Next Article in Journal
Oxidative Stress Related to Mechanical Heart Valves: A Pilot Cross-Sectional Study
Previous Article in Journal
A Randomized Controlled Trial on the Safety and Cognitive Benefits of a Novel Functional Drink from a Purple Waxy Corn Byproduct in Peri- and Postmenopausal Women
Previous Article in Special Issue
Oxidative Stress and DNA Damage Biomarkers in Heart Failure: A Systematic Review and Meta-Analysis
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Roles of Autophagy and Oxidative Stress in Cardiovascular Disease

1
Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
2
Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
3
Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
*
Authors to whom correspondence should be addressed.
Antioxidants 2025, 14(10), 1263; https://doi.org/10.3390/antiox14101263
Submission received: 16 September 2025 / Revised: 13 October 2025 / Accepted: 18 October 2025 / Published: 20 October 2025

Abstract

Autophagy and oxidative stress influence cardiovascular pathology. Autophagy mediates lysosome-dependent clearance of damaged proteins and organelles and maintains mitochondrial quality control, proteostasis, and metabolic flexibility. Reactive oxygen species (ROS) originate from mitochondrial respiration and enzymatic reactions during stress. At physiological levels, ROS function as redox signals that activate degradation and recycling, whereas excess oxidants damage lipids, proteins, and nucleic acids and promote cell loss. This review integrates evidence across cardiovascular disease, including atherosclerosis, ischemia reperfusion injury, pressure overload remodeling, heart failure, diabetic cardiomyopathy, arrhythmia, aging, and inflammation.

1. Introduction

Autophagy is a lysosome-dependent recycling program first described by Christian de Duve in 1963 and later defined at the genetic level when Yoshinori Ohsumi identified autophagy-related genes (ATGs) that are essential for autophagosome formation, providing fundamental insights into intracellular recycling in eukaryotic cells [1,2,3,4,5]. As a conserved catabolic pathway, autophagy sustains cellular homeostasis by routing damaged organelles and protein aggregates to lysosomal degradation and by coupling clearance to the recovery of metabolic building blocks [6,7,8,9]. As a result, autophagy maintains proteostasis, supports organelle quality control, and enables the remodeling that accompanies development and differentiation [3,10,11,12]. Autophagy is activated by a wide range of cellular stresses that include nutrient deprivation, such as loss of glucose or amino acids, oxidative and nitrosative stress, hypoxia, endoplasmic reticulum (ER) stress, mitochondrial injury, and exposure to toxic compounds [13,14]. Extensive experimental data demonstrate that autophagy maintains homeostasis under physiological load yet drives maladaptation when stress persists or autophagic flux is defective [15]. ROS are tightly linked to this pathway and act as upstream triggers, as well as downstream consequences, of autophagic activity [15,16,17]. In cardiovascular tissues, this autophagy–redox axis coordinates mitochondrial quality control with contractile and vascular function and shapes disease initiation and progression. Dysregulation of the autophagy–redox axis has been associated with metabolic disorders such as diabetes [18,19], malignancies [20], cardiovascular [21] and neurodegenerative diseases [22,23], immune dysregulation [24], and age-related decline [23,25].
Mitochondria are the principal source of ROS during aerobic metabolism, with prominent production at complex I through reverse electron transport (RET) and at the complex III Qo site [26,27,28,29,30]. Key representatives of ROS include superoxide (O2) and hydrogen peroxide (H2O2), both of which emerge from the incomplete four-electron reduction in molecular oxygen within the mitochondrial respiratory chain, with superoxide rapidly dismutated by superoxide dismutases (SODs) into H2O2 [30]. Among ROS, hydroxyl radicals (•OH) are essentially diffusion-controlled and can cause severe injury to DNA, lipids, and proteins when not properly regulated [31,32]. At physiological levels, ROS function as essential signaling molecules involved in processes such as cell proliferation [33], differentiation [34], innate immune activation [35], programmed cell death [36], Ca2+ signaling [37], redox regulation [38], stem cell maintenance [39], and autophagy modulation [40]. However, excessive ROS accumulation can result in oxidative damage to lipids, proteins, and DNA, contributing to disease development [41].
Physiological levels of ROS promote autophagy as an adaptive mechanism to maintain cellular homeostasis and mitigate stress-induced damage [42,43]. When redox signaling becomes dysregulated, autophagic flux is compromised, leading to increased cellular stress and accelerated disease development [40,44]. Although substantial progress has been made in elucidating the roles of redox signaling and autophagy as individual processes, the precise molecular circuitry that orchestrates their bidirectional regulation remains incompletely defined [45,46]. A comprehensive understanding of this interplay is critical, as perturbations in redox–autophagy balance are increasingly recognized as central drivers of diverse pathological states [47,48].
Autophagy interfaces with cellular energetics through mechanistic target of rapamycin complex 1 (mTORC1) and AMP-activated protein kinase (AMPK) and with antioxidant defense through nuclear factor erythroid 2-related factor 2 (NRF2) [49,50]. These links position autophagy as both a responder and a controller of redox biology in the heart and vasculature [46,48,51]. Circulating markers of autophagic activity and mitochondrial injury have been reported in humans, including extracellular vesicle-bound microtubule-associated protein light chain 3 (LC3) and sequestosome 1 (SQSTM1/p62) fragments, mitochondrial DNA, and oxylipid signatures [52,53,54].
This review synthesizes advances in ROS–autophagy regulation in cardiovascular biology, explains how this crosstalk shapes mitochondrial dynamics and phenotypes, and evaluates human measurement strategies and therapeutic approaches to inform clinical translation.

2. Mechanisms of Autophagy and Oxidative Stress

2.1. Autophagy Pathway and Selectivity

Eukaryotic cells use three lysosome-centered routes for intracellular clearance. These are macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). All three routes remove damaged or obsolete proteins and organelles and return their breakdown products to cellular metabolism [55,56].
Macroautophagy is the dominant route discussed in this review. The pathway begins with the formation of a phagophore, also called an isolation membrane. The phagophore expands to enclose selected material and becomes an autophagosome with a double membrane. The autophagosome then fuses with a lysosome to create an autolysosome, where cargo is degraded by lysosomal hydrolases. The resulting amino acids, fatty acids, and sugars are released into the cytosol and support synthesis and energy production. Although macroautophagy was once viewed as nonselective, it frequently operates in a selective mode through LC3 or GABARAP-interacting receptors that recognize long-lived proteins, aggregates, damaged mitochondria, or invading microbes [56,57].
Microautophagy delivers cytosolic components directly into the lysosomal lumen. Uptake occurs through invagination, protrusion, or septation of endosomal or lysosomal membranes. In mammalian cells, an endosomal variant packages cargo into intraluminal vesicles and depends on critical endosomal sorting complexes required for transport (ESCRT) machinery [58,59].
CMA is a selective route present in many mammalian tissues but absent from budding yeast. Cytosolic HSC70 recognizes substrates that contain KFERQ-like motifs and delivers them to lysosome-associated membrane protein 2 (LAMP2) on the lysosomal membrane. The substrate is unfolded and translocated across the membrane with the assistance of luminal chaperones and is then degraded [60].
In this review, we focus on macroautophagy, hereafter referred to as autophagy, with emphasis on the mechanism, regulation, and selectivity of autophagic cargo.

2.2. Core ATG Machinery and Regulatory Networks

Autophagy is regulated by an integrated signaling network. Yeast expresses about 40 ATG proteins, while mammals retain roughly 20 core ATG proteins that drive the pathway [56,61]. Nutrient- and energy-sensing kinases, chiefly mTORC1 and AMPK, modulate ATG activity and govern induction and flux [62]. The process is activated by nutrient withdrawal, hypoxia, oxidative stress, ER stress, and infection [63]. During nutrient sufficiency, mTORC1 phosphorylates the uncoordinated-51-like kinase 1 (ULK1)–ATG13–focal adhesion kinase family-interacting protein of 200 kDa (FIP200)–ATG101 complex and blocks autophagy initiation [64]. Metabolic stress activates AMPK, which inhibits mTORC1 by targeting Rheb and regulatory-associated protein of mTOR (RAPTOR) and simultaneously phosphorylates ULK1 at Ser317 and Ser777, thereby activating the kinase [64]. Recent work shows that ULK1 is palmitoylated by the acyltransferase zinc finger DHHC-type palmitoyltransferase 13 (ZDHHC13), which increases ULK1 membrane association and strengthens initiation [65]. Recent structural work resolved a complex comprising the ULK1–ATG13–FIP200–ATG101 complex and the class III PI3KC3-C1 (ATG14L–VPS34–VPS15–beclin-1), clarifying how ULK1 activation is physically coupled to VPS34 lipid kinase activity at the earliest step of autophagosome formation [66]. Active ULK1 phosphorylates beclin-1 and beclin-1-regulated autophagy protein 1 (AMBRA1), recruiting the class III phosphatidylinositol 3 kinase complex with VPS34, ATG14L, VPS15, and beclin-1 to the phagophore assembly site, where phosphatidylinositol 3-phosphate is generated [67]. Double FYVE domain-containing protein 1 (DFCP1) is now recognized as a PI3P effector with ATPase activity that constricts omegasomes and accelerates their transition into growing phagophores [68,69]. PI3P-binding proteins such as WD repeat domain phosphoinositide-interacting protein 2 (WIPI2) and DFCP1 recognize this lipid and initiate phagophore nucleation and membrane remodeling [67]. Although the ER supplies most membrane material, the Golgi, endosomes, mitochondria, and plasma membrane also contribute. PI3KC3 activity is enhanced by UV radiation resistance-associated gene (UVRAG), inhibited by RUN domain- and cysteine-rich domain-containing beclin-1-interacting protein (Rubicon), and beclin-1 is sequestered by phosphorylated B-cell lymphoma 2 (BCL-2) family proteins under basal conditions [70]. Phagophore expansion relies on two ubiquitin-like conjugation cascades. First, ATG12 conjugates to ATG5 and, together with ATG16L1, assembles on the outer membrane and functions as an E3-like enzyme for LC3 lipidation [71,72]. Second, ATG4 cleaves pro-LC3 to expose a C-terminal glycine, and ATG7 and ATG3 then attach phosphatidylethanolamine to produce LC3-II [73]. Lipidated LC3 embeds in both phagophore leaflets and serves as a molecular tag for selective cargo capture by adaptor proteins, such as p62, nuclear dot protein 52 kDa (NDP52), neighbor of BRCA1 gene 1 (NBR1), and optineurin (OPTN), all of which bind LC3 through LC3-interacting regions [74,75]. The ATG2–WIPI complex shuttles lipids from the ER to the growing phagophore and supports membrane elongation [76,77]. ATG9A functions as a trimeric lipid scramblase, and its tissue-restricted paralog ATG9B also forms a homotrimeric lipid scramblase that may partially compensate for ATG9A in certain contexts of autophagosome biogenesis [78]. ATG9, the only transmembrane ATG protein, adds further bilayer material by trafficking vesicles between the Golgi apparatus and the phagophore assembly site, and ULK1-dependent phosphorylation of ATG9 at Ser14 enhances its recruitment [79,80]. As elongation proceeds, the endosomal sorting complex required for transport closes the edges of the double membrane to form a sealed autophagosome. The VPS4 ATPase is an ESCRT cofactor for this scission step and for the orderly handoff to downstream maturation [81,82]. Gamma-aminobutyric acid receptor-associated protein (GABARAP) paralogs, functionally analogous to LC3, cooperate in membrane elongation and cargo capture and complement the LC3 conjugation system [83]. Once closure is complete, the ATG12–ATG5–ATG16L1 scaffold dissociates, and ATG4 removes LC3-II from the outer membrane for recycling [84,85]. The mature autophagosome then travels along microtubules to the perinuclear region and fuses with lysosomes through soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) pairs [86,87]. In mammalian cells, syntaxin 17 (STX17) on the autophagosome pairs with SNAP29 and vesicle-associated membrane protein 8 (VAMP8) on the lysosome as a predominant fusion axis, whereas, under specific conditions, an alternative pathway involving STX17–SNAP47–VAMP7/VAMP8 or a YKT6–SNAP29–STX7 route can mediate autophagosome–lysosome fusion, with SNAP47 contributing to homotypic fusion and vacuole protein sorting (HOPS) recruitment [70,88,89,90,91]. This redundancy adds resilience to the final fusion step. Within the autolysosome, lysosomal hydrolases such as cathepsins and acid lipases degrade the inner membrane and cargo to amino acids, fatty acids, and sugars, which exit through permeases for biosynthesis and ATP production [92,93]. Prolonged starvation drives transcription factor EB (TFEB) into the nucleus, where it upregulates autophagy and lysosome-related genes and increases degradative capacity [94]. Autophagy also operates in a selective mode. LIR-containing adaptors direct LC3 or GABARAP to specific substrates and enable mitophagy through PTEN-induced kinase 1 (PINK1) and Parkin, lipophagy, and xenophagy [74,95,96]. These functions are essential for quality control, immunity, and metabolic balance [5]. Defects in these pathways contribute to cancer, neurodegeneration, metabolic disease, and cardiovascular disorders and highlight autophagy as an important therapeutic target [97,98,99]. Taken together, the core autophagy machinery comprises four cooperating modules (initiation, nucleation, elongation with conjugation, and closure with fusion) that are directly regulated by energetic and redox signals. Benefits require completion of autophagic flux through lysosomal fusion. An overview of the autophagy pathway is shown in Figure 1.

