From Plant to Skin: Exploring Alnus glutinosa Extracts for Cosmeceutical Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Extract Isolation Methods
2.1.1. Ultrasound Assisted Extraction
2.1.2. Extraction in Soxhlet Extractor
2.1.3. Microwave Assisted Extraction
2.2. Characterization of Extracts
2.2.1. Gravimetric Analysis
2.2.2. UV-Vis Spectrometry
2.2.3. Fourier-Transform Infrared Spectroscopy (FTIR)
2.2.4. LC-Orbitrap-HRMS
Data Processing in Compound Discoverer
2.3. Emulsion Preparation
- (1)
- Oil phase (23%) was prepared in a beaker with olive oil (11%), cetylstearyl alcohol (2%), cetyl alcohol (2%), polysorbate-60 (2%), stearic acid (2%), shea butter (2%) and finally the beeswax (2%).
- (2)
- The two beakers were placed in a water bath with the temperature set at 80 °C until all ingredients were completely homogenized. The oil phase was slowly added to the aqueous phase while stirring at 600 rpm using a 2020 RZR (Heidolph, Schwabach, Germany) mechanical stirrer, with the temperature maintained at 80 °C. Once the oil phase was fully incorporated, the heating was stopped, but stirring continued in the water bath. Stirring lasted approximately 1.5 to 2 h, until the emulsion (cream) was fully formed. Since phenoxyethanol (1%) and ethylhexylglycerin (1%) are volatile preservatives, they were added only after the temperature dropped below 40 °C. The resulting emulsions were then transferred into plastic containers and stored in a cool, dark environment.
2.4. Analysis of Emulsion Properties
2.4.1. pH and Viscosity Stability
2.4.2. Color Measurement
2.4.3. Antioxidant Study
2.5. Statistical Analysis
3. Results
3.1. Assessment of Extract Properties
3.2. Characterization of Emulsions
3.2.1. Stability of pH and Viscosity
3.2.2. Determination of CIELAB Values
3.2.3. Antioxidant Properties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| A. glutinosa | Alnus glutinosa |
| DPPH | (2,2-diphenyl-1-picryl-hydrazyl-hydrate) |
| EtOH | Ethanol |
| BS | Blank sample |
References
- Goodarzi, V.; Zamani, H.; Bajuli, L.; Moradshahi, A. Evaluation of antioxidant potential and reduction capacity of some plant extracts in silver nanoparticles’ synthesis. Mol. Biol. Res. Commun. 2014, 3, 165–174. [Google Scholar]
- Irshad, A.; Jawad, R.; Mushtaq, Q.; Spalletta, A.; Martin, P.; Ishtiaq, U. Determination of antibacterial and antioxidant potential of organic crude extracts from Malus domestica, Cinnamomum verum and Trachyspermum ammi. Sci. Rep. 2025, 15, 976. [Google Scholar] [CrossRef]
- Kasote, D.M.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci. 2015, 11, 982. [Google Scholar] [CrossRef]
- Hoang, H.T.; Moon, J.Y.; Lee, Y.C. Natural antioxidants from plant extracts in skincare cosmetics: Recent applications, challenges and perspectives. Cosmetics 2021, 8, 106. [Google Scholar] [CrossRef]
- Salmon, V.G.; Breen, A.L.; Kumar, J.; Lara, M.J.; Thornton, P.E.; Wullschleger, S.D.; Iversen, C.M. Alder distribution and expansion across a tundra hillslope: Implications for local N cycling. Front. Plant Sci. 2019, 10, 1099. [Google Scholar] [CrossRef] [PubMed]
- Skrypnik, L.; Grigorev, N.; Michailov, D.; Antipina, M.; Danilova, M.; Pungin, A. Comparative study on radical scavenging activity and phenolic compounds content in water bark extracts of alder (Alnus glutinosa (L.) Gaertn.), oak (Quercus robur L.) and pine (Pinus sylvestris L.). Eur. J. Wood Wood Prod. 2019, 77, 879–890. [Google Scholar] [CrossRef]
