Physiology and Molecular Response Mechanisms in the Gills of Macrobrachium rosenbergii Under Acute NaHCO3 Alkaline Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experimental Design
2.3. Sample Collection
2.4. Histological Examination of Gills (HE)
2.5. Ultrastructure Observation
2.6. Determination of Antioxidant and Immune-Related Enzyme Activities
2.7. RNA Extraction, Library Preparation, and Library Quality Inspection
2.8. Quality Assessment of Transcriptome Sequencing Data
2.9. Quantitative Real-Time PCR (qPCR)
2.10. Statistical Analysis
3. Results
3.1. Determination of LC50 of NaHCO3 Alkalinity
3.2. Determination of Antioxidant and Immune-Related Indicators
3.3. Histological Examination of Gills
3.4. Ultrastructure Observation of Gills
3.5. Transcriptomic Library Sequencing Quality
3.6. Reference Alignment
3.7. DEG Analysis
3.8. qPCR Assay
3.9. Correlation Analysis Between DEGs and Immune Parameters
4. Discussion
4.1. The Gills of M. rosenbergii Were Damaged Under NaHCO3 Stress
4.2. Molecular Response Mechanism in Gills of M. rosenbergii Under NaHCO3 Stress
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heng, T.; He, X.L.; Yang, L.L.; Xu, X.; Feng, Y. Mechanism of Saline–Alkali land improvement using subsurface pipe and vertical well drainage measures and its response to agricultural soil ecosystem. Environ. Pollut. 2022, 293, 118583. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.Q.; Wang, N. Study on the Harm of Saline Alkali Land and Its Improvement Technology in China. IOP Conf. Ser. Earth Environ. Sci. 2021, 692, 042053. [Google Scholar] [CrossRef]
- Xu, X.; Guo, L.; Wang, S.B.; Ren, M.; Zhao, P.J.; Huang, Z.Y.; Jia, H.J.; Wang, J.H.; Lin, A.J. Comprehensive evaluation of the risk system for heavy metals in the rehabilitated saline-alkali land. J. Environ. Manag. 2023, 347, 119117. [Google Scholar] [CrossRef]
- Zhu, W.; Gu, S.G.; Jiang, R.; Zhang, X.; Hatano, R. Saline–Alkali Soil Reclamation Contributes to Soil Health Improvement in China. Agriculture 2024, 14, 1210. [Google Scholar] [CrossRef]
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, S.S.; Tang, S.J.; Wang, Y.L.; Yao, X.L.; Xie, J.Y.; Zhao, J.L. Effects of chloride, sulfate, and bicarbonate stress on mortality rate, gill tissue morphology, and gene expression in mandarin fish (Siniperca chuatsi). Environ. Sci. Pollut. Res. 2023, 30, 99440–99453. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Zhu, S.H.; Feng, B.B.; Zhang, M.; Gong, J.H.; Chen, H.G.; Munganga, B.P.; Tao, X.J.; Feng, J.B. Temporal Transcriptomic Profiling Reveals Dynamic Changes in Gene Expression of Giant Freshwater Prawn upon Acute Saline-Alkaline Stresses. Mar. Biotechnol. 2024, 26, 511–525. [Google Scholar] [CrossRef]
- Shang, X.C.; Geng, L.W.; Yang, J.; Zhang, Y.T.; Xu, W. Transcriptome analysis reveals the mechanism of alkalinity exposure on spleen oxidative stress, inflammation and immune function of Luciobarbus capito. Ecotoxicol. Environ. Saf. 2021, 225, 112748. [Google Scholar] [CrossRef]
- Jin, S.B.; Xu, M.J.; Gao, X.B.; Jiang, S.F.; Xiong, Y.W.; Zhang, W.Y.; Qiao, H.; Wu, Y.; Fu, H.T. Effects of Alkalinity Exposure on Antioxidant Status, Metabolic Function, and Immune Response in the Hepatopancreas of Macrobrachium nipponense. Antioxidants 2024, 13, 129. [Google Scholar] [CrossRef]
