Oxalis corniculata L. As a Source of Natural Antioxidants: Phytochemistry, Bioactivities, and Application Potential
Abstract
1. Introduction
2. Botanical Features and Geographic Distribution
3. Phytochemistry
3.1. Flavonoids
3.2. Organic Acids
3.3. Terpenoids
3.4. Alkaloids
3.5. Polysaccharides
3.6. Nutrients
4. Traditional Uses
5. Biological Activities of O. corniculata
5.1. Antioxidant Activity
| No. | Testing Subjects | Application Part or Compounds | Doses/Duration | Effects | Ref. |
|---|---|---|---|---|---|
| 1 | Free radicals | Polyphenol-rich methanol extract | 0.5–50 μg/mL | DPPH·scavenging | [61] |
| 2 | pUC18 plasmid DNA | Polyphenol-rich methanol extract | 100–500 ng/mL | Protected DNA from·OH-induced strand breaks | [61] |
| 3 | BSA | Polyphenol-rich methanol extract | 100–500 μg/mL | Inhibited PC formation | [61] |
| 4 | Liver cells | Polyphenol-rich methanol extract | 10–50 µg/mL, 45 min incubation | Protected liver cells from oxidative damage by OH | [61] |
| 5 | Free radicals; Fe3+ | Hot water extract | 50–400 μg/mL | Free radicals scavenging and iron-reducing capacity | [62] |
| 6 | HEK-293 cells; C. elegans | Acidic polysaccharide OCP-3 | 50–800 μg/mL; 4–8 mg/mL | SOD ↑, CAT ↑, GSH-Px ↑, MDA ↓, PC ↓, radicals scavenging, DNA protection | [7] |
| 7 | Free radicals | Biogenic silver nanoparticles synthesized using aqueous extract of O. corniculata | 50–400 μg/mL | DPPH·/ABTS·scavenging | [31] |
| 8 | Free radicals, Fe2+, Fe3+, lipid | Ethanol extract | DPPH: 26.2 ± 2 µg/mL; Ferrous Ion: 74.3 ± 0.4 µg/mL; NO: 75.4 ± 7.3 µg/mL; ABTS: 59.9 ± 5.2 µg/mL; NBT: 118.2 ± 2.3 µg/mL; FRAP: 152.1 ± 9.5 µg/mL; LPO: 1.8 ± 0.4 µg/mL | The antioxidant effect was as demonstrated by IC50 values in seven assays. | [63] |
| 9 | Free radicals | TFO | 100–500 μg/mL | DPPH/OH/O2-scavenging | [10] |
| 10 | Pork lard | O. corniculata polyphenols | 0.02–0.04%, 50 °C, 21 days | Significantly inhibited lipid peroxidation | [64] |
| 11 | Fractured rats | O. corniculata (whole plant, 47.5% of mixture) aqueous extract | 150–600 mg/kg, percutaneous and p.o., 2 weeks | SOD ↑, CAT ↑, GSH ↑, enhances antioxidant enzyme activity and alleviates oxidative stress in bone tissue | [65] |
| 12 | AlCl3-induced AD rats | Methanol extract | 150 mg/kg, p.o., 5 weeks | TAC ↑, SOD ↑, MDA ↓; upregulates Nrf2/HO-1 pathway, enhances antioxidant defense, reduces oxidative damage in brain | [57] |
| 13 | SD rats (CCl4-induced acute liver injury) | Aqueous extract | 4–16 g/kg, p.o., 10 days | ALT ↓, AST ↓, MDA ↓, T-SOD ↑, GSH-Px ↑; downregulates TLR2/NF-κB pathway, inhibits oxidative stress | [66] |
| 14 | CCl4-induced nephrotoxic rats | Methanol extract | 100, 200 mg/kg, p.o., 7 days | CAT ↑, POD ↑, SOD ↑, GSH-Px ↑, GST ↑, GSR ↑, QR ↑, GSH ↑, MDA ↓, protein oxidation ↓, renal injury markers ↓, improved renal histology | [58] |
| 15 | CCl4-induced hepatotoxic rats | Methanol extract | 100, 200 mg/kg, p.o., 7 days | CAT ↑, POD ↑, SOD ↑, GSH-Px ↑, GST ↑, GSR ↑, QR ↑, GSH ↑, TBARS ↓, AST ↓, ALT ↓, ALP ↓, improved liver histology | [59] |
| 16 | Paracetamol-induced hepatotoxic rats | Ethanol extract | 100–500 mg/kg, p.o., 4 days | AST ↓, ALT ↓, ALP ↓, MDA ↓, improved liver histology; enhanced antioxidant defense and reduced oxidative stress | [67] |
| 17 | Streptozotocin (STZ)-induced diabetic rats | Ethanol extract | 100 and 300 mg/kg, p.o., 28 days | Reduced fasting glucose and MDA levels, enhanced SOD and GSH-Px activities, and improved pancreatic β-cell morphology. | [8] |
| 18 | Heat-stressed broilers | O. corniculata powder | 10 g/kg diet, 28–42 days | MDA ↓ in muscle, TAC ↑, improves lipid oxidative stability and mitigates oxidative damage | [60] |
| 19 | Heat-stressed broilers | O. corniculata powder + Chromium picolinate (CrPic) | 10 g O. corniculata powder + 0.2 mg CrPic/kg diet, 1–42 days. | Improvement of microbiota balance, enhancing gut health in heat-stressed broilers, with more significant effects in the early growth stage | [44] |
| 20 | Heat-stressed broilers | O. corniculata powder + CrPic | 10 g O. corniculata powder + 0.2 mg CrPic/kg diet, 28–42 days | Improves meat quality (crude protein ↑, fat in breast meat ↓) and enhances antioxidant defense against heat stress. | [3] |
5.2. Anti-Inflammatory Activity
| No. | Testing Subjects | Application Part or Compounds | Doses/Duration | Effects | Ref. |
|---|---|---|---|---|---|
| 1 | RAW264.7 cells (LPS 2 μg/mL) | Hot water extract | 100–400 μg/mL, 24 h | NO ↓, iNOS ↓, COX-2 ↓, IL-6 ↓, TNF-α ↓ | [62] |
| 2 | RAW264.7 cells (LPS 0.25 μg/mL) | Ethanol extract | 10–50 μg/mL, 24 h | NO ↓, IL-17 ↓; NF-κB pathway ↓ | [73] |
| 3 | Human RBCs | Diosmin (isolated from O. corniculata) | 15–120 μM, 2 h | PLA2 inhibition ↑, anti-hemolysis, inflammation mediators ↓ | [29] |
| 4 | Human PC-3 prostate cancer cells | Ethanol extract | 50–200 μg/mL, 24 h | Cell proliferation ↓, migration, invasion; apoptosis ↑; NF-κB pathway activity ↓ (p-p65 ↓, p-IκBα ↓, IκBα ↑); anti-inflammatory mechanism via NF-κB inhibition | [71] |
| 5 | Swiss albino mice | Diosmin (for snake venom toxicity) | Diosmin (1:200 w/w) pre-incubated for 1 h (i.p. injection), observation for 5 h | Myotoxicity ↓, pulmonary hemorrhage ↓, CPK ↓, LDH ↓, tissue damage ↓ | [29] |
| 6 | Mice (acute peritonitis model) | Ethanol extract | 6% and 12% extract, p.o., 5 days | Abdominal writhing response ↓ (analgesic); abdominal capillary permeability ↓ (anti-inflammatory) | [74] |
| 7 | Swiss mice/Wistar rats | β-sitosterol (extract from leaves) | 5–20 mg/kg, i.p., single dose | Analgesia (hot plate latency ↑, writhing ↓), anti-inflammation (paw edema ↓); opioid receptor involvement, PGE inhibition | [70] |