- Ren, X.; He, T.; Chang, Y.; Zhao, Y.; Chen, X.; Bai, S.; Wang, L.; Shen, M.; She, G. The genus Alnus, a comprehensive outline of its chemical constituents and biological activities. Molecules 2017, 22, 1383. [Google Scholar] [CrossRef] [PubMed]
- Dinić, J.; Novaković, M.; Podolski-Renić, A.; Stojković, S.; Mandić, B.; Tešević, V.; Vajs, V.; Isaković, A.; Pešić, M. Antioxidative Activity of Diarylheptanoids from the Bark of Black Alder (Alnus glutinosa) and Their Interaction with Anticancer Drugs. Planta Medica 2014, 80, 1088–1096. [Google Scholar] [CrossRef]
- Sukhikh, S.; Ivanova, S.; Skrypnik, L.; Bakhtiyarova, A.; Larina, V.; Krol, O.; Prosekov, A.; Frolov, A.; Povydysh, M.; Babich, O. Study of the Antioxidant Properties of Filipendula ulmaria and Alnus glutinosa. Plants 2022, 11, 2415. [Google Scholar] [CrossRef] [PubMed]
- Ratz-Lyko, A.; Arct, J.; Pytkowska, K. Methods for evaluation of cosmetic antioxidant capacity. Ski. Res. Technol. 2012, 18, 421–430. [Google Scholar] [CrossRef]
- Dinkova-Kostova, A.T. Phytochemicals as protectors against ultraviolet radiation: Versatility of effects and mechanisms. Planta Medica 2008, 74, 1548–1559. [Google Scholar] [CrossRef]
- Chakraborty, K.B.; Scott, G. Mechanisms of antioxidant action: Synergism between antioxidants and ‘UV absorbers’. Eur. Polym. J. 1977, 13, 1007–1013. [Google Scholar] [CrossRef]
- Schuster, A.; Ortmayr, N.; Oostingh, G.J.; Stelzhammer, B. Compounds Extracted from Larch, Birch bark, Douglas Fir, and Alder Woods with Four Different Solvents: Effects on Five Skin-related Microbes. BioResources 2020, 15, 3368. [Google Scholar] [CrossRef]
- Tsouka, N.; Lazari, D.; Nikolaidis, N.; Dimitriadis, K.; Vouvoudi, E.; Theodoropoulos, K. Dyeing of Cotton and Wool Fibers with the Aqueous Extract of Alnus glutinosa: Evaluation of Their Ultraviolet Protection Factor, Their Color fastness and the Antioxidant Activity of the Aqueous Extract. Fibers Polym. 2024, 25, 1825–1833. [Google Scholar] [CrossRef]
- Dahija, S.; Haverić, S.; Čakar, J.; Parić, A. Antimicrobial and cytotoxic activity of Alnus glutinosa (L.) Gaertn., A. incana (L.) Moench, and A. viridis (Chaix) DC. extracts. J. Health Sci. 2016, 6, 100–104. [Google Scholar] [CrossRef]
- Pan, X.; Niu, G.; Liu, H. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem. Eng. Process. Process. Intensif. 2003, 42, 129–133. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef]
- Bikiaris, N.D.; Michailidou, G.; Lazaridou, M.; Christodoulou, E.; Gounari, E.; Ofrydopoulou, A.; Lambropoulou, D.A.; Vergkizi-Nikolakaki, S.; Lykidou, S.; Nikolaidis, N. Innovative skin product emulsions with enhanced antioxidant, antimicrobial and UV protection properties containing nanoparticles of pure and modified Chitosan with encapsulated fresh pomegranate juice. Polymers 2020, 12, 1542. [Google Scholar] [CrossRef]
- Dalla, E.; Koumentakou, I.; Bikiaris, N.; Balla, E.; Lykidou, S.; Nikolaidis, N. Formulation, Characterization and Evaluation of Innovative O/W Emulsions Containing Curcumin Derivatives with Enhanced Antioxidant Properties. Antioxidants 2022, 11, 2271. [Google Scholar] [CrossRef]