- Zhang, R.Q.; Shi, X.; Liu, Z.; Sun, J.; Sun, T.Z.; Lei, M.Q. Histological, physiological and transcriptomic analysis reveal the acute alkalinity stress of the gill and hepatopancreas of Litopenaeus vannamei. Mar. Biotechnol. 2023, 25, 588–602. [Google Scholar] [CrossRef]
- Ge, Q.Q.; Wang, J.J.; Li, J.T.; Li, J. Effect of high alkalinity on shrimp gills: Histopathological alternations and cell specific responses. Ecotoxicol. Environ. Saf. 2023, 256, 114902. [Google Scholar] [CrossRef]
- Zhang, R.; Zhao, Z.G.; Li, M.S.; Luo, L.; Wang, S.H.; Guo, K.; Xu, W. Metabolomics analysis reveals the response mechanism to carbonate alkalinity toxicity in the gills of Eriocheir sinensis. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 263, 109487. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.Y.; Xu, P.; Zhou, J.; Ge, J.C.; Xu, G.C. Characterization of the molecular, cellular, and behavioral changes caused by exposure to a saline-alkali environment in the Chinese mitten crab, Eriocheir sinensis. Environ. Res. 2024, 262, 119956. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.Q.; Shi, X.; Guo, J.T.; Mao, X.; Fan, B.Y. Acute stress response in gill of Pacific white shrimp Litopenaeus vannamei to high alkalinity. Aquaculture 2024, 586, 740766. [Google Scholar] [CrossRef]
- Wang, J.Y.; Sun, L.J.; Li, X.J.; Tao, S.Q.; Wang, F.; Shi, Y.; Guan, H.K.; Yang, Y.H.; Zhao, Z.G. Alkali exposure induces autophagy through activation of the MAPK pathway by ROS and inhibition of mTOR in Eriocheir sinensis. Aquat. Toxicol. 2023, 258, 106481. [Google Scholar] [CrossRef]
- Jin, S.B.; Zhou, R.; Gao, X.B.; Xiong, Y.W.; Zhang, W.Y.; Qiao, H.; Wu, Y.; Jiang, S.F.; Fu, H.T. Identification of the effects of alkalinity exposure on the gills of oriental river prawns, Macrobrachium nipponense. BMC Genom. 2024, 25, 765. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, S.B.; Gao, Q.; Zhou, D.; Ni, M.; Zhang, M.L.; Cai, K.J.; Yuan, J.L. Effects of saline-alkali stress on the survival, enzyme activity and transcriptional expression of Macrobrachium rosenbergii. J. Fish. Chin. 2024, 31, 883–896. [Google Scholar]
- Chen, S.F.; Zhou, Y.Q.; Chen, Y.R.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Kågedal, K.; Johansson, U.; Öllinger, K. The lysosomal protease cathepsin D mediates apoptosis induced by oxidative stress. FASEB J. 2001, 15, 1592–1594. [Google Scholar] [CrossRef] [PubMed]
- Johansson, A.C.; Steen, H.; Öllinger, K.; Roberg, K. Cathepsin D mediates cytochrome c release and caspase activation in human fibroblast apoptosis induced by staurosporine. Cell Death Differ. 2003, 10, 1253–1259. [Google Scholar] [CrossRef]
- Xiao, M.; Nan, Y.X.; Yang, Y.K.; Li, H.; Duan, Y.F. Changes in physiological homeostasis in the gills of Litopenaeus vannamei under carbonate alkalinity stress and recovery conditions. Fishes 2024, 9, 463. [Google Scholar] [CrossRef]
- Zhai, C.H.; Liu, X.F.; Li, Y.T.; Wang, R.Y.; Lv, W.H.; Ma, B.; Cao, D.C.; Zhang, Y. Effects of Alkalinity Stress on Amino Acid Metabolism Profiles and Oxidative-Stress-Mediated Apoptosis/Ferroptosis in Hybrid Sturgeon (Huso dauricus♀ × Acipenser schrenckii♂) Livers. Int. J. Mol. Sci. 2024, 25, 10456. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, H. Metallothionein, antioxidant enzymes and dnastrand breaks as biomarkers of cd exposure in a marine crab, Charybdis japonica. Comp. Biochem. Phys. C 2006, 144, 67–75. [Google Scholar] [CrossRef]