| 8 | Rats (acetic acid-induced IBD) | Ethanol extract | 200–400 mg/kg, p.o., 7 days | Colon weight ↓, visible lesion score ↓, histopathological score ↓ | [72] |
| 9 | SD rats (LPS-induced ALI) | Ethanol extract | 0.8–3.2 g/kg, p.o., bid × 7 d | Lung edema ↓, inflammatory cell infiltration ↓; serum TNF-α ↓, IL-6 ↓, IL-1β ↓, IL-18 ↓ | [73] |
| 10 | Rats (pylorus ligation model, indomethacin-induced ulcer model) | Methanol extract | 125–500 mg/kg, p.o., single dose | Gastric secretion ↓, acidity ↓, ulcer index ↓; protection against NSAID-induced gastric injury; anti-inflammatory and gastroprotective effects | [75] |
| 11 | Rats (CNP model) | Compound prescription containing O. corniculata | 1 g/kg, p.o., 28 days | Inflammatory infiltration ↓, MCP-1 ↓, ROS ↓, GSH ↑, 4-HNE ↓, ALDH2 ↓, FGF2 ↓; improved tissue pathology; | [48] |
| 12 | Rats (CNP model) | Compound prescription containing O. corniculata | 9.37 g/kg, p.o., 49 days | Prostate index ↓, TNF-α ↓, IL-1β ↓, IL-6 ↓; improved histopathology; cGAS ↓, STING ↓, TRAF6 ↓, HSP70 ↑ | [76] |
5.3. Antibacterial Activity
| No. | Testing Subjects | Application Part or Compounds | Methods | Effects | Ref. |
|---|---|---|---|---|---|
| 1 | S. aureus, E. coli | Aqueous extract | Disk diffusion | At 20% concentration, inhibition zones: S. aureus (21 mm), E. coli (19.33 mm) | [78] |
| 2 | E. coli, S. Typhi, MDR S. Typhi, K. pneumoniae, MDR C. koseri | Methanol extract | Agar well diffusion, MIC | At 50 mg/mL concentration, inhibition zones: E. coli (17 mm), S. Typhi (13 mm), MDR S. Typhi (16 mm), K. pneumoniae (11 mm), C. koseri (12 mm). MIC for E. coli, K. pneumoniae, C. koseri: 25 mg/mL; S. Typhi: 100 mg/mL; MDR S. Typhi: 50 mg/mL. | [84] |
| 3 | S. aureus | Ethanol extract | Microdilution, biofilm inhibition and eradication assays | At 1% (w/v), antibacterial activity against S. aureus was 76.23%; biofilm inhibition rate 71.32% (mid-phase), 69.33% (mature-phase); biofilm eradication rate 64.1%. | [77] |
| 4 | E. coli, S. dysenteriae, S. typhi, B. subtilis | 5-hydroxy-6,7,8,4′-tetramethoxyflavone and 5,7,4′-trihydroxy-6,8-dimethoxyflavone | Agar diffusion assay | The inhibition zones of these two flavonoids isolated from O. corniculata ranged from 10 to 16.5 mm. | [85] |
| 5 | Suckling mice infected with S. dysenteriae 1 (NT4907) and S. flexneri 2a (2457T) | Methanol extract | 20 mg/kg, single oral administration (simultaneous or 3 h post-infection) | Reduced intestinal colonization of Shigella strains. | [79] |
| 6 | Pomfret fish (food preservation model) | Methanol leaf extract (rutin, p-hydroxybenzoic acid, ferulic acid) | Food storage assay (bacterial growth and oxidative stability) | Significantly inhibited S. aureus growth during 10 °C storage (48 h) and reduced lipid oxidation, suggesting potential as a natural preservative. | [61] |
| No. | Nanomaterial Type | Biosynthesis Agent | Test Microorganisms | Methods | Effects | Ref. |
|---|---|---|---|---|---|---|
| 1 | Silver nanoparticles (AgNPs) | O. corniculata extract + AgNO3 | S. aureus, E. coli, B. subtilis, K. pneumoniae, S. typhi, S. pyogenes, P. aeruginosa, B. cereus, S. typhimurium, E. faecalis, A. baumannii, P. mirabilis | Disk diffusion, broth microdilution, biofilm inhibition assay | Inhibition zones 10–20 mm (25–50 μg/mL); MIC 0.11–11.5 μg/mL; disrupts membrane integrity, inhibits biofilm, induces ROS, interferes with bacterial metabolic pathways and interacts with intracellular targets | [31,80,86,87,88] |
| 2 | AgNPs@GO nanocomposite | O. corniculata extract + AgNO3 + GO | B. subtilis, E. coli | Agar well diffusion | Inhibition zones: B. subtilis 27 mm, E. coli 21 mm. Enhanced antibacterial activity due to synergistic interaction. | [81] |
| 3 | AgNPs-graphene nanocomposite | O. corniculata extract + AgNO3 + graphene | E. coli, S. aureus, B. cereus, S. typhimurium | MIC, MBC, inhibition zone | MIC and MBC both as low as 10 μg/mL for AgNPs-graphene composites; disrupts membranes and inhibits metabolism. | [82] |
| 4 | ZnO nanoflowers (ZnO NFs) | O. corniculata extract + Zn(NO3)2 | S. aureus, E. faecium, P. aeruginosa | Broth dilution | Dose-dependent antibacterial activity (40–120 μg/mL); Gram-positive bacteria more sensitive; induces membrane damage, ROS, and synergizes with flavonoids. | [83] |
5.4. Anticancer Activity
| No. | Testing Subjects | Application Part or Compounds | Doses/Duration | Effects | Ref. |
|---|---|---|---|---|---|
| 1 | MCF-7 cell line | Ethanol extract | 31.25–2000 μg/mL, 24 and 72 h | p53 ↑, CD95 ↑, Bcl-2 ↓; selective cytotoxicity against cancer cells | [89] |
| 2 | HepG2 cell line | Ethanol extract and ethyl acetate fraction | 35–45 μg/mL, 48 h | Inhibited proliferation of HepG2 cells | [63] |
| 3 | SMMC-7721, MCF-7, HCT-15, A549 cancer cell lines | Corniculin | concentration range 0–100 μM, 48 h | Moderate cytotoxicity against multiple cell lines: IC50 for SMMC-7721, MCF-7, HCT-15, and A549 cells were 29.0, 35.6, 31.3, and 25.7 μM, respectively | [90] |
| 4 | EAC mice | Ethanol extract | 100 mg/kg and 400 mg/kg, p.o., 9 days | Inhibited tumor growth; prolonged survival; improved hematological and biochemical parameters; CAT ↑, GSH ↑, MDA ↓; no significant toxicity to normal cells | [91] |
| 5 | MCF-7 and AGS cell lines | O-AgNPs | 0.1–50 μg/mL, 24 h | Significant cytotoxicity and growth inhibition; induced apoptosis; low toxicity to normal cells | [88] |
| 6 | HuH7 cell line | Polyphenols from O. corniculata loaded in exosomes | 10–100 μg/mL, 24 h | Exosome delivery enhanced cytotoxicity and cellular uptake; promoted apoptosis via upregulation of Bax and caspase-3, downregulation of Bcl-2 | [11] |
5.5. Neuroprotective Activity
| No. | Disease Model | Animal Subjects | Application Part or Compounds | Doses/Duration | Effects | Ref. |