2.3. Molecular Biology of Oxidative Stress

Mitochondria synthesize adenosine triphosphate (ATP) and constitute the principal intracellular source of ROS. Although several pathways generate ROS, the mitochondrial electron transport chain (mETC) is the dominant site of formation during aerobic metabolism [30,100]. Throughout oxidative phosphorylation, electrons traverse four multi-subunit complexes (I–IV). Electron leakage from complex I (NADH: ubiquinone oxidoreductase) and complex III (ubiquinol: cytochrome c oxidoreductase) partially reduces molecular oxygen, generating superoxide (O2), which is subsequently dismutated into hydrogen peroxide (H2O2) [101,102]. Principal mitochondrial ROS (mtROS) consist of superoxide, hydrogen peroxide, hydroxyl radical (•OH), and singlet oxygen (1O2). Under physiological conditions, intracellular ROS levels are tightly controlled and remain low [41,103]. Protection against ROS-induced injury relies on an integrated antioxidant network containing enzymatic catalysts and non-enzymatic scavengers [104]. Mitochondrial superoxide is rapidly converted into hydrogen peroxide by superoxide dismutases: Cu/ZnSOD (SOD1) in the intermembrane space and cytosol, and MnSOD (SOD2) in the matrix [105,106]. Although less reactive than superoxide, H2O2 reacts with ferrous iron via Fenton chemistry to produce highly cytotoxic hydroxyl radicals [107]. Protonation of superoxide yields the hydroperoxyl radical (HOO•), which initiates lipid peroxidation of polyunsaturated fatty acids in mitochondrial membranes [108]. Endogenous mitochondrial nitric oxide (NO) reacts with superoxide to generate peroxynitrite (ONOO), a potent oxidant species that promotes protein tyrosine nitration—commonly detected as 3-nitrotyrosine—and drives thiol oxidation [109,110,111]. By contrast, S-nitrosylation typically arises from NO-derived nitrosating equivalents, such as dinitrogen trioxide (N2O3) or via transnitrosation reactions, rather than from peroxynitrite [112,113].
Hydrogen peroxide is detoxified by peroxiredoxins (Prx3 and Prx5), glutathione peroxidases (GPx1, GPx2, and GPx4), thioredoxin 2 (Trx2), and catalase [114,115,116,117,118]. This enzyme set requires reducing equivalents supplied chiefly by glutathione (GSH) and the thioredoxin cycle. During detoxification, GSH is oxidized into glutathione disulfide (GSSG) and regenerated by glutathione reductase (GR), whereas oxidized Trx2 is restored by NADPH-dependent thioredoxin reductase (TrxR) [117,119]. Matrix NADPH is replenished by isocitrate dehydrogenase (IDH), malate dehydrogenase (MDH), and nicotinamide nucleotide transhydrogenase (NNT), maintaining the reductive environment necessary for antioxidant function [120,121,122]. Catalase further decomposes hydrogen peroxide into water and molecular oxygen, adding an additional layer of protection. Collectively, this multilayered defense mitigates mitochondrial oxidative stress and prevents ROS-mediated cellular injury [26]. Beyond cytotoxicity, mtROS act as signaling molecules that regulate autophagy [123]. Nutrient deprivation—such as withdrawal of glucose, amino acids, or serum—elevates mtROS levels and activates autophagy-related pathways [124]. Oxidative stress-induced autophagy limits apoptotic cell death and confers cytoprotection [125]. In contrast, defective autophagic flux promotes ROS accumulation and exacerbates oxidative injury, whereas pharmacological antioxidants can blunt or abolish the autophagic response [126]. The evidence, therefore, supports bidirectional crosstalk in which mtROS both initiate and modulate autophagic signaling. Redox control modifies autophagy at multiple layers that include ATG4 oxidation, ULK1 and beclin-1 phosphorylation, and TFEB nuclear translocation through lysosomal Ca2+ release [124,127,128]. Spatial organization is critical because mitochondria–ER contact sites scaffold autophagosome initiation and regulate Ca2+ and lipid exchange, which tunes both mitophagy and metabolic output [129,130]. Failure of flux increases cytosolic mitochondrial DNA (mtDNA) and sustains cGAS–STING signaling, linking redox imbalance to innate immune activation [131,132]. The generation of mtROS is schematized in Figure 2.

3. Relationship Between Autophagy and Oxidative Stress in Cardiovascular Disease

Autophagy and oxidative stress exhibit bidirectional crosstalk in cardiovascular tissues. Within the cardiovascular system, autophagy and mitophagy interface tightly with redox signaling to preserve protein and organelle quality control and metabolic homeostasis across cardiomyocytes [133], endothelial cells [134], vascular smooth muscle cells [135], and immune cells [12]. Autophagy maintains the integrity of the contractile apparatus, stabilizes Ca2+ handling and mitochondrial bioenergetics, and attenuates transient oxidative challenges by clearing damaged proteins and organelles and sustaining lysosomal competence [136,137]. In contrast, sustained oxidative stress coupled with impaired autophagic flux promotes mitochondrial dysfunction [138], proteotoxic stress [139], inflammatory amplification [140], and maladaptive remodeling [141]. Whether their interaction is protective or harmful depends on the identity and magnitude of the stimulus, cell type, disease stage, and activation duration, spanning outcomes from cytoprotective adaptation to pathological injury [142]. An overview of cardiovascular disease is shown in Figure 3. Key signaling modules include cascades of the AMPK/mTOR/ULK1 and PINK1/Parkin pathway, together with redox-sensitive transcriptional programs such as NRF2 [54,143,144]. Collectively, these systems integrate redox and autophagy signals to coordinate organelle quality control and metabolic substrate utilization, thereby shaping disease phenotypes that range from ischemia–reperfusion injury and diabetic cardiomyopathy to atherosclerosis and heart failure. Evidence summarized in this section was identified through structured searches and was limited to peer-reviewed studies published from January 2010 through October 2025. Inclusion required the use of human cardiovascular cells or tissues; explicit interrogation of autophagy, mitophagy, and redox pathways using defined genetic or pharmacologic perturbations; at least one flux measurement such as LC3 turnover, p62 degradation, or a validated mitophagy reporter; and quantitative assessment of oxidative stress. For pharmacologic investigations, eligibility required evidence of target engagement, such as AMPK activation, mTOR modulation, TFEB nuclear translocation, or PINK1/Parkin pathway activity. For human studies, eligibility required pre-specified clinical or imaging endpoints, and studies that employed validated circulating biomarkers of autophagy, mitophagy, or redox status were also considered. Key terms and representative measurement approaches are summarized in Table 1.

3.1. Atherosclerosis and Vascular Aging

Atherosclerosis and vascular aging accelerate when oxidative stress exceeds autophagic quality control in the vascular wall. Oxidized lipids and excessive ROS drive endothelial NO synthase (eNOS) uncoupling, diminish nitric oxide availability, and activate NF-κB-dependent inflammatory signaling [145,146]. Across the vascular wall, the dominant sources of ROS differ by cell type. In the endothelium and smooth muscle, NADPH oxidases (NOX1/NOX2) and eNOS uncoupling predominate. In macrophages, mitochondrial-derived and NOX-derived ROS integrate with lipotoxic signaling and promote inflammasome activation [147,148,149]. Loss of autophagic competence leads to p62 accumulation and lysosomal dysfunction; facilitates the nucleotide oligomerization domain (NOD)-like receptor (NLR) family of proteins 3 (NLRP3) inflammasome in response to cholesterol crystals; and impairs apoptotic cell clearance and lipid processing in macrophages, thereby accelerating the buildup of lipid-accumulating macrophages and promoting features of plaque instability [150,151]. By contrast, physiological mitophagy mediated by PINK1/Parkin and hypoxia-responsive receptors such as BCL2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3), NIX (Bcl-2/adenovirus E1B 19 kDa-interacting protein 3, long form; BNIP3L), and FUN14 domain-containing 1 (FUNDC1) limits mtDNA release [131]. Autophagy also supports macrophage lipophagy and cholesterol efflux via ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1), collectively improving lipid homeostasis within lesions [152]. In vascular smooth muscle cells, autophagy limits osteogenic differentiation by attenuating Runt-related transcription factors 2 (RUNX2) and SRY-box transcription factor 9 (SOX9) programs; reduces the biogenesis of calcifying extracellular vesicles; and maintains the contractile phenotype through preservation of myocardin and SRF while preventing maladaptive Krüppel-like factor 4 (KLF4)-driven switching, thereby slowing medial calcification and vascular stiffening [153,154,155]. With aging, autophagy and mitophagy decline across the vascular wall, leading to accumulation of dysfunctional mitochondria, mtDNA damage, and chronic inflammation that amplify elastin fragmentation, collagen deposition, and endothelial-to-mesenchymal transition, together culminating in accelerated atherogenesis and vascular aging [156,157]. Hemodynamic shear induces KLF2 and KLF4 signaling that promotes nitric oxide signaling and anti-inflammatory gene expression in the endothelium [158]. Autophagy supports this state by maintaining eNOS coupling and by limiting mtROS [159]. In human plaques, reduced autophagy markers correlate with increased necrotic core and calcification, supporting a link between defective quality control and lesion complexity [160,161]. In addition, microRNAs are implicated in these pathways. The miR-17-92 cluster, including miR-17-5p, modulates autophagy, and miR-92a associates with coronary plaque development and transition to unstable plaque [162,163]. Clonal hematopoiesis with loss-of-function variants in Tet methylcytosine dioxygenase 2 (TET2) or DNA (cytosine-5)-methyltransferase 3A (DNMT3A) increases systemic inflammatory tone and accelerates atherogenesis [5,164,165]. Autophagy modulates this axis by limiting mitochondrial DNA leakage and curbing NLRP3 and cGAS–STING signaling in monocyte–macrophage lineages, thereby attenuating the inflammatory amplification linked to clonal hematopoiesis [131,132,166]. Human imaging and proteomic studies that couple plaque phenotype with autophagy signatures would clarify whether impaired quality control marks lesions at the highest clinical risk [161,167]. Clinically, the redox and inflammation axis has been targeted, for example, interleukin 1β blockade with canakinumab in CANTOS and colchicine therapy in COLCOT and LoDoCo2, and human plaques exhibit autophagy pathway alterations, with CMA acting protectively, underscoring the translational relevance of autophagy and redox coupling in atherothrombosis [168,169,170]. Co-targeting autophagy and oxidative stress may slow atherosclerotic plaque progression and requires prospective validation in clinical trials using biomarkers. Therapeutically, plaque stabilization may be achieved by integrating NOX inhibition or eNOS recoupling, targeted activation of autophagy/mitophagy, and inflammasome blockade with biomarker-guided trials to validate benefits.

3.2. Ischemia–Reperfusion (I/R) Injury

I/R consists of two distinct stresses that differentially regulate autophagy. During ischemia, ATP depletion and acidosis activate AMPK and inhibit mTORC1, engaging ULK1 and the beclin-1–VPS34 complex to initiate adaptive autophagic signaling that removes damaged organelles, recycles substrates, and helps maintain viability [171,172]. Reperfusion, particularly during the initial minutes, exposes the myocardium to pronounced oxidative and Ca2+ loads driven by succinate oxidation-induced reverse electron transport at complex I, together with NADPH oxidase and xanthine oxidase activity, along with Ca2+ influx and mitochondrial uptake via the mitochondrial calcium uniporter (MCU) [173,174,175,176,177]. The resulting redox and Ca2+ stress amplifies autophagic activity, destabilizes lysosomes, and induces lysosomal membrane permeabilization with cathepsin release, culminating in mitochondrial permeability transition (MPT)-dependent regulated necrosis [175,178]. Autophagy and mitophagy during ischemia are generally protective by limiting protein aggregation, clearing dysfunctional mitochondria, and preserving metabolic flexibility. In contrast, sustained activation during late reperfusion or impaired autophagosome clearance is deleterious. It depletes amino acid pools, compromises lysosomal integrity, and impairs contractile recovery [179,180,181]. Reinforcement of mitophagy through PINK1/Parkin recruitment to depolarized mitochondria or FUNDC1 dephosphorylation under hypoxia inhibits mtROS, stabilizes the mitochondrial membrane potential (ΔΨm), and improves energetic balance [21,182,183]. In contrast, Dynamin-related protein 1 (DRP1) hyperactivation with Ser616 phosphorylation and BNIP3-mediated outer-membrane permeabilization promote mitochondrial fragmentation, sensitize mitochondria to MPT, and increase cell loss [184]. Endothelial and immune cells influence outcomes. MicroRNAs that regulate autophagy, including members of the miR-17-92 cluster, modulate redox-responsive signaling during I/R and may influence the extent of myocardial injury and recovery [96,162]. When autophagic flux is impaired, microvascular obstruction increases, and inflammation is amplified in the reperfused myocardium [185,186]. Pharmacologic strategies that activate AMPK, temper mTORC1, stabilize lysosomes, attenuate pathological fission, or enhance PINK1/Parkin and FUNDC1 signaling show cardioprotection in preclinical models, positioning autophagy–mitophagy and redox control as actionable targets in I/R injury [171,178]. Reperfusion injury reflects succinate accumulation during ischemia and rapid oxidation on reflow that drives reverse electron transport at complex I [173,176,177]. Autophagy modulates reperfusion injury at two levels by stabilizing lysosomes to limit cathepsin release and by restoring mitophagy to remove sources of reverse electron transport [21,178]. Autophagy modulates ferroptosis and necroptosis during reperfusion injury [187]. Lipid peroxidation and iron handling determine whether autophagy remains protective or transitions to cell death-permissive states [188]. In patients, cardiac MRI markers of microvascular obstruction and intramyocardial hemorrhage predict adverse outcomes after reperfusion injury [189]. The succinate-driven reverse electron transport mechanism is supported by human and organ data [190,191]. The mitochondria-targeted peptide elamipretide was neutral in the EMBRACE STEMI pilot, which highlights the gap between mechanism and efficacy [187,192,193]. Ischemia activates protective autophagy, whereas oxidative stress during reperfusion impairs autophagic fusion, leading to defective clearance and myocardial injury. Accordingly, early I/R cardioprotection should combine AMPK activation and mTORC1 inhibition with lysosome stabilization, DRP1 inhibition, and mitigation of succinate-driven reverse electron transport, while restoring PINK1–Parkin or FUNDC1-mediated mitophagy.

