Oxidative Stress Related to Mechanical Heart Valves: A Pilot Cross-Sectional Study
Abstract
1. Introduction
- -
- Aims of this study were: to evaluate if patients with mitral MPHVs, who are exposed to higher risk of thrombosis, show higher oxidative stress (OxS) compared with patients with aortic MPHVs;to evaluate if OxS is correlated with enhanced platelet activation in patients with aortic and mitral MPHVs, respectively.
2. Materials and Methods
2.1. Blood Sample Collection and Analysis
2.2. Serum sNOX2-dp Detection
2.3. Hydrogen Peroxide (H2O2) Production
2.4. Soluble CD40 Ligand Detection
2.5. Statistical Analysis
3. Results
Oxidative Stress and Platelet Activation in Mitral and Aortic MPHV
4. Discussion
4.1. Clinical Implications
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE-i/ARBs | angiotensin-converting enzyme inhibitors/angiotensin receptor blockers |
AF | atrial fibrillation |
CCB | calcium channel blockers |
COPD | chronic obstructive pulmonary disease |
HF | heart failure |
INR | International Normalized Ratio |
H2O2 | hydrogen peroxide |
IQR | interquartile range |
LLP | lipid-lowering drugs |
MI | myocardial infarction |
MPHVs | mechanical prosthetic heart valves |
OxS | oxidative stress |
PAD | peripheral artery disease |
PPI | proton pump inhibitors |
ROS | radical oxygen species |
sCD40L | soluble CD40L |
SD | standard deviation |
SGLT2-i | sodium–glucose co-transporter-2 inhibitors |
sNOX2dp | soluble peptide of NOX2 |
TIA | transient ischemic attack |
TTR | time in therapeutic range |
VKAs | vitamin K antagonists |
References
- Coffey, S.; Roberts-Thomson, R.; Brown, A.; Carapetis, J.; Chen, M.; Enriquez-Sarano, M.; Zuhlke, L.; Prendergast, B.D. Global epidemiology of valvular heart disease. Nat. Rev. Cardiol. 2021, 18, 853–864. [Google Scholar] [CrossRef]
- Essop, M.R.; Nkomo, V.T. Rheumatic and nonrheumatic valvular heart disease: Epidemiology, management, and prevention in Africa. Circulation 2005, 112, 3584–3591. [Google Scholar] [CrossRef] [PubMed]
- Iung, B.; Delgado, V.; Rosenhek, R.; Price, S.; Prendergast, B.; Wendler, O.; De Bonis, M.; Tribouilloy, C.; Evangelista, A.; Bogachev-Prokophiev, A.; et al. Contemporary Presentation and Management of Valvular Heart Disease: The EURObservational Research Programme Valvular Heart Disease II Survey. Circulation 2019, 140, 1156–1169. [Google Scholar] [CrossRef]
- Li, L.; Liu, L.; Hu, Z.; Zhou, L.; Zhang, Z.; Wu, L.; Ding, L.; Hu, Z.; Zheng, L.; Yao, Y. Global, Regional, and National Burden of Nonrheumatic Valvular Heart Disease and Its Attributable Risk Factors in 204 Countries and Territories, 1990 to 2019: Results from the Global Burden of Disease Study 2019. J. Am. Heart Assoc. 2024, 13, e034459. [Google Scholar] [CrossRef]
- Iung, B.; Vahanian, A. Epidemiology of valvular heart disease in the adult. Nat. Rev. Cardiol. 2011, 8, 162–172. [Google Scholar] [CrossRef]