|---|---|---|---|---|---|---|
| 1 | Parkinson’s disease (MPTP-induced) | C57 black male mice | Ethanol extract | 250, 500 mg/kg, p.o., co-administered with MPTP | Restored SOD, CAT, reduced LPO; attenuated oxidative stress; improved locomotor activity, muscle coordination, and cognitive performance | [93,94] |
| 2 | Parkinson’s disease (Rotenone-induced) | Swiss albino mice | Ethanol extract | 500 mg/kg, p.o., for 21 days | Improved motor performance; SOD ↑, CAT ↑, GSH ↑, DA ↑; MDA ↓, NO ↓, Glu ↓; reduced neuronal loss and neuroinflammation | [95] |
| 3 | Dementia | Albino mice | Methanol extract | 100, 200 mg/kg, p.o., for 21 days | Significantly improved learning and memory abilities | [96] |
| 4 | Epilepsy (MES/PTZ-induced) | Wistar rats | Methanol extract | 200, 400 mg/kg, i.p., single dose | Restored antioxidant enzymes (SOD, GPx, GR, CAT), reduced LPO; increased DA, NA, 5-HT, GABA; delayed seizures and reduced severity | [97] |
| 5 | Alzheimer’s disease (AlCl3-induced) | Male SD rats | Methanol extract | 150 mg/kg, p.o., weeks | Improved spatial learning and memory; TAC ↑, SOD ↑, MDA ↓; restored DA, NE, 5-HT levels, AChE ↓; upregulation of Nrf2/HO-1, Bcl-2, Beclin-1, Wnt3a, β-catenin, LRP1; downregulation of TLR4/NF-κB/NLRP3, PERK/CHOP, GSK-3β, ApoE4; reduced APP, BACE1, Aβ, p-Tau; alleviated neuronal damage and brain pathology. | [57] |
6. Safety Studies on O. corniculata
7. Conclusions and Future Prospective
- (1)
- Dietary supplements and nutraceuticals: Flavonoids and polysaccharides enhance antioxidant defenses and help mitigate disorders associated with oxidative stress, supporting their potential development as dietary supplements and nutraceuticals [7].
- (2)
- Antimicrobial applications: Extracts exhibit antibacterial activity against S. aureus and E. coli, with topical formulations such as antibacterial creams showing efficacy [78]. Green-synthesized nanomaterials further enhance antibacterial activity, offering opportunities for wound-care and infection-control products.
- (3)
- Hypoglycemic potential: Ethanol extracts exhibit antihyperglycemic effects in STZ-induced diabetic rats, mainly through the enhancement of antioxidant defenses and protection of pancreatic β-cells [8]. The alkaloid ATA has been identified as one of the contributors to this activity [37,39]. These findings suggest that the plant’s bioactive constituents hold promise for the development of natural hypoglycemic agents.
- (4)
- Food preservation: Polyphenols delay lipid peroxidation in animal fats and extend shelf life. Oil-soluble extracts show stronger antioxidant effects than water-soluble forms, with optimal activity at 0.02–0.04% concentrations, comparable to butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) [77]. Methanol extracts of O. corniculata effectively inhibit bacterial growth and oxidative spoilage in fish meat, indicating its potential as a natural preservative [61].
- (5)
- Poultry production: Dietary supplementation with O. corniculata improves antioxidant stability of broiler meat and increases the levels of bioactive compounds such as lutein, zeaxanthin, and PUFAs [4]. It also optimizes the fatty acid profile, helps maintain gut microbiota balance, alleviates heat stress, and supports growth performance [44,60].
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Liu, Y.; Shen, Z.; Wang, S.; Wu, C.; Liu, D.; Tang, S.; Dai, C. Osthole ameliorates myonecrosis caused by Clostridium perfringens type A infection in mice. One Health Adv. 2023, 1, 27. [Google Scholar] [CrossRef]
- Gliozheni, E.; Salem, Y.; Cho, E.; Wahlstrom, S.; Olbrich, D.; Shams, B.; Alexander, M.; Ichii, H. Food-Derived Phytochemicals: Multicultural Approaches to Oxidative Stress and Immune Response. Int. J. Mol. Sci. 2025, 26, 7316. [Google Scholar] [CrossRef]
- Saracila, M.; Panaite, T.D.; Mironeasa, S.; Untea, A.E. Dietary Supplementation of Some Antioxidants as Attenuators of Heat Stress on Chicken Meat Characteristics. Agriculture 2021, 11, 638. [Google Scholar] [CrossRef]
- Saracila, M.; Untea, A.E.; Panaite, T.D.; Varzaru, I.; Oancea, A.; Turcu, R.P.; Vlaicu, P.A. Creeping wood sorrel and chromium picolinate effect on the nutritional composition and lipid oxidative stability of broiler meat. Antioxidants 2022, 11, 780. [Google Scholar] [CrossRef] [PubMed]
- Groom, Q.J.; Straeten JVder Hoste, I. The origin of Oxalis corniculata L. PeerJ 2019, 7, e6384. [Google Scholar] [CrossRef] [PubMed]
- Bharti, R.; Priyanka, P.; Bhargava, P.; Khatri, N. Ethnopharmacology and therapeutic potentials of Oxalis corniculata: An in-depth study. Beni-Suef Univ. J. Basic Appl. Sci. 2024, 13, 81. [Google Scholar] [CrossRef]
- Gao, T.; Hu, W.; Zhang, Z.; Tang, Z.; Chen, Y.; Zhang, Z.; Yuan, S.; Chen, T.; Huang, Y.; Feng, S.; et al. An acidic polysaccharide from Oxalis corniculata L. and the preliminary study on its antioxidant activity. J. Food Biochem. 2022, 46, e14235. [Google Scholar] [CrossRef]
- Ansari Khan, M.; Khan, N.; Ahmed, D.; Khan, M.; Lall, A. Exploring antihyperglycemic and histopathological analysis of Oxalis corniculata L. hydroethanolic extract in STZ induced diabetic rats with in silico α-amylase inhibitor assessment. Ann. Phytomedicine 2024, 13, 612–626. [Google Scholar] [CrossRef]
- Sarfraz, I.; Rasul, A.; Hussain, G.; Shah, M.A.; Nageen, B.; Jabeen, F.; Selamoğlu, Z.; Uçak, İ.; Asrar, M.; Adem, S. A review on phyto-pharmacology of Oxalis corniculata. Comb. Chem. High Throughput Screen. 2022, 25, 1181–1186. [Google Scholar] [CrossRef]