3.3. Hypertrophic Cardiomyopathy (HCM) and Heart Failure (HF)

HCM and HF are characterized by altered autophagy and lysosomal dysfunction in cardiomyocytes. Pressure overload activates mTORC1 and suppresses ULK1, increasing protein synthesis [64,127,194]. Early activation of the AMPK/ULK1 axis is associated with adaptive remodeling through selective clearance of damaged organelles and preserving lysosomal function [195,196,197]. As HF progresses, lysosomal acidification decreases; TFEB-driven lysosomal and autophagy genes are suppressed; and core ATG proteins acquire inhibitory post-translational modifications, including O-GlcNAcylation and oxidative or nitrosative modifications such as carbonylation, S-nitrosylation, and S-glutathionylation, culminating in impaired autophagic flux [36,198]. Impaired v-ATPase activity and TRPML1-dependent lysosomal Ca2+ release attenuate TFEB/TFE3 activation [199]. Concomitantly, excess DRP1-dependent fission with reduced mitofusin 1/2 (MFN1/2) and Optic Atrophy 1 (OPA1) disrupts cristae and mitophagy, thereby increasing mtROS and mtDNA damage [47,200,201]. In cardiomyocytes, the ubiquitin–proteasome system (UPS) and chaperone-assisted selective autophagy (CASA) are essential for proteostasis, and their failure promotes decompensation [139]. Oxidative and nitrosative post-translational modifications of sarcomeric proteins and chaperones increase CASA levels and proteasomal clearance, reinforcing proteotoxic stress in HF [139,202]. In parallel, metabolic reprogramming, with reduced fatty acid oxidation, impaired Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)–PPARα (Peroxisome proliferator-activated receptorα) signaling, and imbalance across the sirtuin (SIRT)–AMPK-mTOR axis, exacerbates the mismatch between ATP demand and supply [203]. Redox modifications of ryanodine receptor 2 (RyR2) increase sarcoplasmic reticulum Ca2+ leak, while microtubule-dependent trafficking defects and loss of mitochondria–sarcomere coupling further impair excitation–contraction coupling [202,204]. HF with preserved ejection fraction (HFpEF) shows systemic inflammation, endothelial dysfunction, and microvascular rarefaction with reductions, distinct from HF reduced ejection fraction (HFrEF) [133,205]. In HFpEF, sex-based differences in autophagy and mitochondrial signaling influence microvascular inflammation, stiffness, and diastolic function and, therefore, merit sex-stratified analyses in clinical studies. Therapeutic decisions should be guided by metabolic and inflammatory profiles. Human genetic evidence links impaired autophagy to cardiomyopathy [206,207]. Danon disease (glycogen storage disease Type IIB) with LAMP2 deficiency produces severe hypertrophic or dilated phenotypes with lysosomal dysfunction [208,209,210]. Bcl2-associated athanogene (BAG3) variants disrupt CASA and are associated with myofibrillar myopathy and dilated cardiomyopathy [139,211]. Accordingly, management of HCM and HF should integrate mTOR inhibition or AMPK activation with TFEB-directed lysosomal restoration and mitophagy enhancers, complemented by RyR2 or CaMKII control and suppression of late sodium current to stabilize excitation–contraction coupling.

3.4. Diabetic Cardiomyopathy (DCM) and Metabolic Syndrome

Hyperglycemia, excess fatty acids, and insulin resistance result in mitochondrial and NADPH oxidase-derived ROS, advanced glycation end products (AGEs), and lipid peroxidation species that aggravate ER stress and suppress both the initiation and completion of autophagy through ULK1, the beclin-1–VPS34 complex, and LC3 processing [212,213]. In the diabetic heart, increased flux through the hexosamine pathway elevates O-GlcNAcylation on key autophagy proteins and lysosomal regulators, which suppresses induction and impairs autophagic flux, while p62 accumulation with Kelch-like ECH-associated protein 1 (KEAP1) sequestration produces self-reinforcing NRF2 activation that reprograms redox and lipid pathways [214,215,216]. Defective lysosomal acidification, reduced v-ATPase activity, and impaired lysosomal Ca2+ release via transient receptor potential mucolipin 1 (TRPML1) limit TFEB/TFE3 nuclear translocation and diminish degradative capacity [94,217,218]. Mitophagy signaling is frequently attenuated, with reduced PINK1 stabilization and Parkin recruitment to depolarized mitochondria, altered BNIP3/NIX activity, and an imbalance in mitochondrial dynamics marked by DRP1-dependent fission with loss of MFN1/2 and OPA1 [47]. Attenuated mitophagy and altered dynamics elevate mtROS, disrupt cristae structure, depress oxidative phosphorylation, and diminish respiratory reserve [219,220]. In parallel, impaired lipophagy and dysregulated CD36-mediated uptake drive accumulation of toxic lipid intermediates such as ceramides and diacylglycerols that activate protein kinase C (PKC) signaling and impair the insulin receptor substrate (IRS)/PI3K/AKT signaling, whereas suppression of PGC-1α/PPARα compromises fatty acid oxidation and shifts substrate utilization toward metabolically inefficient pathways [221,222]. Ca2+ handling deteriorates through RyR2 oxidation, sarcoplasmic reticulum Ca2+ATPase 2a (SERCA2a) O-GlcNAcylation and acetylation, and altered mitochondria–SR junctional microdomains, which together aggravate diastolic stiffness and impair excitation–contraction coupling [213,223]. At the tissue level, eNOS uncoupling and microvascular rarefaction reduce perfusion and amplify inflammation [224]. Autophagy defects in macrophage and fibroblast promote NLRP3 activation and transforming growth factor β (TGF-β)-driven matrix deposition, accelerating interstitial fibrosis and ventricular remodeling [225]. Exercise, metformin, and caloric restriction enhance AMPK activity and reactivate SIRT3–PGC-1α signaling, thereby enhancing mitophagy and mitochondrial biogenesis, improving lysosomal function, and normalizing fatty acid oxidation and redox balance [226,227]. Sodium–glucose cotransporter-2 (SGLT2) inhibitors, such as empagliflozin, attenuate oxidative stress, modulate Na+/H+ exchange and cytosolic Na+ handling, and improve autophagy–lysosome function, leading to improved energetic efficiency and structural remodeling in diabetic hearts [228,229,230]. Ketone oxidation and anaplerotic flux influence autophagy and mitophagy through changes in NADH and NADPH balance. SGLT2 inhibition increases ketone availability and improves lysosomal function and mitochondrial quality control in experimental systems, contributing to improved diastolic function, independent of glucose control [231,232]. Peroxisomal β-oxidation and aldehyde detoxification influence redox homeostasis in diabetic hearts. Reduced aldehyde dehydrogenase activity increases reactive aldehydes that modify mitochondrial proteins and suppress respiration. Enhancing mitochondrial biogenesis, together with improved lysosomal function, optimizes substrate use and improves respiratory capacity and reduces accumulation of ceramides and diacylglycerols that impair insulin signaling [233,234,235]. Hence, DCM is a tractable target for SGLT2-based metabolic therapy plus AMPK or SIRT3 activation to enhance TFEB-lysosome function and mitophagy, normalize fatty acid oxidation and ketone oxidation, and limit inflammatory remodeling.

3.5. Arrhythmia and Electrophysiology

Oxidative stress disrupts Ca2+ handling, mitochondrial signaling, and ion channel function in atrial and ventricular arrhythmias. ROS oxidize Ca2+/calmodulin-dependent protein kinase II (CaMKII) at Met281/282, generating calmodulin-independent activity that increases phosphorylation of RyR2 at S2814, enhances SR Ca2+ leak, and promotes delayed afterdepolarizations [236,237,238,239]. ROS-mediated RyR2 modification (S-nitrosylation and carbonylation), together with SERCA2a inhibition, diminishes SR Ca2+ uptake and increases spontaneous SR Ca2+ release [202,240]. By destabilizing ΔΨm and promoting opening of the mitochondrial permeability transition pore (mPTP), mtROS disrupts ER–mitochondria contact sites and perturbs Ca2+ microdomain signaling [241,242]. At the ionic current level, ROS enhances late Na+ current (I_Na,L) by inducing S-nitrosylation of Nav1.5 and CaMKII-dependent phosphorylation. Augmentation of I_Na,L lengthens action potential duration (APD) and increases susceptibility to early afterdepolarizations (EADs) [243,244,245,246]. In parallel, oxidative stress suppresses repolarizing K+ currents (I_Kr [hERG], I_Ks, and I_to) in several models, potentially diminishing repolarization reserve [247,248]. Upregulated Na+/Ca2+ exchange (NCX) produces a depolarizing inward current from SR Ca2+ leak, facilitating delayed afterdepolarizations [249,250]. Gap-junctional coupling deteriorates as connexin-43 (Cx43) undergoes redox-dependent phosphorylation and accelerated ubiquitin-mediated turnover, leading to slowed conduction and increased conduction heterogeneity [251,252,253,254]. Autophagy maintains channel and scaffold quality control (for example, RyR2, Nav1.5, and Cx43) and preserves membrane microdomain organization, while selective removal of depolarized mitochondria limits mtROS and stabilizes ER–mitochondria interfaces [255,256]. Lipophagy limits the accumulation of triglyceride and ceramide, thereby preserving membrane properties and ion channel gating [257,258]. Defective autophagy and mitophagy sustain oxidized protein and dysfunctional mitochondria in ventricular arrhythmia [255,259,260]. Under β-adrenergic stimulation and during reperfusion, rapid increases in NOX2/NOX4- and mitochondria-dependent ROS accelerate these processes [261,262]. AMPK activation (exercise and metformin), mitochondria-targeted agents (such as MitoTEMPO or elamipretide), inhibition of CaMKII oxidation, suppression of late Na+ current (ranolazine), RyR2 stabilization (dantrolene), and autophagy stimulation (rapamycin, spermidine) have been shown to reduce mtROS, restore channel quality control, preserve gap-junctional coupling, and support excitation–contraction stability and rhythm [260,263,264]. Atrial fibrillation exhibits reduced autophagy signatures with Cx43 lateralization and conduction heterogeneity [254]. Restoration of autophagic flux improves channel quality control and reduces substrate complexity for reentry in preclinical models. Oxidants also modulate inward-rectifier potassium current (I_K1) and hyperpolarization-activated current (I-f), thereby destabilizing the resting potential, increasing atrial automaticity, and expanding the arrhythmogenic substrate under stress [229,248]. Therapeutically, arrhythmic substrate is reduced by suppressing late sodium current (for example, ranolazine), stabilizing RyR2 or limiting CaMKII oxidation, and augmenting mitophagy and autophagy to restore channel turnover and gap-junctional coupling.

3.6. Cardiac Aging

Cardiac aging is marked by a coordinated decline in autophagy–lysosome function, mitochondrial quality control, and Ca2+ homeostasis. The aged myocardium exhibits impaired lysosomal acidification, reduced TFEB and TFE3 activity, accumulation of lipofuscin and incompletely cleared autophagosomes, and progressive mtDNA damage, together leading to diminished autophagic flux and mitophagy [265,266]. During aging, AMPK activity diminishes while mTORC1 activity increases. In parallel, SIRT1/SIRT3 signaling diminishes, and NRF2 target gene expression decreases, impairing proteostasis, antioxidant defenses, and organelle quality control [267,268,269]. Mitochondrial dynamics shift toward DRP1-dependent fission with loss of MFN1, MFN2, and OPA1; cristae architecture is remodeled; and ER–mitochondria contact sites are perturbed, promoting Ca2+ dysregulation and increased susceptibility to permeability transition [266]. Proteostasis deteriorates as CASA through BAG3–HSPB8 and CMA via LAMP2 decline, and ubiquitin–proteasome function is attenuated, which compromises myofibrillar protein quality control and maintenance of sarcomere integrity [270]. Extracellular matrix remodeling involves increased collagen deposition and cross-linking, accumulation of AGE modifications, and shifts in titin isoform composition with reduced titin phosphorylation. These changes increase passive stiffness and impair diastolic relaxation [271]. Senescence-associated secretory signaling (SASP) and innate immune pathways, including NLRP3 and cGAS–STING activated by mtDNA leakage, promote chronic inflammation [272,273]. Endothelial dysfunction and microvascular rarefaction reduce perfusion and exacerbate oxidative stress [266,274]. Electrical remodeling is characterized by Cx43 alterations, fibrosis, and dispersion of repolarization, thereby increasing vulnerability to atrial and ventricular arrhythmias [254]. Evidence from preclinical aging models indicates that endurance training and structured exercise activate AMPK and improve lysosomal function; caloric restriction and time-restricted feeding suppress mTORC1 and upregulate ULK1 signaling; and small molecules such as spermidine and trehalose enhance autophagy and improve diastolic function while limiting fibrosis [275,276,277]. Additional strategies under investigation include mTOR inhibition, AMPK activation with metformin, and NAD+ repletion with nicotinamide riboside or NMN to activate SIRT1/SIRT3. Other approaches involve pharmacologic TFEB activation, lysosome-directed methods that enhance v-ATPase activity and TRPML1-dependent Ca2+ release, and mitophagy enhancers that strengthen PINK1/Parkin and BNIP3/NIX pathways [260,278,279]. Reduced autophagy and mitophagy link aging to bioenergetic inefficiency, contractile and electrical remodeling, and diastolic dysfunction, thereby highlighting actionable targets for cardioprotection [266]. Single-cell analyses of aged hearts reveal coordinated downregulation of lysosome–autophagy genes in cardiomyocytes and endothelial cells with parallel activation of innate immune pathways [280]. SASP maintains the pathological condition, whereas enhancing mitophagy reverses aspects of the phenotype in vivo [131]. Sex differences modulate autophagy and mitochondrial signaling, with estrogen receptor pathways supporting SIRT3 and antioxidant programs. Sex-based differences in autophagy and mitochondrial quality control may contribute to HFpEF susceptibility and aging-related diastolic remodeling and should inform sex-stratified dosing and analyses in trials of autophagy-directed therapies [281,282]. Consequently, cardioprotection in aging should leverage endurance training and caloric restriction or their mimetics, together with mTOR inhibition or AMPK and SIRT1/SIRT3 activation to restore TFEB-lysosome function and mitophagy, using sex-dependent dosing strategies.