- Bikiaris, N.D.; Koumentakou, I.; Lykidou, S.; Nikolaidis, N. Innovative Skin Product O/W Emulsions Containing Lignin, Multiwall Carbon Nanotubes and Graphene Oxide Nanoadditives with Enhanced Sun Protection Factor and UV Stability Properties. Appl. Nano 2022, 3, 1–15. [Google Scholar] [CrossRef]
- Šicklep, M.; Čandek-Potokar, M. Pork color measurement as affected by bloom time and measurement location. J. Muscle Foods 2007, 18, 78–87. [Google Scholar] [CrossRef]
- Ali, A.; Skedung, L.; Burleigh, S.; Lavant, E.; Ringstad, L.; Anderson, C.; Wahlgren, M.; Engblom, J. Relationship between sensorial and physical characteristics of topical creams: A comparative study on effects of excipients. Int. J. Pharm. 2022, 613, 121370. [Google Scholar] [CrossRef] [PubMed]
- Brummer, R.; Godersky, S. Rheological studies to objectify sensations occurring when cosmetic emulsions are applied to the skin. Eng. Asp. 1999, 152, 89–94. [Google Scholar] [CrossRef]
- Pagels, F.; Almeida, C.; Vasconcelos, V.; Guedes, A.C. Cosmetic Potential of Pigments Extracts from the Marine Cyanobacterium Cyanobium sp. Mar. Drugs 2022, 20, 481. [Google Scholar] [CrossRef]
- García, A.B.; Longo, E.; Bermejo, R. The application of a phycocyanin extract obtained from Arthrospira platensis as a blue natural colorant in beverages. J. Appl. Phycol. 2021, 33, 3059–3070. [Google Scholar] [CrossRef]
- Nawaz, H.; Shad, M.A.; Rehman, N.; Andaleeb, H.; Ullah, N. Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Braz. J. Pharm. Sci. 2020, 56, e17129. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.Z.E.; Rahmat, A. Effects of solvent type on phenolics and flavonoids content and antioxidant activities in two varieties of young ginger (Zingiber officinale Roscoe) extracts. J. Med. Plants Res. 2011, 5, 1147–1154. [Google Scholar]
- Ghaffar, N.; Perveen, A. Solvent polarity effects on extraction yield, phenolic content, and antioxidant properties of Malvaceae family seeds: A comparative study. N. Z. J. Bot. 2024, 63, 627–637. [Google Scholar] [CrossRef]
- Anouar, E.H.; Gierschner, J.; Duroux, J.L.; Trouillas, P. UV/Visible spectra of natural polyphenols: A time-dependent density functional theory study. Food Chem. 2012, 131, 79–89. [Google Scholar] [CrossRef]
- Felföldi-Gáva, A.; Szarka, S.; Simándi, B.; Blazics, B.; Simon, B.; Kéry, Á. Supercritical fluid extraction of Alnus glutinosa (L.) Gaertn. J. Supercrit. Fluids 2012, 61, 55–61. [Google Scholar] [CrossRef]
- Daneshfar, A.; Ghaziaskar, H.S.; Homayoun, N. Solubility of gallic acid in methanol, ethanol, water, and ethyl acetate. J. Chem. Eng. Data 2008, 53, 776–778. [Google Scholar] [CrossRef]
- Fedor, A.M.; Toda, M.J. Investigating Hydrogen Bonding in Phenol Using Infrared Spectroscopy and Computational Chemistry. J. Chem. Educ. 2014, 91, 2191–2194. [Google Scholar] [CrossRef]
- Kledecka, A.; Siejak, P.; Pratap-Singh, A.; Kowalczewski, P.Ł.; Fathordoobady, F.; Jarzębski, M.; Smułek, W. Extracts from Frangula alnus Mill. and Their Effects on Environmental and Probiotic Bacteria. Plants 2022, 11, 2719. [Google Scholar] [CrossRef]
- Sethi, D.; Jada, N.; Tiwari, A.; Ramasamy, S.; Dash, T.; Pandey, S. Photocatalytic destruction of Escherichia coli in water by V2O5/TiO2. J. Photochem. Photobiol. B 2015, 144, 68–74. [Google Scholar] [CrossRef]