- Jiang, D.; Yu, D.; Zeng, M.; Liu, W.; Li, D.; Liu, K. Optimization of ultrasonic-assisted extraction of total flavonoids from Oxalis corniculata by a hybrid response surface methodology-artificial neural network-genetic algorithm (RSM-ANN-GA) approach, coupled with an assessment of antioxidant activities. RSC Adv. 2024, 14, 39069–39080. [Google Scholar] [CrossRef]
- Begum, S.; Mazumder, P.B.; Talukdar, A.D. In vitro evaluation of anticancer activity of Oxalis corniculata L., by harnessing exosome for effective drug delivery against hepatocellular carcinoma. Pharmacol. Res.-Nat. Prod. 2025, 8, 100298. [Google Scholar] [CrossRef]
- Li, J.; Yang, J.; Liu, T.; Li, Y.; Shen, Y.; Yang, C.; He, B.; Wang, A. Treatment of Soft Tissue Injury in Rats with Gukang Capsule, Oxalis Corniculata and Musa Basjoo Sieb. J. Guizhou Med. Univ. 2020, 45, 1015–1019. [Google Scholar]
- Shamso, E.; Draz, A.; Hosni, H.; Hussein, S. Taxonomic revision of genus Oxalis L. (Oxalidaceae) in the flora of Egypt. Taeckholmia 2022, 41, 56–69. [Google Scholar] [CrossRef]
- Yang, Y.; He, L.; Liu, Y.; Liu, Y.; Chen, J. Identification and Analysis of KNOX Gene Family Members Based on RNA-Seq in Oxalis corniculata. Mol. Plant Breed. 2022, 23, 4320. [Google Scholar]
- Loi, V.D.; Nguyet, L.T.; Duong, L.T.H.; Mai, N.T.; Huong, N.T.T.; Hai, P.T.M. Morphological and Microscopical Characteristics of Oxalis corniculata L. VNU J. Sci. Med. Pharm. Sci. 2021, 37, 1. [Google Scholar]
- Al Sheikh, B.; Gedeon, J. Newly Documented Invasive Alien Plant Species in the West Bank, Palestine. Feddes Repert. 2025, 136, 136–145. [Google Scholar] [CrossRef]
- Rokaya, M.B.; Münzbergová, Z.; Shrestha, M.R.; Timsina, B. Distribution pattern, ecological status and ethnomedicinal uses of medicinal plants along an altitudinal gradient among Jaunsar tribes of Western himalaya. J. Mt. Sci. 2025, 31, 1–25. [Google Scholar]
- Liu, Z.; Wang, L.; Ding, S.; Xiao, H. Enhancer assisted-phytoremediation of mercury-contaminated soils by Oxalis corniculata L., and rhizosphere microorganism distribution of Oxalis corniculata L. Ecotoxicol. Environ. Saf. 2018, 160, 171–177. [Google Scholar] [CrossRef]
- Imran, M.; Irfan, A.; Ibrahim, M.; Assiri, M.A.; Khalid, N.; Ullah, S.; Al-Sehemi, A.G. Carbonic anhydrase and cholinesterase inhibitory activities of isolated flavonoids from Oxalis corniculata L. and their first-principles investigations. Ind. Crops Prod. 2020, 148, 112285. [Google Scholar] [CrossRef]
- Badwaik, H.; Singh, M.; Thakur, D.; Giri, T.; Tripathi, D. The botany, chemistry, pharmacological and therapeutic application of Oxalis corniculata Linn-a review. Int. J. Phytomed. 2011, 3, 1. [Google Scholar]
- Zhang, B.; Kuang, W.; Liu, J.; Jiang, L.; Li, Y.; Ma, X. Chemical Constituents Analysis of Oxalis Corniculata L. Based on UPLC-Q-Exactive-Plus-Orbitrap-MS. Chin. J. Mod. Appl. Pharm. 2025, 42, 611–622. [Google Scholar]
- Zeb, A.; Imran, M. Carotenoids, pigments, phenolic composition and antioxidant activity of Oxalis corniculata leaves. Food Biosci. 2019, 32, 100472. [Google Scholar] [CrossRef]
- Zhang, S.; Dong, J.; Cheng, H. Essential oil composition of the leaves of Oxalis corniculata from China. Chem. Nat. Compd. 2018, 54, 380–381. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M. Flavonoids as potential anti-inflammatory molecules: A review. Molecules 2022, 27, 2901. [Google Scholar] [CrossRef]
- Dai, W.; Pan, M.; Peng, L.; Zhang, D.; Ma, Y.; Wang, M.; Wang, N. Integrated Transcriptome and Metabolome Analysis Reveals Insights into Flavone and Flavonol Biosynthesis in Salicylic Acid-Induced Citrus Huanglongbing Tolerance. J. Agric. Food Chem. 2024, 73, 919–937. [Google Scholar] [CrossRef]
- Tang, S.; Wang, B.; Liu, X.; Xi, W.; Yue, Y.; Tan, X.; Bai, J.; Huang, L. Structural insights and biological activities of flavonoids: Implications for novel applications. Food Front. 2025, 6, 218–247. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, J.; Zong, D.; Peng, Y.; Chen, J.; Zhao, J. Chemical Composition from Oxalis corniculata L., Content of Total Flavonoids in Oxalis corniculata L. in Different Harvest Times. Guangzhou Chem. Ind. 2021, 49, 64–65. [Google Scholar]
- Zhang, B.; Sun, X.; Tang, W.; Jiang, L.; Liu, J.; Wang, Y.; Li, Y.; Li, Y.; Ma, X. An effective high-performance liquid chromatography method for fingerprint and multi-component quantification of Oxalis corniculata. Curr. Pharm. Anal. 2025, 21, 434–438. [Google Scholar] [CrossRef]
- Kiran, K.S.; Kameshwar, V.H.; Mudnakudu Nagaraju, K.K.; Nagalambika, P.; Varadaraju, K.R.; Karthik, N.A. Diosmin: A Daboia russelii venom PLA2s inhibitor-purified, and characterized from Oxalis corniculata L medicinal plant. J. Ethnopharmacol. 2024, 318, 116977. [Google Scholar] [CrossRef]
- Khan, F.; Bamunuarachchi, N.I.; Tabassum, N.; Kim, Y.M. Caffeic acid and its derivatives: Antimicrobial drugs toward microbial pathogens. J. Agric. Food Chem. 2021, 69, 2979–3004. [Google Scholar] [CrossRef]
- Karimzadeh, K.; Bakhshi, N.; Ramzanpoor, M. Biogenic silver nanoparticles using Oxalis corniculata characterization and their clinical implications. J. Drug Deliv. Sci. Technol. 2019, 54, 101263. [Google Scholar] [CrossRef]
- Vari, F.; Bisconti, E.; Serra, I.; Stanca, E.; Friuli, M.; Vergara, D.; Giudetti, A.M. Exploring the Role of Oleic Acid in Muscle Cell Differentiation: Mechanisms and Implications for Myogenesis and Metabolic Regulation in C2C12 Myoblasts. Biomedicines 2025, 13, 1568. [Google Scholar] [CrossRef]
- Peng, B.; Wei, S. Synthetic Engineering of Microbes for Production of Terpenoid Food Ingredients. J. Agric. Food Chem. 2025, 73, 10052–10068. [Google Scholar] [CrossRef]
- Jaramillo, S.P.; Calva, J.; Jiménez, A.; Armijos, C. Isolation of Geranyl Acetate and Chemical Analysis of the Essential Oil from Melaleuca armillaris (Sol. ex Gaertn.) Sm. Appl. Sci. 2024, 14, 1864. [Google Scholar] [CrossRef]