3.7. Inflammation, Innate Immunity, and Noninfectious Injury

Mitochondrial dysfunction generates mtROS and releases mtDNA into the cytosol. Mitochondrial DAMPs (damage-associated molecular patterns) and pathogen-associated molecular patterns (PAMPs) activate NLRP3, Toll-like receptors (TLRs), RIG-I-like receptors, and the cGAS–STING pathway [283,284]. PAMP recognition initiates TLR signaling through the adaptor proteins MyD88 and TIR-containing adapter-inducing interferon-β (TRIF) [285]. Cytosolic viral RNA sensor retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) activate the mitochondrial adaptor mitochondrial antiviral signaling (MAVS), which recruits TANK-binding kinase 1/IκB kinase ε (TBK1/IKKε) to phosphorylate interferon regulatory factor 3 (IRF3) [286]. Cytosolic DNA is detected by cGAS, which generates cGAMP to activate STING and TBK1, leading to IRF3 activation [287]. These pathways induce type I interferons and pro-inflammatory cytokines and activate NLRP3. Autophagy and mitophagy limit DAMP generation by eliminating depolarized mitochondria, degrading oxidized mitochondrial constituents, and sustaining lysosomal function, thereby reducing caspase-1 activation, IL-1β/IL-18 maturation, and type I interferon signaling [288]. Autophagy targets inflammasome components for lysosomal degradation and clears ASC (apoptosis-associated speck-like protein containing a CARD; PYCARD) specks, thereby limiting pyroptosis [289]. In macrophages, autophagy facilitates apoptotic cell clearance (efferocytosis) and lipid handling, suppresses excessive NF-κB signaling, and promotes pro-resolving programs during tissue repair [290]. In neutrophils, autophagy regulates neutrophil extracellular trap release (NETosis), limiting microvascular obstruction and immunothrombosis in reperfused or pressure-overloaded myocardium [291]. In platelets, PINK1/Parkin-dependent mitochondrial quality control attenuates mitochondrial activation, lowers ROS levels, and reduces hyperreactivity [292]. In endothelial cells, autophagy maintains barrier function and NO signaling while restricting complement deposition and leukocyte adhesion, thereby limiting vascular inflammation [147,159]. In cardiac fibroblasts, autophagy limits myofibroblast activation, modulates TGF-β/SMAD signaling, and promotes controlled matrix turnover [293]. Lysosomal dysfunction impairs the clearance of inflammasome complexes and delays inflammation [294]. Disordered lipid handling elevates signaling lipids such as ceramides, diacylglycerols, and lysophosphatidylcholines that activate innate sensors and propagate chemokine and cytokine release [295,296,297]. In preclinical models, pharmacologic and physiologic strategies that activate AMPK, inhibit mTORC1, or enhance TFEB-dependent lysosomal biogenesis increase autophagic flux and improve degradative capacity [298]. cGAS–STING signaling occurs at ER and mitochondria–ER contact sites (MAMs) and is modulated by autophagy [299]. Mitochondria–ER contact sites function as hubs that couple Ca2+ microdomains and NOX-derived ROS to PINK1/Parkin-mediated mitophagy, LC3-associated membrane formation, and innate immune signaling, thereby modulating the transition from adaptive repair to chronic inflammation [300,301,302]. LC3-associated phagocytosis (LAP) and LC3-associated endocytosis (LANDO) promote the clearance of apoptotic cells and regulate inflammatory receptor trafficking, thereby limiting cytokine amplification in injured myocardia [303,304,305,306]. Autophagy also interacts with the PAMP pathway, while xenophagy and virophagy target intracellular pathogens and viral components. Furthermore, autophagic turnover of adaptor proteins modulates receptor signaling. Trained immunity programs in myeloid cells rely on mitochondrial metabolism, linking metabolic memory to cardiac inflammation [307,308]. Hence, combining modulation of the NLRP3 and IL-1 pathway with reinforcement of autophagy and mitophagy (AMPK activation, mTORC1 inhibition, TFEB-driven lysosomal biogenesis, LAP, and LANDO) attenuates caspase-1 activation and cytokine maturation, limits pyroptosis, and restores cytoprotective clearance of damaged mitochondria and assembled inflammasomes.

3.8. Fibroblast Activation and Matrix Remodeling

Cardiac fibroblasts integrate redox signaling with autophagy and lysosomal function to regulate myofibroblast transition and extracellular matrix turnover [309,310]. Mitochondrial reactive oxygen species and impaired autophagy promote TGF-β and SMAD-driven activation, enhance collagen synthesis and cross-linking, and reduce matrix resolution, which together increase stiffness and diastolic dysfunction [311,312]. Autophagy in fibroblasts limits inflammasome signaling and supports controlled matrix turnover, whereas lysosomal dysfunction prolongs inflammatory signaling and fibrosis [288,313]. Therapeutically, enhancement of autophagic flux and modulation of TGF-β signaling represent tractable anti-fibrotic strategies for clinical evaluation.

3.9. Therapeutic Modulation and Clinical Translation

Effective modulation of autophagy and redox pathways requires alignment with disease stage, cell type, and treatment duration rather than uniform activation or suppression [314]. A practical framework focuses on acute cytoprotection in ischemia–reperfusion and longer-term remodeling in cardiometabolic disease [179,315]. Structured exercise, metformin, and fasting regimens activate the AMPK/ULK1 axis and suppress mTORC1 [316,317,318]. In preclinical models and early-phase clinical studies, these approaches enhance autophagic flux, improve lysosomal function, and support mitochondrial quality control [319,320]. Enhancing TFEB activity and lysosomal biogenesis rescues defective autophagic flux and results in productive clearance [218]. Stabilization of v-ATPase function and augmentation of TRPML1-dependent lysosomal Ca2+ release show consistent effects in preclinical models [199,321]. Mitochondria-directed therapeutics, including mitochondria-accumulating antioxidants (MitoQ and SkQ derivatives) and inner-membrane stabilizers (elamipretide), reduce mitochondrial oxidative stress, preserve ΔΨm, and facilitate mitophagy in preclinical and early-phase clinical studies [322]. Small molecules, such as spermidine, resveratrol, and melatonin, activate SIRT pathways, PGC-1α, ULK1, and TFEB to promote mitochondrial turnover and limit inflammatory signaling [323,324,325]. Safety considerations should inform dosing and scheduling decisions [326]. Therapeutic scheduling and dosing should be tailored to disease stage and cellular context. During I/R, brief induction that supports lysosomal function and mitophagy is appropriate, whereas in chronic cardiometabolic disease, intermittent low-intensity activation of TFEB-driven lysosomal pathways and PINK1/Parkin-mediated mitophagy is preferred to preserve proteostasis, with lineage-specific priorities across cardiomyocytes, endothelium, fibroblasts, and myeloid cells. Excessive or sustained activation of autophagy depletes contractile proteins, induces lysosomal membrane permeabilization with cathepsin release, and triggers Na+–K+-ATPase-dependent cell death under severe stress [266,327,328]. Cell-type specificity is critical. Cardiomyocytes, endothelial cells, vascular smooth muscle cells, and immune cells exhibit distinct autophagic activity and divergent responses to identical stimuli [314]. Restricting drug exposure optimizes the efficacy–safety balance [315,329]. Important obstacles to clinical application remain. First, validated tissue-specific biomarkers of autophagy or mitophagy in humans are lacking, and circulating LC3 and p62 measures have limited sensitivity, specificity, and tissue resolution and are sensitive to pre-analytical variables, such as hemolysis and platelet activation [330,331]. Development of standardized extracellular vesicle assays for EV-derived LC3 or p62 fragments, mitophagy-linked peptide measurements, and clinically compatible imaging probes would enable real-time pharmacodynamic monitoring [332]. Second, optimal timing of therapy is not well defined, including immediate post-reperfusion versus subacute or chronic phases, and the duration and frequency of dosing for remodeling indications require systematic evaluation [315]. Third, rational multi-target strategies require formal trials that integrate metabolic control, organelle quality control, and inflammation with prespecified endpoints [333]. Enrichment strategies are likely to accelerate progress from preclinical signals to durable clinical benefit [206,322]. Clinical translation benefits from objective response criteria. Candidate biomarker panels integrate extracellular EV-derived LC3 and p62 fragments with circulating mitochondrial DNA and oxylipid and cardiac magnetic resonance parameters, such as extracellular volume fraction and T1 mapping, together with echocardiographic myocardial strain and ambulatory arrhythmia frequency and duration [334,335,336,337,338]. Cardiac-targeted delivery concentrates therapeutic agents in the myocardium and minimizes off-target exposure. Peptide-guided nanoparticles, cardiac homing sequences, and AAV9-based approaches are being evaluated as delivery platforms for pathway-directed therapeutics targeting AMPK, TFEB, and PINK1/Parkin signaling [339,340,341,342]. Pharmacodynamic confirmation in patients will require biomarker panels integrating extracellular vesicle markers, oxidized lipid markers, and non-invasive imaging [332,336]. To support clinical translation, we outline a fit-for-purpose framework that emphasizes analytical validity, biological specificity, pharmacodynamic sensitivity, and clinical utility. The core criteria are rigorous preanalytical control and predefined reproducibility, orthogonal validation against tissue or imaging readouts and human pathway perturbation, temporal responsiveness to target modulation, incremental value beyond established markers and cardiac magnetic resonance metrics, and feasibility for multicenter implementation with standardized materials and reporting. In practice, pathway-matched agents that tune AMPK–ULK1, TFEB–lysosome, and PINK1/Parkin signaling should be paired with cardiac-targeted delivery and adaptive, biomarker-guided dosing to translate these mechanisms into durable clinical benefit.

4. Future Research Directions

Future research should develop clinically validated in vivo measures of autophagic flux and mitophagy with reference standards, calibration to tissue and imaging endpoints, and defined preanalytical controls. Cell-type-resolved biomarker panels that combine extracellular vesicle LC3 or p62 fragments with cell-specific markers and circulating mitochondrial DNA are needed to quantify pathway activity across cardiomyocytes, endothelium, fibroblasts, and myeloid cells. Human-compatible imaging probes for lysosomal function and mitophagy should be advanced, prioritizing reporters of lysosomal acidity, cathepsin activity, and PINK1 and Parkin activity and benchmarking them against pharmacologic perturbation. Target selectivity for mitophagy modulation should be improved by comparing PINK1 and Parkin activators with receptor-based strategies that use BNIP3, NIX, and FUNDC1 and by defining off-target profiles at mitochondria–ER contact sites. Treatment timing across disease stages should be defined, with brief induction during ischemia and early reperfusion and periodic low-level induction in chronic disease, with dose and intervals guided by pharmacodynamic thresholds that avoid sustained LC3 accumulation or loss of contractile proteins. Finally, clinical trials should adopt standardized endpoints that integrate extracellular vesicle markers, circulating mitochondrial DNA, oxylipidomics, cardiac magnetic resonance T1 mapping, and strain and ambulatory arrhythmia metrics using shared reagents and common data elements.

5. Concluding Remarks

In cardiovascular pathologies, mtROS induce organelle injury and impair autophagy and mitophagy, leading to loss of cellular quality control. In cardiomyocytes, endothelial cells, vascular smooth muscle cells, and immune cells, mtROS-associated organelle injury with impaired autophagy and mitophagy links bioenergetic inefficiency to Ca2+ dysregulation, ion channel remodeling, innate immune activation, and fibroblast-driven matrix deposition. Cellular architecture determines whether Ca2+/redox signals preserve contractile and vascular function or promote arrhythmia, stiffening, and fibrosis. Mechanism-directed modulation of AMPK/ULK1, PINK1/Parkin, TFEB-driven lysosomal biogenesis, and NRF2-regulated antioxidant defenses improves organelle turnover, preserves ΔΨm, restores metabolic flexibility, and attenuates inflammatory signaling. Clinical translation requires tissue-specific biomarkers of autophagy and dosing and delivery matched to disease stage. Biomarker-guided combinations that rebalance metabolic flexibility, lysosomal function, and autophagy support cardiovascular benefits. Pathways of clinical relevance that are under investigation or suitable for evaluation in clinical trials include AMPK activation and mTOR modulation, enhancement of PINK1/Parkin-mediated mitophagy and TFEB-driven lysosomal biogenesis, inhibition of NLRP3 and interleukin 1, metabolic reprogramming with SGLT2 inhibitors, mitochondria-targeted therapeutics, and select microRNA-directed strategies.

Author Contributions

H.R.Y., M.K.S., S.H., and J.S.R. wrote and revised the manuscript. J.H., I.K., and S.S.K. conceptualized and supervised the study and wrote the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (grant NRF-2018R1A6A1A03025124 to SSK and grant NRF-2022R1A1A01067626 to HRY).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No new data were created or analyzed in this study.

Conflicts of Interest

The authors declare no conflicts of interest.