- Paital, B.; Chainy, G. Antioxidant defenses and oxidative stress parameters in tissues of mud crab (Scylla serrata) with reference to changing salinity. Comp. Biochem. Phys. C 2009, 151, 142–151. [Google Scholar] [CrossRef]
- Pillet, M.; Dupont-Prinet, A.; Chabot, D.; Tremblay, R.; Audet, C. Effects of exposure to hypoxia on metabolic pathways in northern shrimp (Pandalus borealis) and Greenland halibut (Reinhardtius hippoglossoides). J. Exp. Mar. Biol. Ecol. 2016, 483, 88–96. [Google Scholar] [CrossRef]
- Kannan, K.; Jain, S.K. Oxidative stress and apoptosis. Pathophysiology 2000, 7, 153–163. [Google Scholar] [CrossRef]
- Luzio, A.; Monteiro, S.M.; Fontaínhas-Fernandes, A.A.; Pinto-Carnide, O.; Matos, M.; Coimbra, A.M. Copper induced upregulation of apoptosis related genes in zebrafish (Danio rerio) gill. Aquat. Toxicol. 2013, 128, 183–189. [Google Scholar] [CrossRef]
- Shang, X.C.; Geng, L.W.; Wei, H.J.; Liu, T.Q.; Che, X.H.; Li, W.; Liu, Y.H.; Shi, X.D.; Li, J.H.; Teng, X.H.; et al. Analysis revealed the molecular mechanism of oxidative stress-autophagy-induced liver injury caused by high alkalinity: Integrated whole hepatic transcriptome and metabolome. Front. Immunol. 2024, 15, 1431224. [Google Scholar] [CrossRef]
- Wu, J.Y.; Kuo, C.C. Pivotal role of ADP-ribosylation factor 6 in Toll-like receptor 9-mediated immune signaling. J. Biol. Chem. 2012, 287, 4323–4334. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Boo, S.; Machado, A.; Castro, L.F.C.; Azeredo, R.; Costas, B. Unravelling the main immune repertoire of Paracentrotus lividus following Vibrio anguillarum bath challenge. Fish Shellfish Immunol. 2024, 147, 109431. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, J.; He, Y.; Hu, S.; Wang, Q.; Li, J. Comprehensive identification and profiling of Chinese shrimp (Fenneropenaeus chinensis) microRNAs in response to high pH stress using Hiseq2000 sequencing. Aquacult. Res. 2019, 50, 3154–3162. [Google Scholar] [CrossRef]
- Taghavizadeh, Y.M.E.; Amiri, M.S.; Nourbakhsh, F.; Rahnama, M.; Forouzanfar, F.; Mousavi, S.H. Bio-indicators in cadmium toxicity: Role of HSP27 and HSP70. Res. Environ. Sci. Pollut. Res. Int. 2021, 28, 26359–26379. [Google Scholar] [CrossRef]
- Zatsepina, O.G.; Evgen’Ev, M.B.; Garbuz, D.G. Role of a heat shock transcription factor and the Major Heat shock protein Hsp70 in memory formation and Neuroprotection. Cells 2021, 10, 1638. [Google Scholar] [CrossRef]
- Liu, S.; Guo, Y.; He, Q.; Shi, M.; Yang, X. You Toll protein family structure, evolution and response of the whiteleg shrimp (Litopenaeus vannamei) to exogenous iridescent virus. J. Fish Dis. 2021, 44, 1131–1145. [Google Scholar] [CrossRef]
- Cai, X.; Lymbery, A.J.; Armstrong, N.J.; Gao, C.; Ma, L.; Li, C. Systematic identification and characterization of lncRNAs and lncRNA-miRNA-mRNA networks in the liver of turbot (Scophthalmus maximus L.) induced with Vibrio anguillarum. Fish Shellfish Immunol. 2022, 131, 21–29. [Google Scholar] [CrossRef]