- Durgawale, P.P.; Hendre, A.S.; Phatak, R.S. GC/MS characterization, antioxidant and free radical scavenging capacities of methanolic extract of Oxalis corniculata LINN: An ayurvedic herb. Rasayan J. Chem. 2015, 8, 271–278. [Google Scholar]
- Ramakrishna, G.V.; Latif, Z.; Romiti, F. Enantioselective Total Syntheses of Vallesamidine and Schizozygane Alkaloids. J. Am. Chem. Soc. 2025, 147, 4613–4623. [Google Scholar] [CrossRef]
- Feng, Q.; Yang, W.; Peng, Z.; Wang, G. Utilizing bio-affinity ultrafiltration combined with UHPLC Q-Exactive Plus Orbitrap HRMS to detect potential α-glucosidase inhibitors in Oxalis corniculate L. Int. J. Biol. Macromol. 2023, 252, 126490. [Google Scholar] [CrossRef]
- Yang, Z.-J.; Huang, S.-Y.; Cheng, J.; Zeng, J.-W.; Wusiman, M.; Li, H.-B.; Zhu, H.-L. Betaine: A comprehensive review on dietary sources, health benefits, mechanisms of action, and application. Trends Food Sci. Technol. 2025, 159, 104993. [Google Scholar] [CrossRef]
- Feng, Q.; Yang, W.; Ma, X.; Peng, Z.; Wang, G. Investigation on the anti-α-glucosidase mechanism of aspergillus triazolate A from Oxalis corniculate L. Int. J. Biol. Macromol. 2024, 279, 135457. [Google Scholar] [CrossRef]
- Hu, W. Ultrasound-Enzyme Assisted Extraction, Physicochemical Properties and Antioxidant Activities of Polysaccharides from Oxalis corniculata L. Master’s Thesis, Sichuan Agricultural University, Ya’an, China, 2019. [Google Scholar]
- Aruna, K.; Devi, P.; Rajeswari, R.; Prabu, K.; Ramkumar, M.; Chidambaram, R.; Raja Sankar, S. Quantitative phytochemical analysis of Oxalis corniculata L. (Oxalidaceae). World J. Pharm. Sci 2014, 3, 711–716. [Google Scholar]
- Bordoloi, M.; Bordoloi, P.K.; Dutta, P.P.; Singh, V.; Nath, S.; Narzary, B.; Bhuyan, P.D.; Rao, P.G.; Barua, I.C. Studies on some edible herbs: Antioxidant activity, phenolic content, mineral content and antifungal properties. J. Funct. Foods 2016, 23, 220–229. [Google Scholar] [CrossRef]
- Chowdhury, M.M.K.; Islam, M.A.; Yasmin, F.; Ryhan, M.A. Biochemical potentials and stability of Oxalis corniculata L. leaf extracts. Dhaka Univ. J. Biol. Sci. 2025, 34, 75–83. [Google Scholar] [CrossRef]
- Saracila, M.; Panaite, T.D.; Tabuc, C.; Soica, C.; Untea, A.; Varzaru, I.; Wojdyło, A.; Criste, R.D. Maintaining intestinal microflora balance in heat-stressed broilers using dietary creeping wood sorrel (Oxalis corniculata) powder and chromium (chromium picolinate). Span. J. Agric. Res. 2020, 18, 19. [Google Scholar] [CrossRef]
- Jiang, X.; Zhao, R.; Zhou, X.; Fang, X.; Miao, M. Herbal research and analysis of ancient and modern clinical application of fresh Oxalis corniculata. China J. Tradit. Chin. Med. Pharm. 2024, 39, 3761–3767. [Google Scholar]
- Lou, Q.; Zhan, M.W.; Lai, Y.Q.; Zhan, X.X.; Xiao, Y.P.; Shang, X.J. Study on the treatment of chronic nonbacterial prostatitis caused by dampness-heat stasis with Oxalis Formula combined with transacupuncture. Natl. J. Androl. 2025, 31, 165–171. [Google Scholar]
- Zargar, S.A.; Ganie, A.H.; Reshi, Z.A.; Shah, M.A.; Sharma, N.; Khuroo, A.A. Oxalis corniculata L.(Oxalidaceae), an addition of an alien plant species to the flora of Ladakh, India. Vegetos 2024, 37, 373–378. [Google Scholar] [CrossRef]
- Lai, Y.; Yu, Y.; Liu, P.; Zhan, M.; Ma, M.; Wang, L.; Lou, Q.; Shang, X. Research on the mechanism of Miao ethnicity medicine formula of Oxalis corniculata against chronic non-bacterial prostatitis. Natl. J. Androl. 2023, 29, 783–789. [Google Scholar]
- He, L.; Sun, W.; Suo, X.; Shi, S.; Zhang, C.; Chen, Y. Herbal textual research of Oxalis corniculata L. Chin. J. Ethnomed. Ethnopharm. 2025, 34, 66–73. [Google Scholar]
- Kubade, M.; Shetti, P. Medicinal importance of traditional Indian herbal plant Oxalis corniculata: A review. Int. J. Pharm. Sci. Res. 2024, 15, 1015–1024. [Google Scholar]
- Noor, N.; Satapathy, K.B. Leafy vegetable diversity and their ethnomedicinal uses against gastrointestinal disorders in the Balasore district of Odisha, India. J. Appl. Biol. Biotechnol. 2023, 11, 259–267. [Google Scholar]
- Tibuhwa, D.D. Oxalis corniculata L. in Tanzania: Traditional use, cytotoxicity and antimicrobial activities. J. Appl. Biosci. 2016, 105, 10055–10063. [Google Scholar] [CrossRef]
- Silalahi, M. Utilization of Oxalis corniculata Linn as a traditional medicine and its bioactivity. Magna Sci. Adv. Res. Rev. 2022, 5, 27–33. [Google Scholar] [CrossRef]
- Rahman, I.U.; Afzal, A.; Iqbal, Z.; Hart, R.; Abd_Allah, E.F.; Hashem, A.; Alsayed, M.F.; Ijaz, F.; Ali, N.; Shah, M.; et al. Herbal teas and drinks: Folk medicine of the Manoor valley, Lesser Himalaya, Pakistan. Plants 2019, 8, 581. [Google Scholar] [CrossRef]
- Jiang, S.; Li, H.; Zhang, L.; Mu, W.; Zhang, Y.; Chen, T.; Wu, J.; Tang, H.; Zheng, S.; Liu, Y.; et al. Generic Diagramming Platform (GDP): A comprehensive database of high-quality biomedical graphics. Nucleic Acids Res. 2025, 53, D1670–D1676. [Google Scholar] [CrossRef]
- Glorieux, C.; Liu, S.; Trachootham, D.; Huang, P. Targeting ROS in cancer: Rationale and strategies. Nat. Rev. Drug Discov. 2024, 23, 583–606. [Google Scholar] [CrossRef]
- Abu-Elfotuh, K.; Hamdan, A.M.E.; Mohamed, S.A.; Bakr, R.O.; Ahmed, A.H.; Atwa, A.M.; Hamdan, A.M.; Alanzai, A.G.; Alnahhas, R.K.; Gowifel, A.M.H.; et al. The potential anti-Alzheimer’s activity of Oxalis corniculata Linn. Methanolic extract in experimental rats: Role of APOE4/LRP1, TLR4/NF-κβ/NLRP3, Wnt 3/β-catenin/GSK-3β, autophagy and apoptotic cues. J. Ethnopharmacol. 2024, 324, 117731. [Google Scholar] [CrossRef]
- Khan, M.R.; Zehra, H. Amelioration of CCl4-induced nephrotoxicity by Oxalis corniculata in rat. Exp. Toxicol. Pathol. 2013, 65, 327–334. [Google Scholar] [CrossRef]