Abbreviations

•OHHydroxyl radical
1O2Singlet oxygen
ABCA1ATP-binding cassette transporter A1
ABCG1ATP-binding cassette transporter G1
AGEsAdvanced glycation end products
AMBRA1Autophagy and beclin-1-regulated autophagy protein 1
AMPKAMP-activated protein kinase
APDAction potential duration
ASCApoptosis-associated speck-like protein containing a CARD
ATGsAutophagy-related genes
ATPAdenosine triphosphate
BAG3BCL2-associated athanogene 3
BCL-2B cell lymphoma 2
BNIP3BCL2/adenovirus E1B 19 kDa-interacting protein 3
CaMKIICa2+/calmodulin-dependent protein kinase II
CASAChaperone-assisted selective autophagy
CMAChaperone-mediated autophagy
DAMPsDamage-associated molecular patterns
DFCP1Double FYVE domain-containing protein 1
DNMT3ADNA (cytosine-5)-methyltransferase 3A
DRP1Dynamin-related protein 1
EADsEarly afterdepolarizations
eNOSEndothelial NO synthase
EREndoplasmic reticulum
ESCRTEndosomal sorting complexes required for transport
FIP200Focal adhesion kinase family-interacting protein of 200 kDa
FUNDC1FUN14 domain-containing 1
GABARAPGamma-aminobutyric acid receptor-associated protein
GPxGlutathione peroxidase
GRGlutathione reductase
GSHGlutathione
GSSGGlutathione disulfide
HOO•Hydroperoxyl radical
HOPSHomotypic fusion and vacuole protein sorting
I_Na,LLate Na+ current
I/RIschemia–reperfusion
IDHIsocitrate dehydrogenase
IRSInsulin receptor substrate
KEAP1Kelch-like ECH-associated protein 1
KLFKrüppel-like factor
LANDOLC3-associated endocytosis
LAMPf2Lysosome-associated membrane protein 2
LAPLC3-associated phagocytosis
LC3Microtubule-associated protein light chain 3
MCUMitochondrial calcium uniporter
MDHMalate dehydrogenase
mETCMitochondrial electron transport chain
MFNMitofusin
MPTMitochondrial permeability transition
mPTPMitochondrial permeability transition pore
mtDNAMitochondrial DNA
mTORC1Mechanistic target of rapamycin complex 1
mtROSMitochondrial ROS
N2O3Dinitrogen trioxide
NBR1Neighbor of BRCA1 gene 1
NDP52Nuclear dot protein 52 kDa
NETosisNeutrophil extracellular trap release
NIXBCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like
NLRP3NLR family pyrin domain-containing 3
NNTNicotinamide nucleotide transhydrogenase
NONitric oxide
NOXNADPH oxidase
NRF2Nuclear factor erythroid 2-related factor 2
O2Superoxide anions
ONOOPeroxynitrite
OPA1Optic atrophy 1
OPTNOptineurin
p62Sequestosome 1
PGC-1αPeroxisome proliferator-activated receptor gamma coactivator 1-alpha
PINK1PTEN-induced kinase 1
PKCProtein kinase C
PPARαPeroxisome proliferator-activated receptor alpha
PrxPeroxiredoxin
RAPTORRegulatory-associated protein of mTOR
RETReverse electron transport
ROSReactive oxygen species
RubiconRUN domain- and cysteine-rich domain-containing beclin-1-interacting protein
RyR2Ryanodine receptor 2
SERCA2aSarcoplasmic reticulum Ca2+ATPase 2a
SGLT2Sodium–glucose cotransporter-2
SIRTSirtuin
SNARESoluble N-ethylmaleimide-sensitive factor attachment protein receptor
SODsSuperoxide dismutases
SOD1Cu/ZnSOD
SOD2MnSOD
SOX9SRY-box transcription factor 9
STX17Syntaxin 17
TET2Tet methylcytosine dioxygenase 2
TFEBTranscription factor EB
TGF-βTransforming growth factor beta
TLRsToll-like receptors
TRPML1Transient receptor potential mucolipin 1
Trx2Thioredoxin 2
TrxRThioredoxin reductase
ULK1Uncoordinated-51-like kinase 1
UVRAGUV radiation resistance-associated gene
VAMP8Vesicle-associated membrane protein 8
WIPI2WD repeat domain phosphoinositide-interacting protein 2
ZDHHC13Zinc finger DHHC-type palmitoyltransferase 13
ΔΨmMitochondrial membrane potential