- Han, S.C.; Han, L.; Yuan, F.Y.; Liu, W.Z.; Wang, J.; Jin, X.F.; Sun, Y.C. Exploring Disparities in Gill Physiological Responses to NaHCO3-Induced Habitat Stress in Triploid and Diploid Crucian Carp (Carassius auratus): A Comprehensive Investigation Through Multi-Omics and Biochemical Analyses. Metabolites 2024, 15, 5. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, R.Q.; Liu, Z.; Mao, X.; Fan, B.Y.; Guo, J.T. Specific expression profiles of lncRNAs in cis-regulatory responses to gill in Litopenaeus vannamei under high alkalinity. Int. J. Biol. Macromol. 2025, 305, 141272. [Google Scholar] [CrossRef]
- Yu, L.; Chen, Y.; Tooz, S.A. Autophagy pathway: Cellular and molecular mechanisms. Autophagy 2017, 14, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Mizushima, N. A brief history of autophagy from cell biology to physiology and disease. Nat. Cell. Biol. 2018, 20, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Cuervo, A. Autophagy in the cellular energetic balance. Cell Metab. 2011, 13, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, S.D.; Zhang, M.Z.; Li, M. Enhancement of autophagy can alleviate oxidative stress, inflammation, and apoptosis induced by ammonia stress in yellow catfish Pelteobagrus fulvidraco. Fish Shellfish Immunol. 2024, 149, 109582. [Google Scholar] [CrossRef]
- Hars, E.S.; Qi, H.; Jin, S.V.; Cai, L.; Hu, C.; Liu, L.F. Autophagy Regulates Ageing in C. elegans. Autophagy 2006, 3, 93–95. [Google Scholar] [CrossRef]
- Gyurkovska, V.; Murtazina, R.; Zhao, S.F.; Shikano, S.; Okamoto, Y.; Segev, N. Dual function of Rab1A in secretion and autophagy: Hypervariable domain dependence. Life Sci. Alliance 2023, 6, e202201810. [Google Scholar] [CrossRef]
- Kaleo, I.V.; Gao, Q.; Liu, B.; Sun, C.X.; Zhou, Q.L.; Zhang, H.M.; Shan, F.; Xiong, Z.; Liu, B.; Song, C.Y. Effects of Moringa oleifera leaf extract on growth performance, physiological and immune response, and related immune gene expression of Macrobrachium rosenbergii with vibrio anguillarum and ammonia stress. Fish Shellfish Immunol. 2019, 89, 603–613. [Google Scholar] [CrossRef]
- Li, Y.T.; Gao, S.; Qin, K.X.; Che, C.X.; Yang, P.; Fan, Z.W.; Li, W.J.; Wang, C.L.; Mu, C.K.; Wang, H. Effects of bicarbonate on osmotic regulation, immunity, and antioxidant capacity in mud crab (Scylla paramamosain) based on transcriptomic analysis. Aquacult. Rep. 2024, 39, 102517. [Google Scholar] [CrossRef]









| Gene Name | Sequence | Efficiency (%) | Product Size (bp) | Tm (°C) | Accession Number | |
|---|---|---|---|---|---|---|
| beta-actin | F | TCCGTAAGGACCTGTATGCC | 109.4 | 198 | 56.70 | |
| R | TCGGGAGGTGCGATGATTTT | 56.79 | ||||
| cathepsin D | F | CTGAGGATGAAGGTGTTGAT | 104.5 | 231 | 51.48 | AMQ98967.1 |
| R | CTGAGGAGGAGTGCCAAT | 54.28 | ||||
| cytochrome c | F | ACAGATGCTAACAAGTCCAA | 107.9 | 155 | 50.69 | XP_063881551.1 |
| R | TCCTCAAGGTAGGCTATCAA | 51.90 | ||||
| arf4 | F | GTCTTGATGCTGCTGGTA | 103.4 | 116 | 51.79 | XP_064122923.1 |
| R | GCTGATGTTCTTGTATTCCA | 49.32 | ||||
| arf6 | F | ACGAAGCAAGGCAAGAAT | 109.8 | 198 | 51.60 | KAK7082885.1 |
| R | ATAGTCCATCACCTGTTGTT | 50.21 | ||||
| hsp70 | F | AGCAGACTCAGACATTCAC | 108.5 | 199 | 51.53 | AAS45710.1 |
| R | GACACATTCAGGATACCATTG | 50.52 | ||||
| iκbα | F | ACCTCACTAACGCTACGA | 98.4 | 252 | 52.38 | AET34918.1 |
| R | ACACTGCCAGATGTAACG | 52.02 | ||||
| tlr2 | F | CAACGGCAATCCTGACTT | 91.5 | 219 | 52.65 | XP_064078749.1 |