- Soria Jimenez, C.E.; Papolos, A.I.; Kenigsberg, B.B.; Ben-Dor, I.; Satler, L.F.; Waksman, R.; Cohen, J.E.; Rogers, T. Management of Mechanical Prosthetic Heart Valve Thrombosis: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2023, 81, 2115–2127. [Google Scholar] [CrossRef] [PubMed]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.r.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e72–e227, Erratum in Circulation 2021, 143, e228. https://doi.org/10.1161/CIR.0000000000000960; Erratum in Circulation 2021, 143, e784. https://doi.org/10.1161/CIR.0000000000000966. [Google Scholar] [CrossRef]
- Johansson, I.; Benz, A.P.; Kovalova, T.; Balasubramanian, K.; Fukakusa, B.; Lynn, M.J.; Nair, N.; Sikder, O.; Patel, K.; Gayathri, S.; et al. Outcomes of Patients with a Mechanical Heart Valve and Poor Anticoagulation Control on Warfarin. Thromb. Haemost. 2024, 124, 613–624. [Google Scholar] [CrossRef]
- Poli, D.; Antonucci, E.; Pengo, V.; Migliaccio, L.; Testa, S.; Lodigiani, C.; Coffetti, N.; Facchinetti, R.; Serricchio, G.; Falco, P.; et al. Mechanical prosthetic heart valves: Quality of anticoagulation and thromboembolic risk. The observational multicenter PLECTRUM study. Int. J. Cardiol. 2018, 267, 68–73. [Google Scholar] [CrossRef]
- Jaffer, I.H.; Fredenburgh, J.C.; Hirsh, J.; Weitz, J.I. Medical device-induced thrombosis: What causes it and how can we prevent it? J. Thromb. Haemost. 2015, 13 (Suppl. 1), S72–S81. [Google Scholar] [CrossRef]
- Nocella, C.; D’Amico, A.; Cammisotto, V.; Bartimoccia, S.; Castellani, V.; Loffredo, L.; Marini, L.; Ferrara, G.; Testa, M.; Motta, G.; et al. Structure, Activation, and Regulation of NOX2: At the Crossroad between the Innate Immunity and Oxidative Stress-Mediated Pathologies. Antioxidants 2023, 12, 429. [Google Scholar] [CrossRef]
- Violi, F.; Carnevale, R.; Loffredo, L.; Pignatelli, P.; Gallin, J.I. NADPH Oxidase-2 and Atherothrombosis: Insight from Chronic Granulomatous Disease. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 218–225. [Google Scholar] [CrossRef]
- Jan, M.I.; Khan, R.A.; Fozia; Ahmad, I.; Khan, N.; Urooj, K.; Shah, A.; Khan, A.U.; Ali, T.; Ishtiaq, A.; et al. C-Reactive Protein and High-Sensitive Cardiac Troponins Correlate with Oxidative Stress in Valvular Heart Disease Patients. Oxid. Med. Cell Longev. 2022, 2022, 5029853. [Google Scholar] [CrossRef] [PubMed]
- Franczyk, B.; Gluba-Brzozka, A.; Rysz-Gorzynska, M.; Rysz, J. The Role of Inflammation and Oxidative Stress in Rheumatic Heart Disease. Int. J. Mol. Sci. 2022, 23, 15812. [Google Scholar] [CrossRef]
- Shu, L.; Yuan, Z.; Li, F.; Cai, Z. Oxidative stress and valvular endothelial cells in aortic valve calcification. Biomed. Pharmacother. 2023, 163, 114775. [Google Scholar] [CrossRef]
- Greenberg, H.Z.E.; Zhao, G.; Shah, A.M.; Zhang, M. Role of oxidative stress in calcific aortic valve disease and its therapeutic implications. Cardiovasc. Res. 2022, 118, 1433–1451. [Google Scholar] [CrossRef] [PubMed]