References

  1. De Duve, C. The lysosome. Sci. Am. 1963, 208, 64–72. [Google Scholar] [CrossRef]
  2. Dikic, I.; Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 2018, 19, 349–364. [Google Scholar] [CrossRef] [PubMed]
  3. Galluzzi, L.; Baehrecke, E.H.; Ballabio, A.; Boya, P.; Bravo-San Pedro, J.M.; Cecconi, F.; Choi, A.M.; Chu, C.T.; Codogno, P.; Colombo, M.I.; et al. Molecular definitions of autophagy and related processes. EMBO J. 2017, 36, 1811–1836. [Google Scholar] [CrossRef] [PubMed]
  4. Ohsumi, Y. Historical landmarks of autophagy research. Cell Res. 2014, 24, 9–23. [Google Scholar] [CrossRef]
  5. Klionsky, D.J.; Abdel-Aziz, A.K.; Abdelfatah, S.; Abdellatif, M.; Abdoli, A.; Abel, S.; Abeliovich, H.; Abildgaard, M.H.; Abudu, Y.P.; Acevedo-Arozena, A.; et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1). Autophagy 2021, 17, 1–382. [Google Scholar] [CrossRef]
  6. Gomez-Virgilio, L.; Silva-Lucero, M.D.; Flores-Morelos, D.S.; Gallardo-Nieto, J.; Lopez-Toledo, G.; Abarca-Fernandez, A.M.; Zacapala-Gomez, A.E.; Luna-Munoz, J.; Montiel-Sosa, F.; Soto-Rojas, L.O.; et al. Autophagy: A Key Regulator of Homeostasis and Disease: An Overview of Molecular Mechanisms and Modulators. Cells 2022, 11, 2262. [Google Scholar] [CrossRef]
  7. Levine, B.; Klionsky, D.J. Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Dev. Cell 2004, 6, 463–477. [Google Scholar] [CrossRef]
  8. Mizushima, N.; Komatsu, M. Autophagy: Renovation of cells and tissues. Cell 2011, 147, 728–741. [Google Scholar] [CrossRef]
  9. Hickey, K.L.; Swarup, S.; Smith, I.R.; Paoli, J.C.; Miguel Whelan, E.; Paulo, J.A.; Harper, J.W. Proteome census upon nutrient stress reveals Golgiphagy membrane receptors. Nature 2023, 623, 167–174. [Google Scholar] [CrossRef]
  10. Boya, P.; Codogno, P.; Rodriguez-Muela, N. Autophagy in stem cells: Repair, remodelling and metabolic reprogramming. Development 2018, 145, 146506. [Google Scholar] [CrossRef]
  11. Germain, K.; So, R.W.L.; DiGiovanni, L.F.; Watts, J.C.; Bandsma, R.H.J.; Kim, P.K. Upregulated pexophagy limits the capacity of selective autophagy. Nat. Commun. 2024, 15, 375. [Google Scholar] [CrossRef] [PubMed]
  12. Chen, R.; Zhang, H.; Tang, B.; Luo, Y.; Yang, Y.; Zhong, X.; Chen, S.; Xu, X.; Huang, S.; Liu, C. Macrophages in cardiovascular diseases: Molecular mechanisms and therapeutic targets. Signal Transduct. Target. Ther. 2024, 9, 130. [Google Scholar] [CrossRef] [PubMed]
  13. Kapuy, O. Mechanism of Decision Making between Autophagy and Apoptosis Induction upon Endoplasmic Reticulum Stress. Int. J. Mol. Sci. 2024, 25, 4368. [Google Scholar] [CrossRef] [PubMed]
  14. Gouda, N.A.; Zhakupova, A.; Abdelaal, A.M.; Ahmad, F.; Elkamhawy, A. The interplay involving oxidative stress and autophagy: Mechanisms, implications, and therapeutic opportunities. Exp. Mol. Pathol. 2025, 143, 104989. [Google Scholar] [CrossRef]
  15. Yang, L.; Guo, C.; Zheng, Z.; Dong, Y.; Xie, Q.; Lv, Z.; Li, M.; Lu, Y.; Guo, X.; Deng, R.; et al. Stress dynamically modulates neuronal autophagy to gate depression onset. Nature 2025, 641, 427–437. [Google Scholar] [CrossRef]
  16. Redza-Dutordoir, M.; Averill-Bates, D.A. Interactions between reactive oxygen species and autophagy: Special issue: Death mechanisms in cellular homeostasis. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 119041. [Google Scholar] [CrossRef]
  17. Filomeni, G.; De Zio, D.; Cecconi, F. Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death Differ. 2015, 22, 377–388. [Google Scholar] [CrossRef]
  18. Chen, C.L.; Lin, Y.C. Autophagy Dysregulation in Metabolic Associated Fatty Liver Disease: A New Therapeutic Target. Int. J. Mol. Sci. 2022, 23, 10055. [Google Scholar] [CrossRef]
  19. Deretic, V. Autophagy in inflammation, infection, and immunometabolism. Immunity 2021, 54, 437–453. [Google Scholar] [CrossRef]
  20. Debnath, J.; Gammoh, N.; Ryan, K.M. Autophagy and autophagy-related pathways in cancer. Nat. Rev. Mol. Cell Biol. 2023, 24, 560–575. [Google Scholar] [CrossRef]
  21. Xu, S.; Wang, Z.; Guo, F.; Zhang, Y.; Peng, H.; Zhang, H.; Liu, Z.; Cao, C.; Xin, G.; Chen, Y.Y.; et al. Mitophagy in ischemic heart disease: Molecular mechanisms and clinical management. Cell Death Dis. 2024, 15, 934. [Google Scholar] [CrossRef]
  22. Ajoolabady, A.; Aslkhodapasandhokmabad, H.; Henninger, N.; Demillard, L.J.; Nikanfar, M.; Nourazarian, A.; Ren, J. Targeting autophagy in neurodegenerative diseases: From molecular mechanisms to clinical therapeutics. Clin. Exp. Pharmacol. Physiol. 2021, 48, 943–953. [Google Scholar] [CrossRef]
  23. Palmer, J.E.; Wilson, N.; Son, S.M.; Obrocki, P.; Wrobel, L.; Rob, M.; Takla, M.; Korolchuk, V.I.; Rubinsztein, D.C. Autophagy, aging, and age-related neurodegeneration. Neuron 2025, 113, 29–48. [Google Scholar] [CrossRef]
  24. Morris, G.; Gevezova, M.; Sarafian, V.; Maes, M. Redox regulation of the immune response. Cell Mol. Immunol. 2022, 19, 1079–1101. [Google Scholar] [CrossRef]
  25. Kaushik, S.; Tasset, I.; Arias, E.; Pampliega, O.; Wong, E.; Martinez-Vicente, M.; Cuervo, A.M. Autophagy and the hallmarks of aging. Ageing Res. Rev. 2021, 72, 101468. [Google Scholar] [CrossRef] [PubMed]
  26. Zong, Y.; Li, H.; Liao, P.; Chen, L.; Pan, Y.; Zheng, Y.; Zhang, C.; Liu, D.; Zheng, M.; Gao, J. Mitochondrial dysfunction: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024, 9, 124. [Google Scholar] [CrossRef] [PubMed]
  27. Balaban, R.S.; Nemoto, S.; Finkel, T. Mitochondria, oxidants, and aging. Cell 2005, 120, 483–495. [Google Scholar] [CrossRef] [PubMed]
  28. Casey, A.M.; Ryan, D.G.; Prag, H.A.; Chowdhury, S.R.; Marques, E.; Turner, K.; Gruszczyk, A.V.; Yang, M.; Wolf, D.M.; Miljkovic, J.L.; et al. Pro-inflammatory macrophages produce mitochondria-derived superoxide by reverse electron transport at complex I that regulates IL-1beta release during NLRP3 inflammasome activation. Nat. Metab. 2025, 7, 493–507. [Google Scholar] [CrossRef]
  29. Rimal, S.; Tantray, I.; Li, Y.; Pal Khaket, T.; Li, Y.; Bhurtel, S.; Li, W.; Zeng, C.; Lu, B. Reverse electron transfer is activated during aging and contributes to aging and age-related disease. EMBO Rep. 2023, 24, e55548. [Google Scholar] [CrossRef]
  30. Murphy, M.P.; Bayir, H.; Belousov, V.; Chang, C.J.; Davies, K.J.A.; Davies, M.J.; Dick, T.P.; Finkel, T.; Forman, H.J.; Janssen-Heininger, Y.; et al. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat. Metab. 2022, 4, 651–662. [Google Scholar] [CrossRef]
  31. Halliwell, B.; Adhikary, A.; Dingfelder, M.; Dizdaroglu, M. Hydroxyl radical is a significant player in oxidative DNA damage in vivo. Chem. Soc. Rev. 2021, 50, 8355–8360. [Google Scholar] [CrossRef] [PubMed]
  32. Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch. Toxicol. 2024, 98, 1323–1367. [Google Scholar] [CrossRef] [PubMed]
  33. Jose, E.; March-Steinman, W.; Wilson, B.A.; Shanks, L.; Parkinson, C.; Alvarado-Cruz, I.; Sweasy, J.B.; Paek, A.L. Temporal coordination of the transcription factor response to H2O2 stress. Nat. Commun. 2024, 15, 3440. [Google Scholar] [CrossRef] [PubMed]
  34. Oka, S.; Tsuzuki, T.; Hidaka, M.; Ohno, M.; Nakatsu, Y.; Sekiguchi, M. Endogenous ROS production in early differentiation state suppresses endoderm differentiation via transient FOXC1 expression. Cell Death Discov. 2022, 8, 150. [Google Scholar] [CrossRef]
  35. An, X.; Yu, W.; Liu, J.; Tang, D.; Yang, L.; Chen, X. Oxidative cell death in cancer: Mechanisms and therapeutic opportunities. Cell Death Dis. 2024, 15, 556. [Google Scholar] [CrossRef]
  36. Agostini, F.; Bisaglia, M.; Plotegher, N. Linking ROS Levels to Autophagy: The Key Role of AMPK. Antioxidants 2023, 12, 1406. [Google Scholar] [CrossRef]
  37. Pathak, T.; Benson, J.C.; Tang, P.W.; Trebak, M.; Hempel, N. Crosstalk between calcium and reactive oxygen species signaling in cancer revisited. Cell Calcium 2025, 127, 103014. [Google Scholar] [CrossRef]
  38. Sies, H.; Mailloux, R.J.; Jakob, U. Fundamentals of redox regulation in biology. Nat. Rev. Mol. Cell Biol. 2024, 25, 701–719. [Google Scholar] [CrossRef]
  39. Jackson, B.T.; Finley, L.W.S. Metabolic regulation of the hallmarks of stem cell biology. Cell Stem Cell 2024, 31, 161–180. [Google Scholar] [CrossRef]
  40. Zhou, J.; Li, X.Y.; Liu, Y.J.; Feng, J.; Wu, Y.; Shen, H.M.; Lu, G.D. Full-coverage regulations of autophagy by ROS: From induction to maturation. Autophagy 2022, 18, 1240–1255. [Google Scholar] [CrossRef]
  41. Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef] [PubMed]
  42. Zhang, Y.; Wang, Y.; Wen, W.; Shi, Z.; Gu, Q.; Ahammed, G.J.; Cao, K.; Shah Jahan, M.; Shu, S.; Wang, J.; et al. Hydrogen peroxide mediates spermidine-induced autophagy to alleviate salt stress in cucumber. Autophagy 2021, 17, 2876–2890. [Google Scholar] [CrossRef] [PubMed]
  43. Xiao, B.; Kuruvilla, J.; Tan, E.K. Mitophagy and reactive oxygen species interplay in Parkinson’s disease. NPJ Parkinsons Dis. 2022, 8, 135. [Google Scholar] [CrossRef] [PubMed]
  44. Ohnishi, Y.; Tsuji, D.; Itoh, K. Oxidative Stress Impairs Autophagy via Inhibition of Lysosomal Transport of VAMP8. Biol. Pharm. Bull. 2022, 45, 1609–1615. [Google Scholar] [CrossRef]
  45. Li, B.; Ming, H.; Qin, S.; Nice, E.C.; Dong, J.; Du, Z.; Huang, C. Redox regulation: Mechanisms, biology and therapeutic targets in diseases. Signal Transduct. Target. Ther. 2025, 10, 72. [Google Scholar] [CrossRef]
  46. Botanska, B.; Dovinova, I.; Barancik, M. The Interplay between Autophagy and Redox Signaling in Cardiovascular Diseases. Cells 2022, 11, 1203. [Google Scholar] [CrossRef]
  47. Wang, S.; Long, H.; Hou, L.; Feng, B.; Ma, Z.; Wu, Y.; Zeng, Y.; Cai, J.; Zhang, D.W.; Zhao, G. The mitophagy pathway and its implications in human diseases. Signal Transduct. Target. Ther. 2023, 8, 304. [Google Scholar] [CrossRef]
  48. Jeong, S.J.; Oh, G.T. Unbalanced Redox With Autophagy in Cardiovascular Disease. J. Lipid Atheroscler. 2023, 12, 132–151. [Google Scholar] [CrossRef]
  49. Panwar, V.; Singh, A.; Bhatt, M.; Tonk, R.K.; Azizov, S.; Raza, A.S.; Sengupta, S.; Kumar, D.; Garg, M. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct. Target. Ther. 2023, 8, 375. [Google Scholar] [CrossRef]
  50. Barnaba, C.; Broadbent, D.G.; Kaminsky, E.G.; Perez, G.I.; Schmidt, J.C. AMPK regulates phagophore-to-autophagosome maturation. J. Cell Biol. 2024, 223, 202309145. [Google Scholar] [CrossRef]
  51. Zhou, M.; Zhang, H.; Xu, X.; Chen, H.; Qi, B. Association between circulating cell-free mitochondrial DNA and inflammation factors in noninfectious diseases: A systematic review. PLoS ONE 2024, 19, e0289338. [Google Scholar] [CrossRef] [PubMed]
  52. Chen, Y.Q.; Zheng, L.; Zhou, J.; Wang, P.; Wang, L.; Zhang, Y.; Man, Z.S.; Chen, Y.H.; Gu, F.; Niu, G.P. Evaluation of plasma LC3B+ extracellular vesicles as a potential novel diagnostic marker for hepatocellular carcinoma. Int. Immunopharmacol. 2022, 108, 108760. [Google Scholar] [CrossRef] [PubMed]
  53. Dergilev, K.; Gureenkov, A.; Parfyonova, Y. Autophagy as a Guardian of Vascular Niche Homeostasis. Int. J. Mol. Sci. 2024, 25, 10097. [Google Scholar] [CrossRef] [PubMed]
  54. Wai, K.W.; Low, L.E.; Goh, B.H.; Yap, W.H. Nrf2 Connects Cellular Autophagy and Vascular Senescence in Atherosclerosis: A Mini-Review. J. Lipid Atheroscler. 2024, 13, 292–305. [Google Scholar] [CrossRef]
  55. Aman, Y.; Schmauck-Medina, T.; Hansen, M.; Morimoto, R.I.; Simon, A.K.; Bjedov, I.; Palikaras, K.; Simonsen, A.; Johansen, T.; Tavernarakis, N.; et al. Autophagy in healthy aging and disease. Nat. Aging 2021, 1, 634–650. [Google Scholar] [CrossRef]
  56. Klionsky, D.J.; Petroni, G.; Amaravadi, R.K.; Baehrecke, E.H.; Ballabio, A.; Boya, P.; Bravo-San Pedro, J.M.; Cadwell, K.; Cecconi, F.; Choi, A.M.K.; et al. Autophagy in major human diseases. EMBO J. 2021, 40, e108863. [Google Scholar] [CrossRef]
  57. Adriaenssens, E.; Ferrari, L.; Martens, S. Orchestration of selective autophagy by cargo receptors. Curr. Biol. 2022, 32, R1357–R1371. [Google Scholar] [CrossRef]
  58. Kuchitsu, Y.; Taguchi, T. Lysosomal microautophagy: An emerging dimension in mammalian autophagy. Trends Cell Biol. 2024, 34, 606–616. [Google Scholar] [CrossRef]
  59. Sakai, Y.; Oku, M. ATG and ESCRT control multiple modes of microautophagy. FEBS Lett. 2024, 598, 48–58. [Google Scholar] [CrossRef]
  60. Yao, R.; Shen, J. Chaperone-mediated autophagy: Molecular mechanisms, biological functions, and diseases. MedComm 2023, 4, e347. [Google Scholar] [CrossRef]
  61. Xu, D.D.; Du, L.L. Fission Yeast Autophagy Machinery. Cells 2022, 11, 1086. [Google Scholar] [CrossRef]
  62. Jung, C.H.; Seo, M.; Otto, N.M.; Kim, D.H. ULK1 inhibits the kinase activity of mTORC1 and cell proliferation. Autophagy 2011, 7, 1212–1221. [Google Scholar] [CrossRef] [PubMed]
  63. Zhen, Y.; Stenmark, H. Autophagosome Biogenesis. Cells 2023, 12, 668. [Google Scholar] [CrossRef] [PubMed]
  64. Kim, J.; Kundu, M.; Viollet, B.; Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13, 132–141. [Google Scholar] [CrossRef] [PubMed]