- Khan, M.R.; Marium, A.; Shabbir, M.; Saeed, N.; Bokhari, J. Antioxidant and hepatoprotective effects of Oxalis corniculata against carbon tetrachloride (CCl4) induced injuries in rat. Afr. J. Pharm. Pharmacol. 2012, 6, 2255–2267. [Google Scholar] [CrossRef]
- Saracila, M.; Tatiana, P.; Untea, A.; Varzaru, I. Effect of dietary supplementation of some antioxidant combinations on nutrient digestibility in heat-stressed broilers. Arch. Zootech. 2022, 25, 116–129. [Google Scholar] [CrossRef]
- Mukherjee, S.; Pal, S.; Chakrabarti, R.; Koley, H.; Dhar, P. Biochemical assessment of extract from Oxalis corniculata L.: Its role in food preservation, antimicrobial and antioxidative paradigms using in situ and in vitro models. Indian J. Exp. Biol. 2018, 56, 230–243. [Google Scholar]
- Kim, J.H.; Hong, M.; Han, J.H.; Lee, H.J.; Choi, D.H.; Hoang, K.; Van Dung, L.; Kwon, T.; Ahn, Y. Antioxidant and Anti-inflammatory Effects of Oxalis Corniculata Hot Water Extract. Korean J. Med. Crop Sci. 2022, 30, 419–429. [Google Scholar] [CrossRef]
- Gudasi, S.; Gharge, S.; Koli, R.; Patil, K. Antioxidant properties and cytotoxic effects of Oxalis corniculata on human Hepatocarcinoma (Hep-G2) cell line: An in vitro and in silico evaluation. Future J. Pharm. Sci. 2023, 9, 25. [Google Scholar] [CrossRef]
- Sun, X. Antioxidant Effect of Oxalis corniculata Polyphenols on Animal Fats. Heilongjiang Anim. Husb. Vet. Med. 2015, 129–130. [Google Scholar] [CrossRef]
- Ngueguim, F.; Jouonzo, J.; Donfack, J.; Gounoue, R.; Djientcheu Tientcheu, J.P.; Clarice, D.; Fifen, R.; Dzeufiet, P.; Théophile, D. The Mixture Aqueous Extracts from Oxalis corniculata L. and Acmella caulirhiza Delile Accelerates Bone Healing in Fractured Rats. J. Complement. Altern. Med. 2022, 17, 18–28. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Y.; Cao, H.; Wang, G.; Guo, D.; Zhang, K. Protective effect and mechanism of Oxalidis Corniculatase Herba on acute hepatic injury induced by carbon tetrachloride in rats. Chin. J. Exp. Tradit. Med. Formulae 2018, 24, 141–145. [Google Scholar]
- Sreejith, G.; Jayasree, M.; Latha, P.G.; Suja, S.R.; Shyamal, S.; Shine, V.J.; Anuja, G.I.; Sini, S.; Shikha, P.; Krishnakumar, N.M.; et al. Hepatoprotective activity of Oxalis corniculata L. ethanolic extract against paracetamol induced hepatotoxicity in Wistar rats and its in vitro antioxidant effects. Indian J. Exp. Biol. 2014, 52, 147–152. [Google Scholar]
- Zhang, J.; Shen, W.; He, H. Exploring the action mechanism of Oxalis corniculata L. decoction in treating osteoarthritis utilizing liquid chromatography–mass spectrometry technology combined with network pharmacology. Medicine 2024, 103, e39515. [Google Scholar] [CrossRef]
- Ding, Q.; Huang, X.; Yang, X.; Zhang, M.; Qin, P.; Wu, H.; Wang, X. Study of the Mechanism of Oxalis corniculata (L.) in the Treatment of Hepatitis Based on Network Pharmacology; IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021. [Google Scholar]
- Dighe, S.B.; Kuchekar, B.S.; Wankhede, S.B. Analgesic and anti-inflammatory activity of β-sitosterol isolated from leaves of Oxalis corniculata. Int. J. Pharmacol. Res. 2016, 6, 109–113. [Google Scholar]
- Zhang, G.W.; Zhan, M.W.; Zhan, X.X.; Yu, Y.; Liu, P.F.; Wang, L.; Wu, H.; He, C.Q.; Lou, Q.; Shang, X.J. Biological mechanisms of Oxalis corniculata regulating human prostate cancer PC-3 cells: An investigation based on the NF-κB pathway. Natl. J. Androl. 2023, 29, 202–209. [Google Scholar]
- Dutta, A.; Handique, C.; Lahkar, M. Evaluation of anti-inflammatory activity of Oxalis corniculata in experimentally induced inflammatory bowel disease in rats. Int. J. Basic Clin. Pharmacol. 2015, 4, 744–749. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, B.; Jiang, L.; Kuang, W.; Wang, M.; Wang, Y.; Sun, J.; Li, Y. The Activity, Composition, and Molecular Mechanism of Oxalis corniculata in Alleviating Acute Lung Injury. Nat. Prod. Commun. 2025, 20, 1934578X251361195. [Google Scholar] [CrossRef]
- Guo, M.; Wang, Y.; Shi, G.; Shen, L. Anti-inflammatory and analgesic effects of Oxalis corniculata L. on acute peritonitis in mice. J. Dali Univ. 2014, 13, 6–8. [Google Scholar]
- Sakat, S.S.; Tupe, P.; Juvekar, A. Gastroprotective effect of Oxalis corniculata (whole plant) on experimentally induced gastric ulceration in Wistar rats. Indian J. Pharm. Sci. 2012, 74, 48. [Google Scholar]
- Lou, Q.; Zhan, M.-W.; Lai, Y.-Q.; Zhan, X.-X.; Shang, X.-J. Mechanism of regulation of CNP rat model by Oxalis decoction via cGAS-STING signaling pathway. Natl. J. Androl. 2023, 29, 973–979. [Google Scholar]
- Hamzah, H.; Siregar, K.A.A.K.; Nurwijayanto, A.; Wahyuningrum, R.; Sari, S. Effectiveness of Oxalis corniculata L. ethanol extract against mono-species of biofilm staphylococcus aureus. Borneo J. Pharm. 2021, 4, 184–191. [Google Scholar] [CrossRef]
- Handali, S.; Hosseini, H.; Ameri, A. Formulation and evaluation of an antibacterial cream from Oxalis corniculata aqueous extract. Jundishapur J. Microbiol. 2011, 4, 255–260. [Google Scholar]
- Mukherjee, S.; Koley, H.; Barman, S.; Mitra, S.; Datta, S.; Ghosh, S.; Paul, D.; Dhar, P. Oxalis corniculata (Oxalidaceae) leaf extract exerts in vitro antimicrobial and in vivo anticolonizing activities against Shigella dysenteriae 1 (NT4907) and Shigella flexneri 2a (2457T) in induced diarrhea in suckling mice. J. Med. Food 2013, 16, 801–809. [Google Scholar] [CrossRef]
- Singh, B.; Kumar, D.; Soni, M.; Sinha, J.; Saroha, P.; Sharma, K.; Singh, K.; Gupta, S.K.; Singh, H. Larvicidal and anti-bacterial efficacy of silver nanoparticles derived from Oxalis corniculata. Biosci. Nanotechnol. 2025, 1, 2. [Google Scholar] [CrossRef]