- Tanase, D.M.; Valasciuc, E.; Gosav, E.M.; Floria, M.; Costea, C.F.; Dima, N.; Tudorancea, I.; Maranduca, M.A.; Serban, I.L. Contribution of Oxidative Stress (OS) in Calcific Aortic Valve Disease (CAVD): From Pathophysiology to Therapeutic Targets. Cells 2022, 11, 2663. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, R.; Shiwakoti, S.; Ko, J.Y.; Dhakal, B.; Park, S.H.; Choi, I.J.; Kim, H.J.; Oak, M.H. Oxidative Stress in Calcific Aortic Valve Stenosis: Protective Role of Natural Antioxidants. Antioxidants 2022, 11, 1169. [Google Scholar] [CrossRef]
- Miller, J.D.; Chu, Y.; Brooks, R.M.; Richenbacher, W.E.; Pena-Silva, R.; Heistad, D.D. Dysregulation of antioxidant mechanisms contributes to increased oxidative stress in calcific aortic valvular stenosis in humans. J. Am. Coll. Cardiol. 2008, 52, 843–850. [Google Scholar] [CrossRef]
- Mourino-Alvarez, L.; Baldan-Martin, M.; Gonzalez-Calero, L.; Martinez-Laborde, C.; Sastre-Oliva, T.; Moreno-Luna, R.; Lopez-Almodovar, L.F.; Sanchez, P.L.; Fernandez-Aviles, F.; Vivanco, F.; et al. Patients with calcific aortic stenosis exhibit systemic molecular evidence of ischemia, enhanced coagulation, oxidative stress and impaired cholesterol transport. Int. J. Cardiol. 2016, 225, 99–106. [Google Scholar] [CrossRef]
- Lee, S.; Levy, R.J.; Christian, A.J.; Hazen, S.L.; Frick, N.E.; Lai, E.K.; Grau, J.B.; Bavaria, J.E.; Ferrari, G. Calcification and Oxidative Modifications Are Associated with Progressive Bioprosthetic Heart Valve Dysfunction. J. Am. Heart Assoc. 2017, 6, e005648. [Google Scholar] [CrossRef]
- Galinanes, M.; Casos, K.; Blasco-Lucas, A.; Permanyer, E.; Manez, R.; Le Tourneau, T.; Barquinero, J.; Schwartz, S., Jr.; Roussel, T.; Fellah-Hebia, I.; et al. Oxidative Stress in Structural Valve Deterioration: A Longitudinal Clinical Study. Biomolecules 2022, 12, 1606. [Google Scholar] [CrossRef] [PubMed]
- Carnevale, R.; Silvestri, R.; Loffredo, L.; Novo, M.; Cammisotto, V.; Castellani, V.; Bartimoccia, S.; Nocella, C.; Violi, F. Oleuropein, a component of extra virgin olive oil, lowers postprandial glycaemia in healthy subjects. Br. J. Clin. Pharmacol. 2018, 84, 1566–1574. [Google Scholar] [CrossRef] [PubMed]
- Cave, A.C.; Narayanapanicker, B.A.; Ray, A.; Grieve, D.J.; Walker, S.; Shah, A.M. NADPH oxidases in cardiovascular health and disease. Antioxid. Redox Signal. 2006, 8, 691–728. [Google Scholar] [CrossRef] [PubMed]
- Forte, M.; Nocella, C.; De Falco, E.; Palmerio, S.; Schirone, L.; Valenti, V.; Frati, G.; Carnevale, R.; Sciarretta, S. The Pathophysiological Role of NOX2 in Hypertension and Organ Damage. High. Blood Press. Cardiovasc. Prev. 2016, 23, 355–364. [Google Scholar] [CrossRef]
- Vermot, A.; Petit-Hartlein, I.; Smith, S.M.E.; Fieschi, F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants 2021, 10, 890. [Google Scholar] [CrossRef]