  65. Tabata, K.; Imai, K.; Fukuda, K.; Yamamoto, K.; Kunugi, H.; Fujita, T.; Kaminishi, T.; Tischer, C.; Neumann, B.; Reither, S.; et al. Palmitoylation of ULK1 by ZDHHC13 plays a crucial role in autophagy. Nat. Commun. 2024, 15, 7194. [Google Scholar] [CrossRef]
  66. Chen, M.; Nguyen, T.N.; Ren, X.; Khuu, G.; Cook, A.S.I.; Zhao, Y.; Yildiz, A.; Lazarou, M.; Hurley, J.H. Structure and activation of the human autophagy-initiating ULK1C:PI3KC3-C1 supercomplex. Nat. Struct. Mol. Biol. 2025, 123, 345a. [Google Scholar] [CrossRef]
  67. Javed, R.; Mari, M.; Trosdal, E.; Lopes Alberto Duque, T.; Paddar, M.; Allers, L.; Akepati, P.; Mudd, M.H.; Reggiori, F.; Deretic, V. ATG9A controls all stages of autophagosome biogenesis. Autophagy 2025, 21, 1859–1861. [Google Scholar] [CrossRef]
  68. Nahse, V.; Raiborg, C.; Tan, K.W.; Mork, S.; Torgersen, M.L.; Wenzel, E.M.; Nager, M.; Salo, V.T.; Johansen, T.; Ikonen, E.; et al. ATPase activity of DFCP1 controls selective autophagy. Nat. Commun. 2023, 14, 4051. [Google Scholar] [CrossRef]
  69. Nahse, V.; Stenmark, H.; Schink, K.O. Omegasomes control formation, expansion, and closure of autophagosomes. Bioessays 2024, 46, e2400038. [Google Scholar] [CrossRef]
  70. Jian, F.; Wang, S.; Tian, R.; Wang, Y.; Li, C.; Li, Y.; Wang, S.; Fang, C.; Ma, C.; Rong, Y. The STX17-SNAP47-VAMP7/VAMP8 complex is the default SNARE complex mediating autophagosome-lysosome fusion. Cell Res. 2024, 34, 151–168. [Google Scholar] [CrossRef]
  71. Song, X.; Xi, Y.; Dai, M.; Li, T.; Du, S.; Zhu, Y.; Li, M.; Li, Y.; Liu, S.; Ding, X.; et al. STING guides the STX17-SNAP29-VAMP8 complex assembly to control autophagy. Cell Insight 2024, 3, 100147. [Google Scholar] [CrossRef]
  72. Metlagel, Z.; Otomo, C.; Takaesu, G.; Otomo, T. Structural basis of ATG3 recognition by the autophagic ubiquitin-like protein ATG12. Proc. Natl. Acad. Sci. USA 2013, 110, 18844–18849. [Google Scholar] [CrossRef]
  73. Agrotis, A.; von Chamier, L.; Oliver, H.; Kiso, K.; Singh, T.; Ketteler, R. Human ATG4 autophagy proteases counteract attachment of ubiquitin-like LC3/GABARAP proteins to other cellular proteins. J. Biol. Chem. 2019, 294, 12610–12621. [Google Scholar] [CrossRef]
  74. Wu, M.Y.; Li, Z.W.; Lu, J.H. Molecular Modulators and Receptors of Selective Autophagy: Disease Implication and Identification Strategies. Int. J. Biol. Sci. 2024, 20, 751–764. [Google Scholar] [CrossRef] [PubMed]
  75. North, B.J.; Fracchiolla, D.; Ragusa, M.J.; Martens, S.; Shoemaker, C.J. The rapidly expanding role of LC3-interacting regions in autophagy. J. Cell Biol. 2025, 224, 202504076. [Google Scholar] [CrossRef] [PubMed]
  76. Valverde, D.P.; Yu, S.; Boggavarapu, V.; Kumar, N.; Lees, J.A.; Walz, T.; Reinisch, K.M.; Melia, T.J. ATG2 transports lipids to promote autophagosome biogenesis. J. Cell Biol. 2019, 218, 1787–1798. [Google Scholar] [CrossRef] [PubMed]
  77. Dooley, H.C.; Razi, M.; Polson, H.E.; Girardin, S.E.; Wilson, M.I.; Tooze, S.A. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol. Cell 2014, 55, 238–252. [Google Scholar] [CrossRef]
  78. Maeda, S.; Yamamoto, H.; Kinch, L.N.; Garza, C.M.; Takahashi, S.; Otomo, C.; Grishin, N.V.; Forli, S.; Mizushima, N.; Otomo, T. Structure, lipid scrambling activity and role in autophagosome formation of ATG9A. Nat. Struct. Mol. Biol. 2020, 27, 1194–1201. [Google Scholar] [CrossRef]
  79. Lin, X.; Liang, L.; Liao, S.; Li, Y.; Zhou, Y. Progress on multifunctional transmembrane protein ATG9A. Cell Commun. Signal 2025, 23, 314. [Google Scholar] [CrossRef]
  80. Zhou, C.; Ma, K.; Gao, R.; Mu, C.; Chen, L.; Liu, Q.; Luo, Q.; Feng, D.; Zhu, Y.; Chen, Q. Regulation of mATG9 trafficking by Src- and ULK1-mediated phosphorylation in basal and starvation-induced autophagy. Cell Res. 2017, 27, 184–201. [Google Scholar] [CrossRef]
  81. Javed, R.; Mari, M.; Trosdal, E.; Duque, T.; Paddar, M.A.; Allers, L.; Mudd, M.H.; Claude-Taupin, A.; Akepati, P.R.; Hendrix, E.; et al. ATG9A facilitates the closure of mammalian autophagosomes. J. Cell Biol. 2025, 224, e202404047. [Google Scholar] [CrossRef]
  82. Takahashi, Y.; He, H.; Tang, Z.; Hattori, T.; Liu, Y.; Young, M.M.; Serfass, J.M.; Chen, L.; Gebru, M.; Chen, C.; et al. An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure. Nat. Commun. 2018, 9, 2855. [Google Scholar] [CrossRef] [PubMed]
  83. Nath, S.; Dancourt, J.; Shteyn, V.; Puente, G.; Fong, W.M.; Nag, S.; Bewersdorf, J.; Yamamoto, A.; Antonny, B.; Melia, T.J. Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nat. Cell Biol. 2014, 16, 415–424. [Google Scholar] [CrossRef] [PubMed]
  84. Nakatogawa, H.; Ishii, J.; Asai, E.; Ohsumi, Y. Atg4 recycles inappropriately lipidated Atg8 to promote autophagosome biogenesis. Autophagy 2012, 8, 177–186. [Google Scholar] [CrossRef]
  85. Menzies, F.M.; Moreau, K.; Puri, C.; Renna, M.; Rubinsztein, D.C. Measurement of autophagic activity in mammalian cells. Curr. Protoc. Cell Biol. 2012, 54, 15–16. [Google Scholar] [CrossRef]
  86. Ba, Q.; Raghavan, G.; Kiselyov, K.; Yang, G. Whole-Cell Scale Dynamic Organization of Lysosomes Revealed by Spatial Statistical Analysis. Cell Rep. 2018, 23, 3591–3606. [Google Scholar] [CrossRef]
  87. Zhao, Y.G.; Zhang, H. Autophagosome maturation: An epic journey from the ER to lysosomes. J. Cell Biol. 2019, 218, 757–770. [Google Scholar] [CrossRef]
  88. Cason, S.E.; Carman, P.J.; Van Duyne, C.; Goldsmith, J.; Dominguez, R.; Holzbaur, E.L.F. Sequential dynein effectors regulate axonal autophagosome motility in a maturation-dependent pathway. J. Cell Biol. 2021, 220, 202010179. [Google Scholar] [CrossRef]
  89. Wang, L.; Diao, J. VAMP8 phosphorylation regulates lysosome dynamics during autophagy. Autophagy Rep. 2022, 1, 79–82. [Google Scholar] [CrossRef]
  90. Zheng, D.; Tong, M.; Zhang, S.; Pan, Y.; Zhao, Y.; Zhong, Q.; Liu, X. Human YKT6 forms priming complex with STX17 and SNAP29 to facilitate autophagosome-lysosome fusion. Cell Rep. 2024, 43, 113760. [Google Scholar] [CrossRef]
  91. Saji, T.; Endo, M.; Okada, Y.; Minami, Y.; Nishita, M. KIF1C facilitates retrograde transport of lysosomes through Hook3 and dynein. Commun. Biol. 2024, 7, 1305. [Google Scholar] [CrossRef]
  92. Shin, H.R.; Zoncu, R. The Lysosome at the Intersection of Cellular Growth and Destruction. Dev. Cell 2020, 54, 226–238. [Google Scholar] [CrossRef] [PubMed]
  93. Yang, C.; Wang, X. Lysosome biogenesis: Regulation and functions. J. Cell Biol. 2021, 220, 202102001. [Google Scholar] [CrossRef] [PubMed]
  94. Settembre, C.; Di Malta, C.; Polito, V.A.; Garcia Arencibia, M.; Vetrini, F.; Erdin, S.; Erdin, S.U.; Huynh, T.; Medina, D.; Colella, P.; et al. TFEB links autophagy to lysosomal biogenesis. Science 2011, 332, 1429–1433. [Google Scholar] [CrossRef] [PubMed]
  95. Ma, L.; Han, T.; Zhan, Y.A. Mechanism and role of mitophagy in the development of severe infection. Cell Death Discov. 2024, 10, 88. [Google Scholar] [CrossRef]
  96. Kablak-Ziembicka, A.; Badacz, R.; Okarski, M.; Wawak, M.; Przewlocki, T.; Podolec, J. Cardiac microRNAs: Diagnostic and therapeutic potential. Arch. Med. Sci. 2023, 19, 1360–1381. [Google Scholar] [CrossRef]
  97. Amaravadi, R.K.; Kimmelman, A.C.; Debnath, J. Targeting Autophagy in Cancer: Recent Advances and Future Directions. Cancer Discov. 2019, 9, 1167–1181. [Google Scholar] [CrossRef]
  98. Ondaro, J.; Hernandez-Eguiazu, H.; Garciandia-Arcelus, M.; Loera-Valencia, R.; Rodriguez-Gomez, L.; Jimenez-Zuniga, A.; Goikolea, J.; Rodriguez-Rodriguez, P.; Ruiz-Martinez, J.; Moreno, F.; et al. Defects of Nutrient Signaling and Autophagy in Neurodegeneration. Front. Cell Dev. Biol. 2022, 10, 836196. [Google Scholar] [CrossRef]
  99. Kench, U.; Sologova, S.; Smolyarchuk, E.; Prassolov, V.; Spirin, P. Pharmaceutical Agents for Targeting Autophagy and Their Applications in Clinics. Pharmaceuticals 2024, 17, 1355. [Google Scholar] [CrossRef]
  100. Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef]
  101. Okoye, C.N.; Koren, S.A.; Wojtovich, A.P. Mitochondrial complex I ROS production and redox signaling in hypoxia. Redox Biol. 2023, 67, 102926. [Google Scholar] [CrossRef]
  102. Goncalves, R.L.S.; Watson, M.A.; Wong, H.S.; Orr, A.L.; Brand, M.D. The use of site-specific suppressors to measure the relative contributions of different mitochondrial sites to skeletal muscle superoxide and hydrogen peroxide production. Redox Biol. 2020, 28, 101341. [Google Scholar] [CrossRef]
  103. Kozlov, A.V.; Javadov, S.; Sommer, N. Cellular ROS and Antioxidants: Physiological and Pathological Role. Antioxidants 2024, 13, 602. [Google Scholar] [CrossRef] [PubMed]
  104. Liu, J.; Han, X.; Zhang, T.; Tian, K.; Li, Z.; Luo, F. Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: From mechanism to therapy. J. Hematol. Oncol. 2023, 16, 116. [Google Scholar] [CrossRef] [PubMed]
  105. Eleutherio, E.C.A.; Silva Magalhaes, R.S.; de Araujo Brasil, A.; Monteiro Neto, J.R.; de Holanda Paranhos, L. SOD1, more than just an antioxidant. Arch. Biochem. Biophys. 2021, 697, 108701. [Google Scholar] [CrossRef] [PubMed]
  106. Azadmanesh, J.; Slobodnik, K.; Struble, L.R.; Lutz, W.E.; Coates, L.; Weiss, K.L.; Myles, D.A.A.; Kroll, T.; Borgstahl, G.E.O. Revealing the atomic and electronic mechanism of human manganese superoxide dismutase product inhibition. Nat. Commun. 2024, 15, 5973. [Google Scholar] [CrossRef]
  107. Thomas, C.; Mackey, M.M.; Diaz, A.A.; Cox, D.P. Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: Implications for diseases associated with iron accumulation. Redox Rep. 2009, 14, 102–108. [Google Scholar] [CrossRef]
  108. Saraev, D.D.; Pratt, D.A. Reactions of lipid hydroperoxides and how they may contribute to ferroptosis sensitivity. Curr. Opin. Chem. Biol. 2024, 81, 102478. [Google Scholar] [CrossRef]
  109. Ferrer-Sueta, G.; Campolo, N.; Trujillo, M.; Bartesaghi, S.; Carballal, S.; Romero, N.; Alvarez, B.; Radi, R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem. Rev. 2018, 118, 1338–1408. [Google Scholar] [CrossRef]
  110. Prolo, C.; Piacenza, L.; Radi, R. Peroxynitrite: A multifaceted oxidizing and nitrating metabolite. Curr. Opin. Chem. Biol. 2024, 80, 102459. [Google Scholar] [CrossRef]
  111. Griswold-Prenner, I.; Kashyap, A.K.; Mazhar, S.; Hall, Z.W.; Fazelinia, H.; Ischiropoulos, H. Unveiling the human nitroproteome: Protein tyrosine nitration in cell signaling and cancer. J. Biol. Chem. 2023, 299, 105038. [Google Scholar] [CrossRef]
  112. Dent, M.R.; DeMartino, A.W. Nitric oxide and thiols: Chemical biology, signalling paradigms and vascular therapeutic potential. Br. J. Pharmacol. 2023, 1–19. [Google Scholar] [CrossRef] [PubMed]
  113. Moller, M.N.; Vitturi, D.A. The chemical biology of dinitrogen trioxide. Redox Biochem. Chem. 2024, 8, 100026. [Google Scholar] [CrossRef] [PubMed]
  114. Gomes, F.; Turano, H.; Haddad, L.A.; Netto, L.E.S. Human mitochondrial peroxiredoxin Prdx3 is dually localized in the intermembrane space and matrix subcompartments. Redox Biol. 2024, 78, 103436. [Google Scholar] [CrossRef] [PubMed]
  115. Cardozo, G.; Mastrogiovanni, M.; Zeida, A.; Viera, N.; Radi, R.; Reyes, A.M.; Trujillo, M. Mitochondrial Peroxiredoxin 3 Is Rapidly Oxidized and Hyperoxidized by Fatty Acid Hydroperoxides. Antioxidants 2023, 12, 408. [Google Scholar] [CrossRef]
  116. Handy, D.E.; Loscalzo, J. The role of glutathione peroxidase-1 in health and disease. Free Radic. Biol. Med. 2022, 188, 146–161. [Google Scholar] [CrossRef]
  117. Kameritsch, P.; Singer, M.; Nuernbergk, C.; Rios, N.; Reyes, A.M.; Schmidt, K.; Kirsch, J.; Schneider, H.; Muller, S.; Pogoda, K.; et al. The mitochondrial thioredoxin reductase system (TrxR2) in vascular endothelium controls peroxynitrite levels and tissue integrity. Proc. Natl. Acad. Sci. USA 2021, 118, 1921828118. [Google Scholar] [CrossRef]
  118. Anwar, S.; Alrumaihi, F.; Sarwar, T.; Babiker, A.Y.; Khan, A.A.; Prabhu, S.V.; Rahmani, A.H. Exploring Therapeutic Potential of Catalase: Strategies in Disease Prevention and Management. Biomolecules 2024, 14, 697. [Google Scholar] [CrossRef]
  119. Chen, T.H.; Wang, H.C.; Chang, C.J.; Lee, S.Y. Mitochondrial Glutathione in Cellular Redox Homeostasis and Disease Manifestation. Int. J. Mol. Sci. 2024, 25, 1314. [Google Scholar] [CrossRef]
  120. Liu, H.; Wang, S.; Wang, J.; Guo, X.; Song, Y.; Fu, K.; Gao, Z.; Liu, D.; He, W.; Yang, L.L. Energy metabolism in health and diseases. Signal Transduct. Target. Ther. 2025, 10, 69. [Google Scholar] [CrossRef]
  121. Francisco, A.; Figueira, T.R.; Castilho, R.F. Mitochondrial NAD(P)+ Transhydrogenase: From Molecular Features to Physiology and Disease. Antioxid. Redox Signal 2022, 36, 864–884. [Google Scholar] [CrossRef] [PubMed]
  122. Chandel, N.S. NADPH-The Forgotten Reducing Equivalent. Cold Spring Harb. Perspect. Biol. 2021, 13, 40550. [Google Scholar] [CrossRef] [PubMed]
  123. Chen, Y.; Azad, M.B.; Gibson, S.B. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ. 2009, 16, 1040–1052. [Google Scholar] [CrossRef] [PubMed]
