Antioxidant Properties and Antinutritional Components of Flowers from Five Pumpkin Species
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemicals
- Methanol (CH3OH) used for extraction of bioactive compounds (HPLC grade—Merck; Sigma-Aldrich)
- Acetic acid (CH3COOH) used for extraction and mobile phase preparation was at analytical grade (Merck)
- Folin–Ciocalteu used as a reagent for total phenolic content and phenolic acid assays was at analytical grade (Sigma-Aldrich)
- Sodium carbonate (Na2CO3, 7.5%) needed for color development in TPC assay was at analytical grade (Merck)
- Gallic acid used as a calibration standard for total phenolic content (≥99% purity, HPLC, Sigma-Aldrich)
- Quercetin used as a calibration standard for total flavonoids content (≥95% purity, HPLC, Sigma-Aldrich)
- Caffeic acid used as a calibration standard for phenolic acids content (≥98% purity, Sigma-Aldrich)
- β-Carotene used as a standard for carotenoid quantification (≥95%, purity, Sigma-Aldrich)
- Trolox as a calibration standard for antioxidant assays (≥97%, purity, Sigma-Aldrich)
- DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging assay was ≥95% purity, (Sigma-Aldrich)
- Tannic acid used as a calibration standard for tannins (≥99%, purity, Sigma-Aldrich)
- n-Butanol used for extraction of alkaloids and saponins was analytical grade (Merck)
- Vanillin (5% in acetic acid) used as color reagent for saponin determination (analytical grade, Sigma-Aldrich)
- Diethyl ether was used for extraction of saponins (analytical grade, Merck)
- All reagents and solvents were used as supplied without further purification.
2.3. Preparation of Flower Extracts
2.4. Determination of Total Phenolics Content
2.5. Determination of Total Flavonoid Content (TFC)
2.6. Determination of Total Phenolic Acids
2.7. Determination of Anthocyanins in Dried Pumpkin Flowers
2.8. Determination of Total Carotenoids Content
2.9. Identification of Phenolic Acids by HPLC-DAD-ESI-MS
2.10. Determination of Antioxidant Properties
2.10.1. Determination of Reducing Capacity Using the FRAP Assay
2.10.2. Determination of Reducing Capacity Using the CUPRAC Assay
2.10.3. Determination of Free Radical Scavenging Activity Using the DPPH Assay
2.10.4. Determination of Hydroxyl Radical Scavenging Activity Using the Deoxyribose Degradation Assay
2.11. Determination of Antinutritional Compounds
2.11.1. Determination of Tannins Content by Spectrophotometry
2.11.2. Determination of Phytates Content by Titration Method
2.11.3. Determination of Oxalates Content
2.11.4. Determination of Alkaloids Content
2.11.5. Determination of Saponins Content
2.12. Statistical Analysis
3. Results and Discussion
3.1. Content of Polyphenols, Flavonoids, Phenolic Acids, Carotenoids and Anthocyanins
3.1.1. Total Polyphenols Content
3.1.2. Total Carotenoids Content
3.1.3. Flavonoids
3.1.4. Total Phenolic Acids
3.2. Content of Individual Phenolic Acids
3.3. Antioxidant Properties
Pearson’s Correlation
3.4. Content of Antinutritional Compounds
3.4.1. Tannins
3.4.2. Phytates
3.4.3. Oxalates
3.4.4. Alkaloids
3.4.5. Saponins