| R | CGACGAATCACATTAGAAGAG | 50.18 | ||||
| atg3 | F | ACGATGATGATGACGATGA | 93 | 259 | 50.11 | QCX35196.1 |
| R | GAGAGTGGCTGACGATTC | 52.84 | ||||
| atg7 | F | GTCATCGTCCTGGTCTTG | 108.1 | 118 | 52.81 | QEG53818.1 |
| R | GGCATTCCACAACTGAGA | 52.05 | ||||
| rab-1a | F | GCTCACGGCATCATAGTT | 102.8 | 179 | 52.18 | XP_064110114.1 |
| R | GCATATTCCTTGGCTGTCT | 52.04 |
| Sample | Raw Data | Clean Data (%) | Adapter (%) | Low Quality (%) | Poly A (%) |
|---|---|---|---|---|---|
| CG-1 | 41,185,602 | 41,064,878 (99.71%) | 6832 (0.02%) | 113,234 (0.27%) | 0 (0.00%) |
| CG-2 | 42,137,954 | 42,002,718 (99.68%) | 39,714 (0.09%) | 95,212 (0.23%) | 0 (0.00%) |
| CG-3 | 41,255,780 | 41,122,472 (99.68%) | 11,752 (0.03%) | 121,042 (0.29%) | 0 (0.00%) |
| EG-1 | 36,415,096 | 36,303,148 (99.69%) | 5332 (0.01%) | 106,368 (0.29%) | 0 (0.00%) |
| EG-2 | 45,237,474 | 45,092,932 (99.68%) | 9120 (0.02%) | 133,298 (0.29%) | 0 (0.00%) |
| EG-3 | 43,778,564 | 43,593,874 (99.58%) | 50,534 (0.12%) | 134,156 (0.31%) | 0 (0.00%) |
| Sample | Total | Unmapped (%) | Unique Mapped (%) | Multiple Mapped (%) | Total Mapped (%) |
|---|---|---|---|---|---|
| CG-1 | 36,311,924 | 4,120,293 (11.35%) | 30,596,384 (84.26%) | 1,595,247 (4.39%) | 32,191,631 (88.65%) |
| CG-2 | 32,383,102 | 2,663,419 (8.22%) | 27,698,895 (85.54%) | 2,020,788 (6.24%) | 29,719,683 (91.78%) |
| CG-3 | 37,078,672 | 4,267,183 (11.51%) | 31,489,881 (84.93%) | 1,321,608 (3.56%) | 32,811,489 (88.49%) |
| EG-1 | 32,991,962 | 2,993,126 (9.07%) | 28,867,018 (87.50%) | 1,131,818 (3.43%) | 29,998,836 (90.93%) |
| EG-2 | 40,401,422 | 3,395,288 (8.40%) | 35,561,175 (88.02%) | 1,444,959 (3.58%) | 37,006,134 (91.60%) |
| EG-3 | 38,749,590 | 3,022,772 (7.80%) | 34,284,339 (88.48%) | 1,442,479 (3.72%) | 35,726,818 (92.20%) |
| DEGs | Signaling Pathway Name | |log2FC| | q Value |
|---|---|---|---|
| cathepsin D | Apoptosis | 2.213 | 0.000 |
| cytochrome c | 2.174 | 0.000 | |
| arf4 | Endocytosis | 1.161 | 0.004 |
| arf6 | 1.650 | 0.000 | |
| hsp70 | 1.093 | 0.003 | |
| iκbα | Toll-like receptor signaling pathway | 2.177 | 0.000 |
| tlr2 | 1.276 | 0.034 | |
| atg3 | Autophagy | 1.738 | 0.008 |
| atg7 | 1.131 | 0.033 | |
| rab-1a | 1.043 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Zou, S.; Yuan, H.; Liu, M.; Ni, M.; Yuan, J. Physiology and Molecular Response Mechanisms in the Gills of Macrobrachium rosenbergii Under Acute NaHCO3 Alkaline Stress. Antioxidants 2025, 14, 1266. https://doi.org/10.3390/antiox14101266
Yu H, Zou S, Yuan H, Liu M, Ni M, Yuan J. Physiology and Molecular Response Mechanisms in the Gills of Macrobrachium rosenbergii Under Acute NaHCO3 Alkaline Stress. Antioxidants. 2025; 14(10):1266. https://doi.org/10.3390/antiox14101266
Chicago/Turabian StyleYu, Heng, Songbao Zou, Huwei Yuan, Mei Liu, Meng Ni, and Julin Yuan. 2025. "Physiology and Molecular Response Mechanisms in the Gills of Macrobrachium rosenbergii Under Acute NaHCO3 Alkaline Stress" Antioxidants 14, no. 10: 1266. https://doi.org/10.3390/antiox14101266
APA StyleYu, H., Zou, S., Yuan, H., Liu, M., Ni, M., & Yuan, J. (2025). Physiology and Molecular Response Mechanisms in the Gills of Macrobrachium rosenbergii Under Acute NaHCO3 Alkaline Stress. Antioxidants, 14(10), 1266. https://doi.org/10.3390/antiox14101266