- Perumal, S.; Atchudan, R.; Ramalingam, S.; Edison, T.N.J.I.; Lee, H.M.; Cheong, I.W.; Devarajan, N.; Lee, Y.R. Comparative investigation on antibacterial studies of Oxalis corniculata and silver nanoparticle stabilized graphene surface. J. Mater. Sci. 2022, 57, 11630–11648. [Google Scholar] [CrossRef]
- Jakhar, V.; Sharma, D.K. A sustainable approach for graphene–oxide surface decoration using Oxalis corniculata leaf extract–derived silver nanoparticles: Their antibacterial activities and electrochemical sensing. Dalton Trans. 2020, 49, 8625–8635. [Google Scholar] [CrossRef]
- Badgujar, H.F.; Bora, S.; Kumar, U. Eco-benevolent synthesis of ZnO nanoflowers using Oxalis corniculata leaf extract for potential antimicrobial application in agriculture and cosmeceutical. Biocatal. Agric. Biotechnol. 2021, 38, 102216. [Google Scholar] [CrossRef]
- Manandhar, S.; Luitel, S.; Dahal, R.K. In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. J. Trop. Med. 2019, 2019, 1895340. [Google Scholar] [CrossRef]
- Rehman, A.; Rehman, A.; Ahmad, I. Antibacterial, antifungal, and insecticidal potentials of Oxalis corniculata and its isolated compounds. Int. J. Anal. Chem. 2015, 2015, 842468. [Google Scholar] [CrossRef]
- Sreya, K.R.; Uma, R.; Jayavardhanan, K.K. Antibacterial potential of silver nanoparticles synthesized using Oxalis corniculata leaf extract. Pharma Innov. J. 2022, 11, 1362–1366. [Google Scholar]
- Das Mahapatra, A.; Patra, C.; Pal, K.; Mondal, J.; Sinha, C.; Chattopadhyay, D. Green synthesis of AgNPs from aqueous extract of Oxalis corniculata and its antibiofilm and antimicrobial activity. J. Indian Chem. Soc. 2022, 99, 100529. [Google Scholar] [CrossRef]
- Ebrahimzadeh, M.A.; Alizadeh, S.R.; Hashemi, Z. Discovery of high antibacterial and antitumor effects against multi-drug resistant clinically isolated bacteria and MCF-7 and AGS cell lines by biosynthesized silver nanoparticles using Oxalis corniculata extract. Eur. J. Chem. 2023, 14, 202–210. [Google Scholar] [CrossRef]
- Gholipour, A.R.; Jafari, L.; Ramezanpour, M.; Evazalipour, M.; Chavoshi, M.; Yousefbeyk, F.; Kargar Moghaddam, S.J.; Yekta Kooshali, M.H.; Ramezanpour, N.; Daei, P.; et al. Apoptosis Effects of Oxalis corniculata L. Extract on Human MCF-7 Breast Cancer Cell Line. Galen Med. J. 2022, 11, e2484. [Google Scholar]
- Zhang, B.; Jiang, L.; Ma, X.; Wang, A.M.; Liu, T.; Zhou, M.; Liao, S.G.; Wang, Y.L.; Huang, Y.; Li, Y.J. A New arylnaphthalide Lignan from Oxalis corniculata. Nat. Prod. Commun. 2019, 14, 1934578X19875885. [Google Scholar] [CrossRef]
- Kathiriya, A.; Das, K.; Kumar, E.P.; Mathai, K.B. Evaluation of antitumor and antioxidant activity of Oxalis corniculata Linn. against Ehrlich ascites carcinoma on mice. Iran. J. Cancer Prev. 2010, 3, 157–165. [Google Scholar]
- Wilson, D.M.; Cookson, M.R.; Van Den Bosch, L.; Zetterberg, H.; Holtzman, D.M.; Dewachter, I. Hallmarks of neurodegenerative diseases. Cell 2023, 186, 693–714. [Google Scholar] [CrossRef]
- Aruna, K.; Rajeswari, P.D.R.; Sankar, S.R. The effects of Oxalis corniculata L. extract against MPTP induced oxidative stress in mouse model of Parkinson’s disease. J. Pharm. Sci. Res. 2016, 8, 1136. [Google Scholar]
- Aruna, K.; Rajeswari, P.D.R.; Sankar, S.R. The effect of Oxalis corniculata extract against the behavioral changes induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) in mice. J. Appl. Pharm. Sci. 2017, 7, 148–153. [Google Scholar]
- Kumar, P.; Sachdeva, H.; Kalra, S.; Singh, B.; Gupta, R.; Singh, G. Oxalis corniculata and Ficus religiosa mitigates rotenone-induced Parkinson’s disease in Swiss Albino mice: Mechanistic insights and therapeutic potential. J. Appl. Pharm. Sci. 2024, 14, 253–262. [Google Scholar]
- Das, M.; Gohain, K. Evaluation of memory enhancing activity of methanolic Extract of Oxalis corniculata Linn on dementia in experimental animals. Int. J. Sci. Eng. Res. 2018, 9, 922–928. [Google Scholar]
- Al-Snafi, A.E. Medicinal plants with anticonvulsant activities with emphasis on their mechanisms of action. Int. J. Biol. Pharm. Sci. Arch. 2021, 1, 177–189. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, J.; Li, J.; Wang, Y.; Li, Y.; Yang, C.; Sun, J.; Liu, C.; Liu, T. Effects of Oxalis corniculata and musa basjoo sieb of gukang capsule on fracture healing in rabbits and its mechanism. J. Guizhou Med. Univ. 2022, 47, 635–639. [Google Scholar]
- Wang, X.; Wang, Q. Current dietary and medical prevention of renal calcium oxalate stones. Int. J. Gen. Med. 2024, 17, 1635–1649. [Google Scholar] [CrossRef]
- Ibrahim, M.; Hussain, I.; Imran, M.; Hussain, N.; Hussain, A.; Mahboob, T. Corniculatin A, a new flavonoidal glucoside from Oxalis corniculata. Rev. Bras. Farmacogn. 2013, 23, 630–634. [Google Scholar] [CrossRef]
- Zhang, B.; Peng, X.; He, Y. Chemical constituents from Oxalis corniculata. J. Chin. Med. Mat. 2018, 41, 1883–1886. [Google Scholar]
- Prasad Pandey, B.; Prakash Pradhan, S.; Adhikari, K. LC-ESI-QTOF-MS for the profiling of the metabolites and in vitro enzymes inhibition activity of Bryophyllum pinnatum and Oxalis corniculata collected from Ramechhap District of Nepal. Chem. Biodivers. 2020, 17, e2000155. [Google Scholar] [CrossRef]
- Mondal, S.; Talukdar, P.; Mondal, T.K. Study of molecular docking to detect antihypertensive phytochemicals of Oxalis corniculata Linn. against angiotensin converting enzyme. World Sci. News 2018, 110, 42–55. [Google Scholar]
- Ahamad, T.; Khan, M.A.; Khan, M.F.; Ahmad, R.; Rahman, M.A.; Siddiqui, S. Oxalis corniculata-Derived Bioactive Compounds Target Hormone Receptors in Breast Cancer: HPLC-ESI-MS/MS Analysis, Cytotoxicity, and Computational Studies. ChemistrySelect 2025, 10, e202404547. [Google Scholar] [CrossRef]