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stryjecka, M.; Krochmal-Marczak, B.; Cebulak, T.; Kiełtyka-Dadasiewicz, A. Assessment of Phenolic Acid Content and Antioxidant Properties of the Pulp of Five Pumpkin Species Cultivated in Southeastern Poland. Int. J. Mol. Sci. 2023, 24, 8621. [Google Scholar] [CrossRef]
- Stryjecka, M. Chemical Composition and Antioxidant Properties of Peels of Five Pumpkin (Cucurbita sp.) Species. Foods 2025, 14, 2023. [Google Scholar] [CrossRef]
- Gasca-Pineda, J.; Monterrubio, B.; Sánchez-de la Vega, G.; Aguirre-Planter, E.; Lira-Saade, R.; Eguiarte, L.E. Conservation genomics of the wild pumpkin Cucurbita radicans in Central Mexico: The influence of a changing environment on the genetic diversity and differentiation of a rare species. J. Plant Res. 2024, 137, 799–813. [Google Scholar] [CrossRef]
- Yadav, M.; Jain, S.; Tomar, R.; Prasad, G.; Yadav, H. Medicinal and biological potential of pumpkin: A updated review. Nutr. Res. Rev. 2010, 23, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Morales, G.; Paredes-Torres, L.M.; Gámez, N.; Hernández-Rosales, H.S.; Sánchez-de la Vega, G. Historical biogeography and phylogeny of Cucurbita: Insights from ancestral area reconstruction and niche evolution. Mol. Phylogenetics Evol. 2018, 128, 38–54. [Google Scholar] [CrossRef] [PubMed]
- Rani, R.; Kumar, S.; Yadav, S. Pumpkin and chia seed as dietary fibre source in meat products: A review. Pharma Inn. J. 2021, 10, 477–485. [Google Scholar]
- Shapiro, L.R.; Salvaudon, L.; Mauck, K.E.; Pulido, H.; De Moraes, C.M.; Stephenson, A.G.; Mescher, M.C. Disease interactions in a shared host plant: Effects of pre-existing viral infection on cucurbit plant defense responses and resistance to bacterial wilt disease. PLoS ONE 2013, 8, e77393. [Google Scholar] [CrossRef]
- Salehi, B.; Capanoglu, E.; Adrar, N.; Catalkaya, G.; Shaheen, S.; Jaffer, M.; Giri, L.; Suyal, R.; Jugran, A.K.; Calina, D.; et al. Cucurbits Plants: A Key Emphasis to Its Pharmacological Potential. Molecules 2019, 24, 1854. [Google Scholar] [CrossRef]
- Medjakovic, S.; Hobiger, S.; Ardjomand-Woelkart, K.; Bucar, F.; Jungbauer, A. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors. Fitoterapia 2016, 110, 150–156. [Google Scholar] [CrossRef]
- Wang, S.; Lu, A.; Zhang, L.U.; Shen, M.; Xu, T.; Zhan, W.; Jin, H.; Zhang, Y.; Wang, W. Extraction and purification of pumpkin polysaccharides and their hypoglycemic effect. Int. J. Biol. Macromol. 2017, 98, 182–187. [Google Scholar] [CrossRef]
- Batool, M.; Ranjha, M.M.A.N.; Roobab, U.; Manzoor, M.F.; Farooq, U.; Nadeem, H.R.; Nadeem, M.; Kanwal, R.; AbdElgawad, H.; Al Jaouni, S.K.; et al. Nutritional Value, Phytochemical Potential, and Therapeutic Benefits of Pumpkin (Cucurbita sp.). Plants 2022, 11, 1394. [Google Scholar] [CrossRef] [PubMed]
- El-Sahar, E.; Sopeah, H.; Almujaydil, M. Study the Effect of Different Levels of Zucchini (Cucurbita pepo L.) on the Biological Indicators for the Prevention of Cardiovascular Disease in Rats Fed High-Fat Diets. Food Nutr. Sci. 2020, 11, 63–81. [Google Scholar] [CrossRef]
- Sarkar, S.; Buha, D. Effect of ripe fruit pulp extract of Cucurbita pepo Linn. in aspirin induced gastric and duodenal ulcer in rats. Indian. J. Exp. Biol. 2008, 46, 639–645. [Google Scholar] [PubMed]
