Dietary selenomethionine reduced oxidative stress by resisting METTL3-mediated m6A methylation level of Nrf2 to ameliorate LPS-induced liver necroptosis in laying hens. J. Nutr. Biochem. 2024, 125, 109563. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Zhang, M.; Du, Y.; He, Y.; Li, S. Selenomethionine alleviates kidney necroptosis and inflammation by restoring lipopolysaccharide-mediated mitochondrial dynamics imbalance via the TLR4/RIPK3/DRP1 signaling pathway in laying hens. Poult. Sci. 2024, 103, 104439. [Google Scholar] [CrossRef]
- Surai, P.F.; Earle-Payne, K. Antioxidant Defences and Redox Homeostasis in Animals. Antioxidants 2022, 11, 1012. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I.; Kidd, M.T. Redox Homeostasis in Poultry: Regulatory Roles of NF-κB. Antioxidants 2021, 10, 186. [Google Scholar] [CrossRef]
- Calabrese, V.; Wenzel, U.; Piccoli, T.; Jacob, U.M.; Nicolosi, L.; Fazzolari, G.; Failla, G.; Fritsch, T.; Osakabe, N.; Calabrese, E.J. Investigating hormesis, aging, and neurodegeneration: From bench to clinics. Open Med. 2024, 19, 20240986. [Google Scholar] [CrossRef]
- Amazan, D.; Rey, A.I.; Fernández, E.; López-Bote, C.J. Natural vitamin E (D-α-tocopherol) supplementation in drinking water prevents oxidative stress in weaned piglets. Livest. Sci. 2012, 145, 55–62. [Google Scholar] [CrossRef]
- Surai, P.F.; Fisinin, V.I. Antioxidant-prooxidant balance in the intestine: Applications in chick placement and pig weaning. J. Vet. Sci. Med. 2015, 3, 66–84. [Google Scholar]
- Xu, Q.L.; Liu, C.; Mo, X.J.; Chen, M.; Zhao, X.L.; Liu, M.Z.; Wang, S.B.; Zhou, B.; Zhao, C.X. Drinking water supplemented with acidifiers improves the growth performance of weaned pigs and potentially regulates antioxidant capacity, immunity, and gastrointestinal microbiota diversity. Antioxidants 2022, 11, 809. [Google Scholar] [CrossRef]

| Category | Pro-Inflammatory Factors | |
|---|---|---|
| Humans | Poultry | |
| Physical factors | Radiation, UV, hyperthermia, hypothermia, trauma | Hyperthermia, hypothermia, trauma, increased stocking density |
| Chemical factors | Asbestos, heavy metals, organic toxicants, dust, lipopolysaccharides | Heavy metals, mycotoxins, ammonia, CO, dust |
| Biological factors | Bacterial infection, viral infection, fungal infection | Bacterial infection, viral infection, fungal infection |
| Unhealthy lifestyle | Smoking, alcohol, high-calorie diet, stress, sedentary lifestyle | Restricted movement (cage housing), nutrient deficiency |
| Chronic diseases | Obesity, diabetes, hyperglycaemia | Chronic respiratory disease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surai, P.F.; Surai, A.; Earle-Payne, K. Redox Homeostasis in Poultry/Animal Production. Antioxidants 2025, 14, 1365. https://doi.org/10.3390/antiox14111365
Surai PF, Surai A, Earle-Payne K. Redox Homeostasis in Poultry/Animal Production. Antioxidants. 2025; 14(11):1365. https://doi.org/10.3390/antiox14111365
Chicago/Turabian StyleSurai, Peter F., Anton Surai, and Katie Earle-Payne. 2025. "Redox Homeostasis in Poultry/Animal Production" Antioxidants 14, no. 11: 1365. https://doi.org/10.3390/antiox14111365
APA StyleSurai, P. F., Surai, A., & Earle-Payne, K. (2025). Redox Homeostasis in Poultry/Animal Production. Antioxidants, 14(11), 1365. https://doi.org/10.3390/antiox14111365