- Telysheva, G.; Dizhbite, T.; Bikovens, O.; Ponomarenko, J.; Janceva, S.; Krasilnikova, J. Structure and antioxidant activity of diarylheptanoids extracted from bark of grey alder (Alnus incana) and potential of biorefinery-based bark processing of European trees. Holzforschung 2011, 65, 623–629. [Google Scholar] [CrossRef]
- Rippke, F.; Berardesca, E.; Weber, T.M. PH and Microbial Infections. Curr. Probl. Dermatol. 2018, 54, 87–94. [Google Scholar] [CrossRef]
- Uyama, M.; Ikuta, K.; Teshigawara, T.; Watanabe, K.; Miyahara, R. The viscosity stability of O/W emulsion containing α-gel through an ionic-complex system. J. Oleo Sci. 2013, 62, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Akhtar, N.; Khan, H.M.S. Assessment of physical stability and antioxidant activity of polysiloxane polyalkyl polyether copolymer-based creams. J. Chem. 2013, 2013, 938042. [Google Scholar] [CrossRef]
- Di Mambro, V.M.; Fonseca, M.J.V. Assays of physical stability and antioxidant activity of a topical formulation added with different plant extracts. J. Pharm. Biomed. Anal. 2005, 37, 287–295. [Google Scholar] [CrossRef]
- Wathoni, N.; Haerani, A.; Yuniarsih, N.; Haryanti, R. A review on herbal cosmetics in Indonesia. Int. J. Appl. Pharm. 2018, 10, 13–16. [Google Scholar] [CrossRef]
- Hussen, E.M.; Endalew, S.A. In vitro antioxidant and free-radical scavenging activities of polar leaf extracts of Vernonia amygdalina. BMC Complement. Med. Ther. 2023, 23, 146. [Google Scholar] [CrossRef]
- Ayaz, M.; Junaid, M.; Ahmed, J.; Ullah, F.; Sadiq, A.; Ahmad, S.; Imran, M. Phenolic contents, antioxidant and anticholinesterase potentials of crude extract, subsequent fractions and crude saponins from Polygonum hydropiper L. BMC Complement. Altern. Med. 2014, 14, 145. [Google Scholar] [CrossRef]
- Baral, M.; Biswas, S.; Chakraborty, S.; Ghosh, A.K.; da Silva, J.A.T.; Panda, S.; Chakraborty, P. In Vitro Antioxidant Activity of the Whole Plant of Amaranthus spinosus Linn. Int. J. Biomed. Pharm. Sci. 2010, 5, 75–78. [Google Scholar]
- Imamović, B.; Ivazović, I.; Alispahić, A.; Bečić, E.; Dedić, M.; Dacić, A. Assessment of the suitability of methods for testing the antioxidant activity of anti-aging creams. Appl. Sci. 2021, 11, 1358. [Google Scholar] [CrossRef]
- Ali, A.; Akhtar, N.; Khan, M.S.; Khan, M.T.; Ullah, A.; Shah, M.I. Effect of Moringa oleifera on undesireble skin sebum secretions of sebaceous glands observed during winter season in humans. Biomed Res. 2013, 24, 127–130. [Google Scholar]
- Smeriglio, A.; D’angelo, V.; Cacciola, A.; Ingegneri, M.; Raimondo, F.M.; Trombetta, D.; Germanò, M.P. New Insights on Phytochemical Features and Biological Properties of Alnus glutinosa Stem Bark. Plants 2022, 11, 2499. [Google Scholar] [CrossRef] [PubMed]
- Angeli, L.; Imperiale, S.; Ding, Y.; Scampicchio, M.; Morozova, K. A novel stoichio-kinetic model for the DPPH• assay: The importance of the side reaction and application to complex mixtures. Antioxidants 2021, 10, 1019. [Google Scholar] [CrossRef]
- Mishra, K.; Ojha, H.; Chaudhury, N.K. Estimation of antiradical properties of antioxidants using DPPH- assay: A critical review and results. Food Chem. 2012, 130, 1036–1043. [Google Scholar] [CrossRef]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef]