- Perez Gutierrez, R.M. Review of Cucurbita pepo (pumpkin) its phytochemistry and pharmacology. Med. Chem. 2016, 6, 12–21. [Google Scholar] [CrossRef]
- Gbemenou, U.H.; Ezin, V.; Ahanchede, A. Current state of knowledge on the potential and production of Cucurbita moschata (pumpkin) in Africa: A review. Afr. J. Plant Sci. 2022, 16, 8–21. [Google Scholar] [CrossRef]
- Kulczyński, B.; Gramza-Michałowska, A. The Profile of Secondary Metabolites and Other Bioactive Compounds in Cucurbita pepo L. and Cucurbita moschata Pumpkin Cultivars. Molecules 2019, 24, 2945. [Google Scholar] [CrossRef]
- Bieżanowska-Kopeć, R.; Ambroszczyk, A.M.; Piatkowska, E.; Leszczyńska, T. Nutritional Valueand Antioxidant Activity of Fresh Pumpkin Flowers (Cucurbita sp.) Grown in Poland. Appl. Sci. 2022, 12, 6673. [Google Scholar] [CrossRef]
- Ghosh, P.; Rana, S.S. Physicochemical, nutritional, bioactive compounds and fatty acid profiling of Pumpkin flower (Cucurbita maxima), as a potential functional food. SN Appl. Sci. 2021, 3, 216. [Google Scholar] [CrossRef]
- Sedláčková, S.; Hubálek, M.; Vrkoslav, V.; Blechová, M.; Kozlík, P.; Cvačka, J. Positive Effect of Acetylation on Proteomic Analysis Based on Liquid Chromatography with Atmospheric Pressure Chemical Ionization and Photoionization Mass Spectrometry. Molecules 2023, 28, 3711. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Chang, C.; Yang, M.; Wen, H.; Chern, J. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar] [CrossRef]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef]
- Clifford, M.N. Chlorogenic acids and other cinnamates—Nature, occurrence, dietary burden, absorption and metabolism. J. Sci. Food Agric. 2000, 80, 1033–1043. [Google Scholar] [CrossRef]
- Mattila, P.; Kumpulainen, J. Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J. Agric. Food Chem. 2002, 50, 3660–3667. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. A novel total antioxidant capacity index for dietary polyphenols, vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Und-Technol. (LWT) Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C.; Aruoma, O.I. The deoxyribose method: A simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 1987, 165, 215–219. [Google Scholar] [CrossRef]
- Saxena, V.; Chagti, K.K. The effect of climate on total phenolics in Macrotyloma uniflorum, Vigna unguiculata, Cinnamomum zeylanicum and Mentha piperita using spectrophotometer. Asian J. Pharm. Clin. Res. 2016, 9, 59–61. [Google Scholar] [CrossRef]
- Lolas, G.M.; Markakis, P. Phytic acid and other phosphorus compounds of bean (Phaseolus vulgaris). J. Agric. Edu. Chem. 1975, 23, 13–15. [Google Scholar] [CrossRef]
- Chinma, C.E.; Igyor, M.A. Micronutrients and antinutritional contents of selected tropical vegetables grown in Southeast, Nigeria. Niger. Food J. 2007, 25, 111–116. [Google Scholar] [CrossRef]
- Rastogi, R.P.; Mehrotra, B.N. Compendium of Indian Medicinal Plants: Lucknow and Publications & Information Directorate New Delhi. 1993. Available online: https://archive.org/details/sochara.1991compendiumofindi0000rast/page/n459/mode/2up (accessed on 7 November 2025).