- Loffredo, L.; Carnevale, R.; Cangemi, R.; Angelico, F.; Augelletti, T.; Di Santo, S.; Calabrese, C.M.; Della Volpe, L.; Pignatelli, P.; Perri, L.; et al. NOX2 up-regulation is associated with artery dysfunction in patients with peripheral artery disease. Int. J. Cardiol. 2013, 165, 184–192. [Google Scholar] [CrossRef]
- Pignatelli, P.; Pastori, D.; Carnevale, R.; Farcomeni, A.; Cangemi, R.; Nocella, C.; Bartimoccia, S.; Vicario, T.; Saliola, M.; Lip, G.Y.; et al. Serum NOX2 and urinary isoprostanes predict vascular events in patients with atrial fibrillation. Thromb. Haemost. 2015, 113, 617–624. [Google Scholar] [CrossRef]
- Calvieri, C.; Tanzilli, G.; Bartimoccia, S.; Cangemi, R.; Arrivi, A.; Dominici, M.; Cammisotto, V.; Viceconte, N.; Mangieri, E.; Frati, G.; et al. Interplay between Oxidative Stress and Platelet Activation in Coronary Thrombus of STEMI Patients. Antioxidants 2018, 7, 83. [Google Scholar] [CrossRef]
- Maisel, W.H.; Rawn, J.D.; Stevenson, W.G. Atrial fibrillation after cardiac surgery. Ann. Intern. Med. 2001, 135, 1061–1073. [Google Scholar] [CrossRef] [PubMed]
- Gillinov, A.M.; Saltman, A.E. Ablation of atrial fibrillation with concomitant cardiac surgery. Semin. Thorac. Cardiovasc. Surg. 2007, 19, 25–32. [Google Scholar] [CrossRef]
- Alghosoon, H.; Arafat, A.A.; Albabtain, M.A.; Alsubaie, F.F.; Alangari, A.S. Long-Term Effects of Postoperative Atrial Fibrillation following Mitral Valve Surgery. J. Cardiovasc. Dev. Dis. 2023, 10, 302. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.; Siems, C.; Potel, K.N.; Hingtgen, A.; Wang, Q.; Nijjar, P.S.; Huddleston, S.J.; John, R.; Kelly, R.F.; Voeller, R.K. New-onset postoperative atrial fibrillation after mitral valve surgery: Determinants and the effect on survival. JTCVS Open 2023, 16, 305–320. [Google Scholar] [CrossRef]
- Kernis, S.J.; Nkomo, V.T.; Messika-Zeitoun, D.; Gersh, B.J.; Sundt, T.M., 3rd; Ballman, K.V.; Scott, C.G.; Schaff, H.V.; Enriquez-Sarano, M. Atrial fibrillation after surgical correction of mitral regurgitation in sinus rhythm: Incidence, outcome, and determinants. Circulation 2004, 110, 2320–2325. [Google Scholar] [CrossRef]
- Van Gelder, I.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2024, 45, 3314–3414. [Google Scholar] [CrossRef]
- Menichelli, D.; Poli, D.; Antonucci, E.; Cammisotto, V.; Testa, S.; Pignatelli, P.; Palareti, G.; Pastori, D.; the Italian Federation of Anticoagulation Clinics (FCSA). Comparison of Anticoagulation Quality between Acenocoumarol and Warfarin in Patients with Mechanical Prosthetic Heart Valves: Insights from the Nationwide PLECTRUM Study. Molecules 2021, 26, 1425. [Google Scholar] [CrossRef]