- Rosado, C.; Tokunaga, V.K.; Sauce, R.; de Oliveira, C.A.; Sarruf, F.D.; Parise-Filho, R.; Maurício, E.; de Almeida, T.S.; Velasco, M.V.R.; Baby, A.R. Another reason for using caffeine in dermocosmetics: Sunscreen adjuvant. Front. Physiol. 2019, 10, 519. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Sherje, A.P. Development of resveratrol and green tea sunscreen formulation for combined photoprotective and antioxidant properties. J. Drug Deliv. Sci. Technol. 2020, 60, 102000. [Google Scholar] [CrossRef]
- Park, M.Y.; Kwon, H.J.; Sung, M.K. Dietary aloin, aloesin, or aloe-gel exerts anti-inflammatory activity in a rat colitis model. Life Sci. 2011, 88, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chong, L.; Huang, T.; Ma, Y.; Li, Y.; Ding, H. Natural products and extracts from plants as natural UV filters for sunscreens: A review. Anim. Model. Exp. Med. 2023, 6, 183–195. [Google Scholar] [CrossRef] [PubMed]







| Process | Temperature (°C) | Time (h) | Solvent |
|---|---|---|---|
| Soxhlet 1 | 70 | 3 | Water |
| Soxhlet 2 | 90 | 3 | Water |
| Soxhlet 3 | 70 | 1 | Ethanol |
| Sample Name | Blank | Emulsion A | Emulsion B | Emulsion C | Emulsion D |
|---|---|---|---|---|---|
| Ingredients (%) | Water phase (75%) | ||||
| Water | 70 | 0 | 35 | 40 | 35 |
| Glycerin | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 |
| Xanthan gum | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
| EDTA | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
| Soxhlet 1 | 0 | 70 | 35 | 30 | 0 |
| Soxhlet 3 | 0 | 0 | 0 | 0 | 35 |
| Oil Phase (23%) | |||||
| Olive oil | 13 | 13 | 13 | 13 | 13 |
| Cetyl alcohol | 2 | 2 | 2 | 2 | 2 |
| Cetearyl alcohol | 2 | 2 | 2 | 2 | 2 |
| Polysorbate 60 | 2 | 2 | 2 | 2 | 2 |
| Shea butter | 2 | 2 | 2 | 2 | 2 |
| Steatic acid | 2 | 2 | 2 | 2 | 2 |
| Beeswax | 2 | 2 | 2 | 2 | 2 |
| Additives (2%) | |||||
| Phenoxyethanol | 1 | 1 | 1 | 1 | 1 |
| Ethylhexylglycerin | 1 | 1 | 1 | 1 | 1 |
| Extraction Method | Extractive Yield (%) |
|---|---|
| Ultrasound_25 °C | 8.20 ± 0.35 |
| Ultrasound_70 °C | 14.60 ± 0.50 |
| Soxhlet 1 | 18.40 ± 0.70 |
| Soxhlet 2 | 24.90 ± 0.60 |
| Soxhlet 3 | 42.50 ± 1.10 |
| Microwave | 4.80 ± 0.20 |
| Compound | Formula | Calc. MW | m/z | RT [min] |
|---|---|---|---|---|
| (1E)-1,7-bis(4-hydroxyphenyl)hept-1-en-3-one | C19H20O3 | 296.14198 | 295.13471 | 7.996 |
| 12-oxo Phytodienoic Acid | C18H28O3 | 292.20499 | 291.19752 | 1.331 |
| 15-Deoxy-Δ12,14-prostaglandin J2-2-glycerol ester | C23H34O5 | 390.23984 | 391.24712 | 1.836 |
| 3-(4-{[1,3-Dihydroxy-1-(4-hydroxy-3-methoxyphenyl)-2-propanyl]oxy}-3-methoxyphenyl)propyl 6-deoxy-alpha-L-mannopyranoside | C26H36O11 | 524.22731 | 523.22004 | 5.701 |
| 3,4,5-trihydroxycyclohex-1-ene-1-carboxylic acid | C7H10O5 | 174.0525 | 173.04517 | 0.843 |
| 3-Methoxy-5,7,3′,4′-tetrahydroxy-flavone | C16H12O7 | 316.0593 | 317.06685 | 7.304 |
| Adenosine | C10H13N5O4 | 267.0977 | 268.10498 | 0.814 |
| Asiatic acid | C30H48O5 | 488.35155 | 487.34427 | 12.551 |
| Azelaic acid | C9H16O4 | 188.10472 | 187.09744 | 6.111 |
| Cafestol | C20H28O3 | 316.20256 | 317.20984 | 11.684 |
| Caffeic acid | C9H8O4 | 180.04196 | 179.03468 | 4.541 |
| Citric acid | C6H8O7 | 192.02685 | 191.01957 | 0.825 |
| Corchorifatty acid F | C18H32O5 | 328.22593 | 327.21865 | 7.641 |