- Obadoni, B.O.; Ochuko, P.O. Phytochemical studies and comparative efficacy of the extracts of some haemostatic plants in Edo and Delta States of Nigeria. Glob. J. Pure Appl. Sci. 2001, 8, 203–208. [Google Scholar] [CrossRef]
- Socha, R.; Kałwik, J.; Juszczak, L. Phenolic profile and antioxidant activity of the selected edible flowers grown in Poland. Acta Univ. Cibiniensis. Ser. E Food Technol. 2021, 25, 185–200. [Google Scholar] [CrossRef]
- Kandylis, P. Phytochemicals and Antioxidant Properties of Edible Flowers. Appl. Sci. 2022, 12, 9937. [Google Scholar] [CrossRef]
- Toro-Velez, K.; Chavez-Jauregui, R.; Wessel-Beaver, L.; Brunner, B. Production and postharvest assessment of tropical pumpkin flowers harvested for consumption. Hortic. Technol. 2022, 32, 199–214. [Google Scholar] [CrossRef]
- Zhou, C.-L.; Mi, L.; Hu, X.-Y.; Zhu, B.-H. Evaluation of three pumpkin species: Correlation with physicochemical, antioxidant properties and classification using SPME-GC-MS and E-nose methods. J. Food Sci. Technol. 2017, 54, 3118–3131. [Google Scholar] [CrossRef]
- Di Lorenzo, R.; Castaldo, L.; Sessa, R.; Ricci, L.; Vardaro, E.; Izzo, L.; Grosso, M.; Ritieni, A.; Laneri, S. Chemical Profile and Promising Applications of Cucurbita pepo L. Flowers. Antioxidants 2024, 13, 1476. [Google Scholar] [CrossRef]
- Kawata, A.; Murakami, Y.; Suzuki, S.; Fujisawa, S. Anti-inflammatory Activity of β-Carotene, Lycopene and Tri-n-butylborane, a Scavenger of Reactive Oxygen Species. In Vivo 2018, 32, 255–264. [Google Scholar] [CrossRef]
- Murkovic, M.; Mulleder, U.M.; Neunteuf, H. Carotenoid Content in Different Varieties of Pumpkins. J. Food Compos. Anal. 2002, 15, 633–638. [Google Scholar] [CrossRef]
- Ninčević Grassino, A.; Rimac Brnčić, S.; Badanjak Sabolović, M.; Šic Žlabur, J.; Marović, R.; Brnčić, M. Carotenoid Content and Profiles of Pumpkin Products and By-Products. Molecules 2023, 28, 858. [Google Scholar] [CrossRef]
- Hu, L.; Luo, Y.; Yang, J.; Cheng, C. Botanical Flavonoids: Efficacy, Absorption, Metabolism and Advanced Pharmaceutical Technology for Improving Bioavailability. Molecules 2025, 30, 1184. [Google Scholar] [CrossRef]
- Hasnat, H.; Shompa, S.A.; Islam, M.M.; Alam, S.; Richi, F.T.; Emon, N.U.; Ashrafi, S.; Ahmed, N.U.; Chowdhury, M.N.R.; Fatema, N.; et al. Flavonoids: A treasure house of prospective pharmacological potentials. Heliyon 2024, 10, e27533. [Google Scholar] [CrossRef]
- Nabavi, S.M.; Šamec, D.; Tomczyk, M.; Milella, L.; Russo, D.; Habtemariam, S.; Suntar, I.; Rastrelli, L.; Daglia, M.; Xiao, J.; et al. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol. Adv. 2020, 38, 107316. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Patil, R.T.; Dhadse, P.V.; Salian, S.S.; Punse, S.D.; Dhadse, P. Role of Oxidative Stress in Periodontal Diseases. Cureus 2024, 16, e60779. [Google Scholar] [CrossRef]
- Zhao, D.; Tao, J.; Han, C.; Ge, J.; Yang, L. Recent advances on the development and regulation of flower color in ornamental plants. Front Plant Sci. 2015, 6, 261. [Google Scholar] [CrossRef] [PubMed]