- Fuentes, E.; Gibbins, J.M.; Holbrook, L.M.; Palomo, I. NADPH oxidase 2 (NOX2): A key target of oxidative stress-mediated platelet activation and thrombosis. Trends Cardiovasc. Med. 2018, 28, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Pignatelli, P.; Sanguigni, V.; Lenti, L.; Ferro, D.; Finocchi, A.; Rossi, P.; Violi, F. gp91phox-dependent expression of platelet CD40 ligand. Circulation 2004, 110, 1326–1329. [Google Scholar] [CrossRef]
- Carnevale, R.; Loffredo, L.; Sanguigni, V.; Plebani, A.; Rossi, P.; Pignata, C.; Martire, B.; Finocchi, A.; Pietrogrande, M.C.; Azzari, C.; et al. Different degrees of NADPH oxidase 2 regulation and in vivo platelet activation: Lesson from chronic granulomatous disease. J. Am. Heart Assoc. 2014, 3, e000920. [Google Scholar] [CrossRef]
- Kapur, R.; Semple, J.W. Platelets as immune-sensing cells. Blood Adv. 2016, 1, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Pignatelli, P.; Carnevale, R.; Pastori, D.; Cangemi, R.; Napoleone, L.; Bartimoccia, S.; Nocella, C.; Basili, S.; Violi, F. Immediate antioxidant and antiplatelet effect of atorvastatin via inhibition of Nox2. Circulation 2012, 126, 92–103. [Google Scholar] [CrossRef]
- Violi, F.; Carnevale, R.; Pastori, D.; Pignatelli, P. Antioxidant and antiplatelet effects of atorvastatin by Nox2 inhibition. Trends Cardiovasc. Med. 2014, 24, 142–148. [Google Scholar] [CrossRef]
- Pignatelli, P.; Baratta, F.; Buzzetti, R.; D’Amico, A.; Castellani, V.; Bartimoccia, S.; Siena, A.; D’Onofrio, L.; Maddaloni, E.; Pingitore, A.; et al. The Sodium-Glucose Co-Transporter-2 (SGLT2) Inhibitors Reduce Platelet Activation and Thrombus Formation by Lowering NOX2-Related Oxidative Stress: A Pilot Study. Antioxidants 2022, 11, 1878. [Google Scholar] [CrossRef] [PubMed]
- Drummond, G.R.; Selemidis, S.; Griendling, K.K.; Sobey, C.G. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat. Rev. Drug Discov. 2011, 10, 453–471. [Google Scholar] [CrossRef] [PubMed]
Total (n = 60) | Aortic (n = 30) | Mitral (n = 30) | p | |
---|---|---|---|---|
Age [IQR] | 57.2 [48.1–64.4] | 54.5 [47.0–61.1] | 58.4 [51.5–67.0] | 0.197 |
Female sex (%) | 32 (53.3) | 14 (46.7) | 18 (60.0) | 0.301 |
Atrial fibrillation (%) | 25 (42.4) | 7 (24.1) | 18 (60.0) | 0.005 |
Caucasian (%) | 54 (90.0) | 28 (93.3) | 26 (86.7) | 0.389 |
Hypertension (%) | 34 (56.7) | 18 (60.0) | 16 (53.3) | 0.602 |
Diabetes (%) | 10 (16.7) | 7 (23.3) | 3 (10.0) | 0.166 |
Previous stroke/TIA (%) | 5 (8.3) | 2 (6.7) | 3 (10.0) | 0.640 |
PAD (%) | 5 (8.3) | 1 (3.3) | 4 (13.3) | 0.161 |
Previous MI (%) | 4 (6.7) | 2 (6.7) | 2 (6.7) | 1.000 |
Smoke (%) | 7 (15.6) | 3 (14.3) | 4 (16.7) | 0.826 |
Alcohol (%) | 14 (33.3) | 7 (31.8) | 7 (31.8) | 0.827 |
COPD (%) | 6 (10.0) | 6 (20.0) | 0 (0.0) | 0.010 |
Dyslipidaemia (%) | 22 (36.7) | 11 (36.7) | 11 (36.7) | 1.000 |
Thyroid disease (%) | 8 (13.6) | 1 (3.3) | 7 (24.1) | 0.020 |
Liver disease (%) | 2 (4.3) | 1 (4.3) | 1 (4.3) | 0.975 |
Cancer (%) | 7 (11.7) | 5 (16.7) | 2 (6.7) | 0.228 |
Heart failure (%) | 10 (16.7) | 6 (20.0) | 4 (13.3) | 0.488 |
Therapy | ||||