| D-(-)-Fructose | C6H12O6 | 180.0631 | 179.05575 | 0.769 |
| D-(-)-Quinic acid | C7H12O6 | 192.06315 | 191.05587 | 0.819 |
| D(+)-Phenyllactic acid | C9H10O3 | 166.0626 | 165.05533 | 4.999 |
| Docosahexaenoic acid ethyl ester | C24H36O2 | 356.27268 | 357.27996 | 12.17 |
| Gallic acid | C7H6O5 | 170.02114 | 169.01386 | 0.816 |
| Genistein | C15H10O5 | 270.05373 | 269.04629 | 7.428 |
| Gentisic acid | C7H6O4 | 154.02613 | 153.01878 | 0.858 |
| L-Phenylalanine | C9H11NO2 | 165.07974 | 166.08702 | 0857 |
| L-Tyrosine | C9H11NO3 | 181.07474 | 182.08203 | 0.862 |
| Luteolin | C15H10O6 | 286.0486 | 285.04132 | 7.271 |
| Miquelianin | C21H18O13 | 478.07619 | 477.06891 | 5.675 |
| N-[4-cyano-1-(4-fluorophenyl)-1H-pyrazol-5-yl]cyclohexanecarboxamide | C17H17FN4O | 312.13715 | 311.12988 | 6.301 |
| Naringenin | C15H12O5 | 272.06939 | 271.0621 | 6.599 |
| Neochlorogenic acid | C16H18O9 | 354.09627 | 353.08899 | 1.889 |
| Oleanolic acid | C30H48O3 | 456.36174 | 455.35446 | 13.408 |
| Pinolenic acid | C18 H30O2 | 278.22554 | 301.21483 | 12.729 |
| Quercetin-3β-D-glucoside | C21H20O12 | 464.09733 | 463.08966 | 5.794 |
| α-Linolenic acid | C18H30O2 | 278.22546 | 279.23273 | 11.736 |
| (1E)-1,7-bis(4-hydroxyphenyl)hept-1-en-3-one | C19H20O3 | 296.14198 | 295.13471 | 7.996 |
| 12-oxo Phytodienoic Acid | C18H28O3 | 292.20499 | 291.19752 | 11.331 |
| 15-Deoxy-Δ12,14-prostaglandin J2-2-glycerol ester | C23H34O5 | 390.23984 | 391.24712 | 10.836 |
| 3-(4-{[1,3-Dihydroxy-1-(4-hydroxy-3-methoxyphenyl)-2-propanyl]oxy}-3-methoxyphenyl)propyl 6-deoxy-alpha-L-mannopyranoside | C26H36O11 | 524.22731 | 523.22004 | 5.701 |
| Sample | L* (Lightness) | a* (Red–Green) | b* (Yellow-Blue) | C (Chroma) | h° (Hue Angle) | R% (Reflectance) | K/S (Color Strength) |
|---|---|---|---|---|---|---|---|
| Cream A | 56.04 ± 0.23 | −4.14 ± 0.44 | 14.40 ± 0.30 | 14.88 ± 0.22 | 108.12° | 7.44 (400 nm) | 5.76 |
| Cream B | 48.03 ± 1.46 | −1.46 ± 1.68 | 11.91 ± 0.33 | 11.98 ± 0.32 | 96.13° | 10.84 (482 nm) | 2.05 |
| Cream C | 48.64 ± 1.28 | −0.28 ± 0.99 | 9.68 ± 1.11 | 11.72 ± 0.58 | 93.45° | 5.73 (409 nm) | 1.29 |
| Cream D | 48.63 ± 0.56 | 6.08 ± 0.17 | 17.67 ± 0.83 | 18.80 ± 0.74 | 71.46° | 4.27 (410 nm) | 10.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bikiaris, N.D.; Balla, E.; Varitimidou, D.; Koronaiou, L.-A.; Nikolaidis, N. From Plant to Skin: Exploring Alnus glutinosa Extracts for Cosmeceutical Applications. Antioxidants 2025, 14, 1275. https://doi.org/10.3390/antiox14111275
Bikiaris ND, Balla E, Varitimidou D, Koronaiou L-A, Nikolaidis N. From Plant to Skin: Exploring Alnus glutinosa Extracts for Cosmeceutical Applications. Antioxidants. 2025; 14(11):1275. https://doi.org/10.3390/antiox14111275
Chicago/Turabian StyleBikiaris, Nikolaos D., Evangelia Balla, Despoina Varitimidou, Lelouda-Athanasia Koronaiou, and Nikolaos Nikolaidis. 2025. "From Plant to Skin: Exploring Alnus glutinosa Extracts for Cosmeceutical Applications" Antioxidants 14, no. 11: 1275. https://doi.org/10.3390/antiox14111275
APA StyleBikiaris, N. D., Balla, E., Varitimidou, D., Koronaiou, L.-A., & Nikolaidis, N. (2025). From Plant to Skin: Exploring Alnus glutinosa Extracts for Cosmeceutical Applications. Antioxidants, 14(11), 1275. https://doi.org/10.3390/antiox14111275