- Ninfali, P.; Angelino, D. Nutritional and functional potential of Beta vulgaris cicla and rubra. Fitoterapia 2013, 89, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Quiroga, G.M.; Alba-Jiménez, J.E.; Aquino-Bolaños, E.N.; Chávez-Servia, J.L. Phenolic compounds and antioxidant activity in Cucurbita ficifolia fruits, an underrated fruit. Sec. Nutr. Food Sci. Technol. 2022, 9, 1029826. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Martinez, L.X.; Parkin, K.L.; Garcia, H.S. Phase II-inducing, polyphenols-rich orange maize (Zea mays) from phenotypes of white, blue, red and purple colors processed into masa and tortillas. Plant Foods Hum. Nutr. 2011, 66, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin–Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Biesiada, A.; Nawirska-Olszańska, A.; Sękara, A.; Kucharska, A.Z. The effect of cultivar and nitrogen fertilization on selected bioactive compounds of pumpkin (Cucurbita pepo L.) fruit. Agronomy 2020, 10, 1171. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Lin, H.H.; Chen, J.H.; Huang, C.C.; Wang, C.J. Chemopreventive properties of protocatechuic acid in vivo and in vitro. Toxicol. Appl. Pharmacol. 2011, 255, 329–336. [Google Scholar] [CrossRef]
- Kakkar, S.; Bais, S. A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol. 2014, 2014, 952943. [Google Scholar] [CrossRef]
- Hsu, S. Green tea and the skin. J. Am. Acad. Dermatol. 2005, 52, 1045–1059. [Google Scholar] [CrossRef]
- Michalak, M. Plant Extracts as Skin Care and Therapeutic Agents. Int. J. Mol. Sci. 2023, 24, 15444. [Google Scholar] [CrossRef]
- Andrade, J.M.; Faustino, C.; Garcia, C.; Ladeiras, D.; Reis, C.P.; Rijo, P. Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity. Future Sci. OA 2018, 4, FSO283. [Google Scholar] [CrossRef] [PubMed]
- Timón, M.L.; Andrés, A.I.; Petrón, M.J. Antioxidant Activity of Aqueous Extracts Obtained from By-Products of Grape, Olive, Tomato, Lemon, Red Pepper and Pomegranate. Foods 2024, 13, 1802. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Tang, G.-Y.; Zhao, C.-N.; Feng, X.-L.; Xu, X.-Y.; Cao, S.-Y.; Meng, X.; Li, S.; Gan, R.-Y.; Li, H.-B. Comparison of Antioxidant Activities of Different Grape Varieties. Molecules 2018, 23, 2432. [Google Scholar] [CrossRef] [PubMed]
- Kupe, M.; Karatas, N.; Unal, M.S.; Ercisli, S.; Baron, M.; Sochor, J. Phenolic Composition and Antioxidant Activity of Peel, Pulp and Seed Extracts of Different Clones of the Turkish Grape Cultivar ‘Karaerik’. Plants 2021, 10, 2154. [Google Scholar] [CrossRef]
- Zhao, J.; Davis, L.C.; Verpoorte, R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv. 2005, 23, 283–333. [Google Scholar] [CrossRef]
- Ngozi, O.-O.P.; Nkiru, O.-A. Evaluation of Tannin, Phytate and Mineral Composition of Different IndigenousDishes Based on Pumpkin (Cucurbita pepo). Int. J. Nutr. Food Sci. 2014, 6, 493–496. [Google Scholar] [CrossRef]