Warfarin (%) | 43 (71.7) | 18 (60.0) | 25 (83.3) | 0.045 |
Acenocoumarol (%) | 17 (28.3) | 12 (40.0) | 5 (16.7) | |
LLD (%) | 18 (37.5) | 8 (33.3) | 10 (41.7) | 0.551 |
ACE-I/ARBs (%) | 24 (49.0) | 8 (33.3) | 16 (64.0) | 0.032 |
Beta-blockers (%) | 29 (59.2) | 16 (66.7) | 13 (52.0) | 0.296 |
CCB (%) | 6 (12.2) | 3 (12.5) | 3 (12.5) | 0.957 |
Antiarrhythmics (%) | 12 (24.5) | 2 (8.3) | 10 (40.0) | 0.010 |
Digoxin (%) | 4 (8.2) | 2 (8.3) | 2 (8.3) | 0.966 |
Amiodarone (%) | 8 (16.3) | 1 (4.2) | 7 (28.0) | 0.024 |
Diuretics (%) | 23 (46.9) | 9 (37.5) | 14 (56.0) | 0.195 |
PPI (%) | 31 (63.3) | 17 (70.8) | 14 (56.0) | 0.282 |
Total | Aortic (n = 30) | Mitral (n = 30) | p | |
---|---|---|---|---|
sNOX2dp (pg/mL) [IQR] | 25.55 [21.33–30.15] | 24.27 [17.30–26.41] | 28.69 [25.08–33.18] | 0.001 |
H2O2 (µM) [IQR] | 18.73 [13.89–25.74] | 16.73 [12.50–20.87] | 22.94 [15.79–27.33] | 0.013 |
sCD40L (ng/mL) [IQR] | 4.67 [2.67–6.39] | 3.65 [2.14–5.54] | 5.61 [3.69–6.89] | 0.009 |
sNOX2dp | H2O2 | sCD40L | ||
---|---|---|---|---|
Aortic | sNOX2dp | 1 | 0.720 ** | 0.443 * |
H2O2 | 0.720 ** | 1 | 0.438 * | |
sCD40L | 0.443 * | 0.438 * | 1 | |
Mitral | sNOX2dp | 1 | 0.800 ** | 0.521 ** |
H2O2 | 0.800 ** | 1 | 0.300 | |
sCD40L | 0.521 ** | 0.300 | 1 |
Biomarker | B | 95% Confidence Interval | p-Value | ||
---|---|---|---|---|---|
Aortic vs. Mitral | sNOX2dp | −5.042 | −8.752 | −1.332 | 0.009 |
Aortic vs. Mitral | H2O2 | −3.867 | −7.082 | −0.652 | 0.019 |
Aortic vs. Mitral | sCD40L | −1.722 | −2.851 | −0.592 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palumbo, I.M.; Pannunzio, A.; Menichelli, D.; Cammisotto, V.; Castellani, V.; Bartimoccia, S.; Valeriani, E.; Cormaci, V.M.D.; Pastori, D.; Pignatelli, P. Oxidative Stress Related to Mechanical Heart Valves: A Pilot Cross-Sectional Study. Antioxidants 2025, 14, 1264. https://doi.org/10.3390/antiox14101264
Palumbo IM, Pannunzio A, Menichelli D, Cammisotto V, Castellani V, Bartimoccia S, Valeriani E, Cormaci VMD, Pastori D, Pignatelli P. Oxidative Stress Related to Mechanical Heart Valves: A Pilot Cross-Sectional Study. Antioxidants. 2025; 14(10):1264. https://doi.org/10.3390/antiox14101264
Chicago/Turabian StylePalumbo, Ilaria Maria, Arianna Pannunzio, Danilo Menichelli, Vittoria Cammisotto, Valentina Castellani, Simona Bartimoccia, Emanuele Valeriani, Vito Maria Daniele Cormaci, Daniele Pastori, and Pasquale Pignatelli. 2025. "Oxidative Stress Related to Mechanical Heart Valves: A Pilot Cross-Sectional Study" Antioxidants 14, no. 10: 1264. https://doi.org/10.3390/antiox14101264
APA StylePalumbo, I. M., Pannunzio, A., Menichelli, D., Cammisotto, V., Castellani, V., Bartimoccia, S., Valeriani, E., Cormaci, V. M. D., Pastori, D., & Pignatelli, P. (2025). Oxidative Stress Related to Mechanical Heart Valves: A Pilot Cross-Sectional Study. Antioxidants, 14(10), 1264. https://doi.org/10.3390/antiox14101264