- Jain, B. An evidence-based ethnomedicinal study on Oxalis corniculata: Review of decade study. Int. J. Green Pharm. 2023, 17, 3371. [Google Scholar]
- Duc, L.V.; Thi, M.N.; Le Hong, D.; Le Huong, G. Antioxidant Activity, Inhibition of No Production and Cytotoxicity of Chemical Compounds Isolated from Oxalis corniculata L. Pharm. Chem. J. 2023, 57, 388–394. [Google Scholar]
- Lei, Y.; Zhang, B.; Ma, X.; Zheng, L.; Gong, Z.P.; Wang, Y.L.; Li, Y.J. Chemical constituents from Oxalis corniculata L. Chin. Pharm. J. 2021, 56, 1378–1383. [Google Scholar]
- Loi, V.D.; Nga, D.T.Q.; Huong, D.T.M.; Huy, N.Q. Compounds Isolated from the Ethyl Acetate Fraction of the Aerial Parts of Oxalis corniculata L. VNU J. Sci. Med. Pharm. Sci. 2018, 34, 4112. [Google Scholar]
- Absar, K.M.B.; Rifat, H.B.S.M.; Das, S.; Eisha, J.A.; Das, T.R.; Dash, P.R. Phytochemical and Pharmacological Properties of Oxalis corniculata: A Review. Trop. J. Phytochem. Pharm. Sci. 2024, 3, 364–374. [Google Scholar] [CrossRef]




| Country | Components and Preparation Methods | Applications | Prescription Source |
|---|---|---|---|
| China | Harvested in April and May, shade-dried, and pounded for juice. | Treats sores; pounded and applied to kill parasites. | Xin Xiu Ben Cao (Tang Dynasty, 659 AD) [45] |
| China | Pounded for juice and prepared with vinegar | Indicated for strangury, hematuria, dysuria, and pediatric gingival ulceration with bleeding and fetor. | Zheng Lei Ben Cao (Song Dynasty, 1082 AD) [45] |
| China | Pounded for juice and prepared with wine | Treats strangury with painful reddish urination and bladder heat; for postpartum uterine prolapse. | Shi Yi De Xiao Fang (Yuan Dynasty, 1337 AD) [45] |
| China | Decocted with Bassia scoparia seeds and Plantago asiatica seeds | Treats strangury and leukorrhea. | Ben Cao Gang Mu (Ming Dynasty, 1578 AD) [49] |
| China | Leaves harvested in summer and shade-dried. Juice prepared with wine, honey, or sugar. | For sores, thirst, strangury, urinary retention, and difficult labor; for red and white vaginal discharge in women. | Zheng Zhi Zhun Sheng (Ming Dynasty, 1602 AD) [45] |
| China | Decocted with rock sugar and taken orally | For chronic diarrhea and various types of dysentery. | Dian Nan Ben Cao (Ming Dynasty, 1436 AD) [49] |
| China | Pounded for juice and prepared with wine, vinegar, honey, or sugar | For strangury, carbuncles, heat toxins, burns, and venomous bites; promotes urination and defecation. for phlegm disorders and anal swelling. | De Pei Ben Cao (Qing Dynasty, 1761 AD) [45] |
| India | With turmeric and Emblica officinalis in decoction; leaf juice with honey as mouth rinse; also consumed and used as fodder. | For diarrhea, oral ulcers, skin infections, and lowering blood glucose. | Ayurvedic Tradition [6,50,51] |
| Tanzania | Whole plant decoction; crushed fresh leaves applied topically | Treatment of skin infections, wounds, conjunctivitis, sore throat, fever, gastrointestinal discomfort | Ethnobotanical practice in Tanzania [52] |
| / | Used fresh, juiced, made into paste or decoction; administered orally or topically | Treat liver diseases, jaundice, skin disorders, and urinary tract infections | Traditional medical systems: Ayurveda, Unani, and Siddha [53] |
| Pakistan | Fresh leaves boiled in water for 2 h and placed for cooling. | For vitamin C deficiency and mouth smell | Traditional Persian Medicine [54] |
| China | Combined with Musa basjoo rhizome, Psoralea corylifolia, Dipsacus asper, etc | For fractures, coxarthritis, and osteoporosis associated with liver-kidney deficiency and meridian obstruction. | Gu Kang Capsule (www.nmpa.gov.cn) |
| China | Combined with Alternanthera philoxeroides, Agrimonia pilosa, Plantago asiatica, etc | For urinary tract infections, including cystitis, strangury, dysuria, and painful urination. | Mi Lin Qing Capsule (www.nmpa.gov.cn/) |
| China | Combined with Boenninghausenia albiflora, Polygonum capitatum and Plantago asiatica | For treating stranguria caused by damp-heat accumulation, characterized by difficult urination, dribbling, and painful urination. | Mi Ling Granule/Capsule (www.nmpa.gov.cn/) |
| China | Combined with Patrinia scabiosaefolia, Rheum palmatum, Paeonia suffruticosa bark, ect | Adjuvant treatment for chronic gynecological inflammation; also regulates menstruation and relieves pain. | Fu Yan Xiao Capsule (www.nmpa.gov.cn/) |
| China | Combined with Root of Musa basjoo and Curcuma longa | For traumatic injuries, contusions, and soft tissue damage with swelling and pain. | Zhong Tong Shu Spray (www.nmpa.gov.cn/) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, T.; He, J.; Zhao, H.; Tan, C.; Zhou, W.; Wu, C.; Kang, J. Oxalis corniculata L. As a Source of Natural Antioxidants: Phytochemistry, Bioactivities, and Application Potential. Antioxidants 2025, 14, 1352. https://doi.org/10.3390/antiox14111352
Zhong T, He J, Zhao H, Tan C, Zhou W, Wu C, Kang J. Oxalis corniculata L. As a Source of Natural Antioxidants: Phytochemistry, Bioactivities, and Application Potential. Antioxidants. 2025; 14(11):1352. https://doi.org/10.3390/antiox14111352
Chicago/Turabian StyleZhong, Tao, Junying He, Hao Zhao, Chang Tan, Wenjing Zhou, Congming Wu, and Jijun Kang. 2025. "Oxalis corniculata L. As a Source of Natural Antioxidants: Phytochemistry, Bioactivities, and Application Potential" Antioxidants 14, no. 11: 1352. https://doi.org/10.3390/antiox14111352
APA StyleZhong, T., He, J., Zhao, H., Tan, C., Zhou, W., Wu, C., & Kang, J. (2025). Oxalis corniculata L. As a Source of Natural Antioxidants: Phytochemistry, Bioactivities, and Application Potential. Antioxidants, 14(11), 1352. https://doi.org/10.3390/antiox14111352