- Cosme, F.; Aires, A.; Pinto, T.; Oliveira, I.; Vilela, A.; Gonçalves, B. A Comprehensive Review of Bioactive Tannins in Foods and Beverages: Functional Properties, Health Benefits, and Sensory Qualities. Molecules 2025, 30, 800. [Google Scholar] [CrossRef]
- Baer-Dubowska, W.; Szaefer, H.; Majchrzak-Celińska, A.; Krajka-Kuźniak, V. Tannic acid: Specific form of tannins in cancer chemoprevention and therapy-old and new applications. Curr. Pharmacol. Rep. 2020, 6, 28–37. [Google Scholar] [CrossRef]
- Youness, R.A.; Kamel, R.; Elkasabgy, N.A.; Shao, P.; Farag, M.A. Recent advances in tannic acid (gallotannin) anticancer activities and drug delivery systems for efficacy improvement; A comprehensive review. Molecules 2021, 26, 1486. [Google Scholar] [CrossRef]
- Halder, S.; Khaled, K.L. Anti-nutritional profiling from the edible flowers of Allium cepa, Cucurbita maxima and Carica papayaand its comparison with other commonly consumed flowers. Int. J. Herb. Med. 2021, 9, 55–61. [Google Scholar] [CrossRef]
- Sikorska, A.; Gugała, M.; Zarzecka, K.; Domański, Ł. Substancje antyodżywcze w wybranych roślinach leczniczych. Herbalism 2022, 8, 119–129. [Google Scholar] [CrossRef]
- Muscolo, A.; Mariateresa, O.; Giulio, T.; Mariateresa, R. Oxidative Stress: The Role of Antioxidant Phytochemicals in the Prevention and Treatment of Diseases. Int. J. Mol. Sci. 2024, 25, 3264. [Google Scholar] [CrossRef]
- Pires, S.M.G.; Reis, R.S.; Cardoso, S.M.; Pezzani, R.; Paredes-Osses, E.; Seilkhan, A.; Ydyrys, A.; Martorell, M.; Sönmez Gürer, E.; Setzer, W.N.; et al. Phytates as a natural source for health promotion: A critical evaluation of clinical trials. Front. Chem. 2023, 11, 1174109. [Google Scholar] [CrossRef]
- Kumar, Y.; Basu, S.; Goswami, D.; Devi, M.; Shivhare, U.S.; Vishwakarma, R.K. Anti-nutritional compounds in pulses: Implications and alleviation methods. Legume Sci. 2022, 4, e111. [Google Scholar] [CrossRef]
- Mashitoa, F.M.; Manhivi, V.; Slabbert, R.M.; Shai, J.L.; Sivakumar, D. Changes in antinutrients, phenolics, antioxidant activities and in vitro α-glucosidase inhibitory activity in pumpkin leaves (Cucurbita moschata) during different domestic cooking methods. Food Sci. Biotechnol. 2021, 6, 793–800. [Google Scholar] [CrossRef]
- Salgado, N.; Silva, M.A.; Figueira, M.E.; Costa, H.S.; Albuquerque, T.G. Oxalate in Foods: Extraction Conditions, Analytical Methods, Occurrence, and Health Implications. Foods. 2023, 17, 3201. [Google Scholar] [CrossRef]
- Shehzad, A.; Saleem, U.; Shah, M.A.; Cruz, C.V.; Khan, A.H.; Ahmad, B. Antiurolithic evaluation of Cucurbita pepo seeds extract against sodium oxalate-induced renal calculi. Phcog Mag. 2020, 16, S174–S180. [Google Scholar] [CrossRef]
- Heinrich, M.; Mah, J.; Amirkia, V. Alkaloids Used as Medicines: Structural Phytochemistry Meets Biodiversity—An Update and Forward Look. Molecules 2021, 26, 1836. [Google Scholar] [CrossRef]
- Akinboye, A.J.; Kim, K.; Choi, S.; Yang, I.; Lee, J.-G. Alkaloids in food: A review of toxicity, analytical methods, occurrence and risk assessments. Food Sci. Biotechnol. 2023, 32, 1133–1158. [Google Scholar] [CrossRef]
- Choudhary, N.; Khatik, G.L.; Suttee, A. The Possible Role of Saponin in Type-II Diabetes- A Review. Curr. Diabetes Rev. 2021, 17, 107–121. [Google Scholar] [CrossRef]
- Zhong, J.; Tan, L.; Chen, M.; He, C. Pharmacological activities and molecular mechanisms of Pulsatilla saponins. Chin. Med. 2022, 17, 59. [Google Scholar] [CrossRef]
- Paarvanova, B.; Tacheva, B.; Savova, G.; Karabaliev, M.; Georgieva, R. Hemolysis by Saponin Is Accelerated at Hypertonic Conditions. Molecules 2023, 28, 7096. [Google Scholar] [CrossRef]
- Cao, S.; Liu, M.; Han, Y.; Li, S.; Zhu, X.; Li, D.; Shi, Y.; Liu, B. Effects of Saponins on Lipid Metabolism: The Gut–Liver Axis Plays a Key Role. Nutrients 2024, 16, 1514. [Google Scholar] [CrossRef]
| Species | TPC (mg GAE g−1 d.w.) | TFC (mg QE g−1 d.w.) | TPAC (mg CAE g−1 d.w.) | Total Carotenoids (mg 100 g−1 d.w.) | Anthocyanins (mg C3G 100 g−1) |
|---|---|---|---|---|---|
| Giant pumpkin | 47.29 a ± 0.065 | 21.32 a ± 0.04 | 2.13 b ± 0.02 | 38.05 d ± 0.20 | 11.73 b ± 0.05 |
| Summer squash | 34.20 e ± 0.07 | 17.16 d ± 0.02 | 2.11 b ± 0.05 | 41.98 b ± 0.12 | 9.23 d ± 0.06 |
| Butternut squash | 42.42 c ± 0.043 | 19.27 c ± 0.02 | 2.17 b ± 0.05 | 40.01 c ± 0.12 | 12.18 a ± 0.04 |
| Fig-leaf gourd | 35.18 d ± 0.036 | 15.70 e ± 0.04 | 2.29 a ± 0.02 | 48.27 a ± 0.09 | 8.48 e ± 0.07 |
| Cushaw squash | 45.62 b ± 0.03 | 20.40 b ± 0.03 | 2.16 b ± 0.03 | 31.35 e ± 0.07 | 10.83 c ± 0.06 |
| Compound | Retention Time (min) | λmax (nm) | [M–H]− (m/z) | Fragment Ions (m/z) | Molecular Formula | Identification Method |
|---|---|---|---|---|---|---|
| Gallic acid | 3.2 | 270 | 169 | 125, 97 | C7H6O5 | HPLC-DAD, LC-MS/MS |
| Protocatechuic acid | 4.6 | 280 | 153 | 109 | C7H6O4 | HPLC-DAD, LC-MS/MS |
| p-Hydroxybenzoic acid | 6.8 | 280 | 137 | 93 | C7H6O3 | HPLC-DAD, LC-MS/MS |
| Caffeic acid | 11.2 | 320 | 179 | 135, 107 | C9H8O4 | HPLC-DAD, LC-MS/MS |
| Ferulic acid | 14.5 | 322 | 193 | 178, 134 | C10H10O4 | HPLC-DAD, LC-MS/MS |
| p-Coumaric acid | 16.8 | 310 | 163 | 119, 93 | C9H8O3 | HPLC-DAD, LC-MS/MS |
| Vanillic acid | 18.4 | 290 | 167 | 152, 108 | C8H8O4 | HPLC-DAD, LC-MS/MS |
| Phenolic Acids | Giant Pumpkin | Summer Squash | Butternut Squash | Fig-Leaf Gourd | Cushaw Squash |
|---|---|---|---|---|---|
| μg g−1 d.w. | |||||
| Ferulic acid | 19.37 a ± 0.4 | 18.72 b ± 0.6 | 19.60 a ± 0.4 | 17.86 c ± 0.5 | 17.27 c ± 0.4 |
| Gallic acid | 19.90 b ± 0.3 | 18.41 b ± 0.6 | 20.17 b ± 0.5 | 23.19 a ± 0.4 | 19.47 b ± 0.7 |
| p-Hydroxybenzoic acid | 15.40 b,c ± 0.6 | 12.77 d ± 0.6 | 15.91 b ± 0.2 | 14.43 c ± 0.5 | 16.93 a ± 0.6 |
| Caffeic acid | 28.41 a ± 0.7 | 26.41 a ± 0.8 | 25.61 a ± 0.6 | 28.15 a ± 0.4 | 27.32 a ± 0.4 |
| p-Coumaric acid | 140.18 c ± 0.8 | 146.51 b ± 0.34 | 131.57 d ± 0.30 | 151.51 a ± 0.31 | 124.40 e ± 0.36 |
| Protocatechuic acid | 14.48 c ± 0.12 | 15.47 b ± 0.10 | 12.22 d ± 0.10 | 16.27 a ± 0.06 | 15.38 b ± 0.06 |
| Vanillic acid | 8.15 c ± 0.4 | 9.28 b ± 0.5 | 11.83 a ± 0.7 | 12.31 a ± 0.6 | 6.80 d ± 0.2 |
| Species | DPPH (μmol TE g−1 d.w.) | FRAP (μmol Fe(II) g−1 d.w.) | •OH (μmol QE g−1 d.w.) | CUPRAC (μmol TE g−1 d.w.) |
|---|---|---|---|---|
| Giant pumpkin | 11.50 a ± 0.4 | 62.64 a ± 0.12 | 97.24 a ± 0.09 | 114.52 ± 0.06 |
| Summer squash | 10.18 c ± 0.4 | 55.30 e ± 0.08 | 89.21 e ± 0.07 | 110.86 ± 0.08 |
| Butternut squash | 10.87 b ± 0.4 | 56.20 d ± 0.08 | 94.82 c ± 0.07 | 111.78 ± 0.10 |
| Fig-leaf gourd | 10.67 b,c ± 0.2 | 59.83 c ± 0.05 | 90.26 d ± 0.08 | 112.65 ± 0.07 |
| Cushaw squash | 11.22 a ± 0.6 | 61.55 b ± 0.16 | 96.76 b ± 0.09 | 112.88 ± 0.04 |
| DPPH | FRAP | •OH | CUPRAC | TPC | TFC | TPAC | Total Carotenoids | |
|---|---|---|---|---|---|---|---|---|
| FRAP | 0.845096 | |||||||
| •OH | 0.939216 | 0.651756 | ||||||
| CUPRAC | 0.925155 | 0.934425 | 0.55101 | |||||
| TPC | 0.940864 | 0.65946 | 0.997019 | 0.72704 | ||||
| TFC | 0.829023 | 0.515449 | 0.941635 | 0.600845 | 0.959144 | |||
| TPAC | −0.08048 | 0.164558 | −0.30258 | 0.082068 | −0.35026 | −0.60074 | ||
| Total Carotenoids | −0.58202 | −0.37229 | −0.77522 | −0.27521 | −0.7748 | −0.83785 | 0.60276 | |
| Anthocyanins | 0.670795 | −0.37229 | 0.841529 | 0.366216 | 0.841376 | −0.48942 | −0.48942 | −0.62535701 |
| Species | Tannins | Phytates | Oxalates | Alkaloids | Saponins |
|---|---|---|---|---|---|
| mg 100 g−1 d.w. | |||||
| Giant pumpkin | 2.10 b ± 0.02 | 4.94 a ± 0.02 | 0.21 b ± 0.01 | 0.26 b ± 0.02 | 54.6 a ± 1.53 |
| Summer squash | 1.90 d ± 0.02 | 4.50 c ± 0.01 | 0.25 a ± 0.01 | 0.17 d ± 0.01 | 57.7 a ± 1.53 |
| Butternut squash | 2.21 a ± 0.02 | 4.17 e ± 0.03 | 0.17 c ± 0.01 | 0.21 c ± 0.01 | 44.7 c ± 1.53 |
| Fig-leaf gourd | 1.98 c ± 0.02 | 4.69 b ± 0.02 | 0.15 d ± 0.01 | 0.31 a ± 0.02 | 41.3 c ± 1.54 |
| Cushaw squash | 1.78 e ± 0.02 | 4.34 d ± 0.02 | 0.20 b ± 0.01 | 0.26 b ± 0.01 | 49.6 b ± 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stryjecka, M.; Cebulak, T.; Krochmal-Marczak, B.; Kiełtyka-Dadasiewicz, A. Antioxidant Properties and Antinutritional Components of Flowers from Five Pumpkin Species. Antioxidants 2025, 14, 1353. https://doi.org/10.3390/antiox14111353
Stryjecka M, Cebulak T, Krochmal-Marczak B, Kiełtyka-Dadasiewicz A. Antioxidant Properties and Antinutritional Components of Flowers from Five Pumpkin Species. Antioxidants. 2025; 14(11):1353. https://doi.org/10.3390/antiox14111353
Chicago/Turabian StyleStryjecka, Małgorzata, Tomasz Cebulak, Barbara Krochmal-Marczak, and Anna Kiełtyka-Dadasiewicz. 2025. "Antioxidant Properties and Antinutritional Components of Flowers from Five Pumpkin Species" Antioxidants 14, no. 11: 1353. https://doi.org/10.3390/antiox14111353
APA StyleStryjecka, M., Cebulak, T., Krochmal-Marczak, B., & Kiełtyka-Dadasiewicz, A. (2025). Antioxidant Properties and Antinutritional Components of Flowers from Five Pumpkin Species. Antioxidants, 14(11), 1353. https://doi.org/10.3390/antiox14111353