  124. Scherz-Shouval, R.; Shvets, E.; Fass, E.; Shorer, H.; Gil, L.; Elazar, Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007, 26, 1749–1760. [Google Scholar] [CrossRef]
  125. Sharma, P.; Kaushal, N.; Saleth, L.R.; Ghavami, S.; Dhingra, S.; Kaur, P. Oxidative stress-induced apoptosis and autophagy: Balancing the contrary forces in spermatogenesis. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 1869, 166742. [Google Scholar] [CrossRef]
  126. Carretero-Fernandez, M.; Cabrera-Serrano, A.J.; Sanchez-Maldonado, J.M.; Ruiz-Duran, L.; Jimenez-Romera, F.; Garcia-Verdejo, F.J.; Gonzalez-Olmedo, C.; Cardus, A.; Diaz-Beltran, L.; Gutierrez-Bautista, J.F.; et al. Autophagy and oxidative stress in solid tumors: Mechanisms and therapeutic opportunities. Crit. Rev. Oncol. Hematol. 2025, 212, 104820. [Google Scholar] [CrossRef]
  127. Russell, R.C.; Tian, Y.; Yuan, H.; Park, H.W.; Chang, Y.Y.; Kim, J.; Kim, H.; Neufeld, T.P.; Dillin, A.; Guan, K.L. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 2013, 15, 741–750. [Google Scholar] [CrossRef]
  128. Medina, D.L.; Di Paola, S.; Peluso, I.; Armani, A.; De Stefani, D.; Venditti, R.; Montefusco, S.; Scotto-Rosato, A.; Prezioso, C.; Forrester, A.; et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat. Cell Biol. 2015, 17, 288–299. [Google Scholar] [CrossRef]
  129. Hamasaki, M.; Furuta, N.; Matsuda, A.; Nezu, A.; Yamamoto, A.; Fujita, N.; Oomori, H.; Noda, T.; Haraguchi, T.; Hiraoka, Y.; et al. Autophagosomes form at ER-mitochondria contact sites. Nature 2013, 495, 389–393. [Google Scholar] [CrossRef]
  130. Ji, C.; Zhang, Z.; Li, Z.; She, X.; Wang, X.; Li, B.; Xu, X.; Song, D.; Zhang, D. Mitochondria-Associated Endoplasmic Reticulum Membranes: Inextricably Linked with Autophagy Process. Oxid. Med. Cell Longev. 2022, 2022, 7086807. [Google Scholar] [CrossRef]
  131. Jimenez-Loygorri, J.I.; Villarejo-Zori, B.; Viedma-Poyatos, A.; Zapata-Munoz, J.; Benitez-Fernandez, R.; Frutos-Lison, M.D.; Tomas-Barberan, F.A.; Espin, J.C.; Area-Gomez, E.; Gomez-Duran, A.; et al. Mitophagy curtails cytosolic mtDNA-dependent activation of cGAS/STING inflammation during aging. Nat. Commun. 2024, 15, 830. [Google Scholar] [CrossRef]
  132. Zhong, W.; Rao, Z.; Xu, J.; Sun, Y.; Hu, H.; Wang, P.; Xia, Y.; Pan, X.; Tang, W.; Chen, Z.; et al. Defective mitophagy in aged macrophages promotes mitochondrial DNA cytosolic leakage to activate STING signaling during liver sterile inflammation. Aging Cell 2022, 21, e13622. [Google Scholar] [CrossRef]
  133. Yoshii, A.; McMillen, T.S.; Wang, Y.; Zhou, B.; Chen, H.; Banerjee, D.; Herrero, M.; Wang, P.; Muraoka, N.; Wang, W.; et al. Blunted Cardiac Mitophagy in Response to Metabolic Stress Contributes to HFpEF. Circ. Res. 2024, 135, 1004–1017. [Google Scholar] [CrossRef] [PubMed]
  134. An, X.; Ma, X.; Liu, H.; Song, J.; Wei, T.; Zhang, R.; Zhan, X.; Li, H.; Zhou, J. Inhibition of PDGFRbeta alleviates endothelial cell apoptotic injury caused by DRP-1 overexpression and mitochondria fusion failure after mitophagy. Cell Death Dis. 2023, 14, 756. [Google Scholar] [CrossRef] [PubMed]
  135. Pescatore, L.A.; Gamarra, L.F.; Liberman, M. Multifaceted Mechanisms of Vascular Calcification in Aging. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1307–1316. [Google Scholar] [CrossRef] [PubMed]
  136. Wang, X.; Musunuru, K. A common coding variant in BAG3 protects from heart failure. Nat. Cardiovasc. Res. 2023, 2, 609–610. [Google Scholar] [CrossRef]
  137. Ramos, V.M.; Serna, J.D.C.; Vilas-Boas, E.A.; Cabral-Costa, J.V.; Cunha, F.M.; Kataura, T.; Korolchuk, V.I.; Kowaltowski, A.J. Mitochondrial sodium/calcium exchanger (NCLX) regulates basal and starvation-induced autophagy through calcium signaling. FASEB J. 2024, 38, e23454. [Google Scholar] [CrossRef]
  138. Zhang, J.; Peng, Y.; Fu, W.; Wang, R.; Cao, J.; Li, S.; Tian, X.; Li, Z.; Hua, C.; Zhai, Y.; et al. PLEKHM2 deficiency induces impaired mitochondrial clearance and elevated ROS levels in human iPSC-derived cardiomyocytes. Cell Death Discov. 2024, 10, 142. [Google Scholar] [CrossRef]
  139. Martin, T.G.; Myers, V.D.; Dubey, P.; Dubey, S.; Perez, E.; Moravec, C.S.; Willis, M.S.; Feldman, A.M.; Kirk, J.A. Cardiomyocyte contractile impairment in heart failure results from reduced BAG3-mediated sarcomeric protein turnover. Nat. Commun. 2021, 12, 2942. [Google Scholar] [CrossRef]
  140. Tam, E.; Song, E.; Noskovicova, N.; Hinz, B.; Xu, A.; Sweeney, G. Autophagy deficiency exacerbated hypoxia-reoxygenation induced inflammation and cell death via a mitochondrial DNA/STING/IRF3 pathway. Life Sci. 2024, 358, 123173. [Google Scholar] [CrossRef]
  141. Hu, X.; Li, D.; Chen, W.; Kuang, H.; Yang, D.; Gong, Z.; Long, Y.; Liu, G.; Wang, K.; Xia, M.; et al. Sodium Glucose Transporter 2 Inhibitor Protects Against Heart Failure With Preserved Ejection Fraction: Preclinical “2-Hit” Model Reveals Autophagy Enhancement Via AMP-Activated Protein Kinase/Mammalian Target of Rapamycin Complex 1 Pathway. J. Am. Heart Assoc. 2025, 14, e040093. [Google Scholar] [CrossRef]
  142. Bielawska, M.; Warszynska, M.; Stefanska, M.; Blyszczuk, P. Autophagy in Heart Failure: Insights into Mechanisms and Therapeutic Implications. J. Cardiovasc. Dev. Dis. 2023, 10, 352. [Google Scholar] [CrossRef] [PubMed]
  143. Zhang, J.; Zhao, Y.; Yan, L.; Tan, M.; Jin, Y.; Yin, Y.; Han, L.; Ma, X.; Li, Y.; Yang, T.; et al. Corosolic acid attenuates cardiac ischemia/reperfusion injury through the PHB2/PINK1/parkin/mitophagy pathway. iScience 2024, 27, 110448. [Google Scholar] [CrossRef] [PubMed]
  144. Park, J.M.; Lee, D.H.; Kim, D.H. Redefining the role of AMPK in autophagy and the energy stress response. Nat. Commun. 2023, 14, 2994. [Google Scholar] [CrossRef]
  145. Janaszak-Jasiecka, A.; Ploska, A.; Wieronska, J.M.; Dobrucki, L.W.; Kalinowski, L. Endothelial dysfunction due to eNOS uncoupling: Molecular mechanisms as potential therapeutic targets. Cell Mol. Biol. Lett. 2023, 28, 21. [Google Scholar] [CrossRef]
  146. Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-kappaB in biology and targeted therapy: New insights and translational implications. Signal Transduct. Target. Ther. 2024, 9, 53. [Google Scholar] [CrossRef]
  147. Hu, M.; Ladowski, J.M.; Xu, H. The Role of Autophagy in Vascular Endothelial Cell Health and Physiology. Cells 2024, 13, 825. [Google Scholar] [CrossRef]
  148. Nivoit, P.; Mathivet, T.; Wu, J.; Salemkour, Y.; Sankar, D.S.; Baudrie, V.; Bourreau, J.; Guihot, A.L.; Vessieres, E.; Lemitre, M.; et al. Autophagy protein 5 controls flow-dependent endothelial functions. Cell Mol. Life Sci. 2023, 80, 210. [Google Scholar] [CrossRef]
  149. Ajoolabady, A.; Pratico, D.; Lin, L.; Mantzoros, C.S.; Bahijri, S.; Tuomilehto, J.; Ren, J. Inflammation in atherosclerosis: Pathophysiology and mechanisms. Cell Death Dis. 2024, 15, 817. [Google Scholar] [CrossRef]
  150. Rajamaki, K.; Lappalainen, J.; Oorni, K.; Valimaki, E.; Matikainen, S.; Kovanen, P.T.; Eklund, K.K. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: A novel link between cholesterol metabolism and inflammation. PLoS ONE 2010, 5, e11765. [Google Scholar] [CrossRef]
  151. Duewell, P.; Kono, H.; Rayner, K.J.; Sirois, C.M.; Vladimer, G.; Bauernfeind, F.G.; Abela, G.S.; Franchi, L.; Nunez, G.; Schnurr, M.; et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010, 464, 1357–1361. [Google Scholar] [CrossRef]
  152. Ouimet, M.; Franklin, V.; Mak, E.; Liao, X.; Tabas, I.; Marcel, Y.L. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab. 2011, 13, 655–667. [Google Scholar] [CrossRef]
  153. Zhou, X.; Xu, S.N.; Yuan, S.T.; Lei, X.; Sun, X.; Xing, L.; Li, H.J.; He, C.X.; Qin, W.; Zhao, D.; et al. Multiple functions of autophagy in vascular calcification. Cell Biosci. 2021, 11, 159. [Google Scholar] [CrossRef] [PubMed]
  154. Yu, Q.; Liu, J.X.; Zheng, X.; Yan, X.; Zhao, P.; Yin, C.; Li, W.; Song, Z. Sox9 mediates autophagy-dependent vascular smooth muscle cell phenotypic modulation and transplant arteriosclerosis. iScience 2022, 25, 105161. [Google Scholar] [CrossRef] [PubMed]
  155. Shi, D.; Ding, J.; Xie, S.; Huang, L.; Zhang, H.; Chen, X.; Ren, X.; Zhou, S.; He, H.; Ma, W.; et al. Myocardin/microRNA-30a/Beclin1 signaling controls the phenotypic modulation of vascular smooth muscle cells by regulating autophagy. Cell Death Dis. 2022, 13, 121. [Google Scholar] [CrossRef] [PubMed]
  156. Scalabrin, S.; Cagnin, S. Cardiovascular diseases in the elderly: Possibilities for modulating autophagy using non-coding RNAs. Front. Cell Dev. Biol. 2025, 13, 1520850. [Google Scholar] [CrossRef]
  157. Im, G.B.; Melero-Martin, J.M. Mitochondrial transfer in endothelial cells and vascular health. Trends Cell Biol. 2025, S0962-8924. [Google Scholar] [CrossRef]
  158. Joshi, D.; Coon, B.G.; Chakraborty, R.; Deng, H.; Yang, Z.; Babar, M.U.; Fernandez-Tussy, P.; Meredith, E.; Attanasio, J.; Joshi, N.; et al. Endothelial gamma-protocadherins inhibit KLF2 and KLF4 to promote atherosclerosis. Nat. Cardiovasc. Res. 2024, 3, 1035–1048. [Google Scholar] [CrossRef]
  159. Bharath, L.P.; Cho, J.M.; Park, S.K.; Ruan, T.; Li, Y.; Mueller, R.; Bean, T.; Reese, V.; Richardson, R.S.; Cai, J.; et al. Endothelial Cell Autophagy Maintains Shear Stress-Induced Nitric Oxide Generation via Glycolysis-Dependent Purinergic Signaling to Endothelial Nitric Oxide Synthase. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1646–1656. [Google Scholar] [CrossRef]
  160. Grootaert, M.O.J.; Moulis, M.; Roth, L.; Martinet, W.; Vindis, C.; Bennett, M.R.; De Meyer, G.R.Y. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc. Res. 2018, 114, 622–634. [Google Scholar] [CrossRef]
  161. Lai, Z.; Wang, C.; Liu, X.; Sun, H.; Guo, Z.; Shao, J.; Li, K.; Chen, J.; Wang, J.; Lei, X.; et al. Characterization of the proteome of stable and unstable carotid atherosclerotic plaques using data-independent acquisition mass spectrometry. J. Transl. Med. 2024, 22, 247. [Google Scholar] [CrossRef] [PubMed]
  162. Zhao, Y.; Wang, Z.; Zhang, W.; Zhang, L. MicroRNAs play an essential role in autophagy regulation in various disease phenotypes. Biofactors 2019, 45, 844–856. [Google Scholar] [CrossRef] [PubMed]
  163. Ortuno-Sahagun, D.; Enterria-Rosales, J.; Izquierdo, V.; Grinan-Ferre, C.; Pallas, M.; Gonzalez-Castillo, C. The Role of the miR-17-92 Cluster in Autophagy and Atherosclerosis Supports Its Link to Lysosomal Storage Diseases. Cells 2022, 11, 2991. [Google Scholar] [CrossRef] [PubMed]
  164. Diez-Diez, M.; Ramos-Neble, B.L.; de la Barrera, J.; Silla-Castro, J.C.; Quintas, A.; Vazquez, E.; Rey-Martin, M.A.; Izzi, B.; Sanchez-Garcia, L.; Garcia-Lunar, I.; et al. Unidirectional association of clonal hematopoiesis with atherosclerosis development. Nat. Med. 2024, 30, 2857–2866. [Google Scholar] [CrossRef]
  165. Fuster, J.J.; MacLauchlan, S.; Zuriaga, M.A.; Polackal, M.N.; Ostriker, A.C.; Chakraborty, R.; Wu, C.L.; Sano, S.; Muralidharan, S.; Rius, C.; et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 2017, 355, 842–847. [Google Scholar] [CrossRef]
  166. Oren, O.; Small, A.M.; Libby, P. Clonal hematopoiesis and atherosclerosis. J. Clin. Investig. 2024, 134, 180066. [Google Scholar] [CrossRef]
  167. Madrigal-Matute, J.; de Bruijn, J.; van Kuijk, K.; Riascos-Bernal, D.F.; Diaz, A.; Tasset, I.; Martin-Segura, A.; Gijbels, M.J.J.; Sander, B.; Kaushik, S.; et al. Protective role of chaperone-mediated autophagy against atherosclerosis. Proc. Natl. Acad. Sci. USA 2022, 119, e2121133119. [Google Scholar] [CrossRef]
  168. Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
  169. Tardif, J.C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N. Engl. J. Med. 2019, 381, 2497–2505. [Google Scholar] [CrossRef]
  170. Nidorf, S.M.; Fiolet, A.T.L.; Mosterd, A.; Eikelboom, J.W.; Schut, A.; Opstal, T.S.J.; The, S.H.K.; Xu, X.F.; Ireland, M.A.; Lenderink, T.; et al. Colchicine in Patients with Chronic Coronary Disease. N. Engl. J. Med. 2020, 383, 1838–1847. [Google Scholar] [CrossRef]
  171. Duan, Q.; Yang, W.; Zhu, X.; Feng, Z.; Song, J.; Xu, X.; Kong, M.; Mao, J.; Shen, J.; Deng, Y.; et al. Deptor protects against myocardial ischemia-reperfusion injury by regulating the mTOR signaling and autophagy. Cell Death Discov. 2024, 10, 508. [Google Scholar] [CrossRef]
  172. Al-Salam, S.; Hashmi, S.; Jagadeesh, G.S.; Sudhadevi, M.; Awwad, A.; Nemmar, A. Early Cardiac Ischemia-Reperfusion Injury: Interactions of Autophagy with Galectin-3 and Oxidative Stress. Biomedicines 2024, 12, 2474. [Google Scholar] [CrossRef] [PubMed]
  173. Chouchani, E.T.; Pell, V.R.; Gaude, E.; Aksentijevic, D.; Sundier, S.Y.; Robb, E.L.; Logan, A.; Nadtochiy, S.M.; Ord, E.N.J.; Smith, A.C.; et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014, 515, 431–435. [Google Scholar] [CrossRef] [PubMed]
  174. Matsushima, S.; Sadoshima, J. Yin and Yang of NADPH Oxidases in Myocardial Ischemia-Reperfusion. Antioxidants 2022, 11, 1069. [Google Scholar] [CrossRef] [PubMed]
  175. Li, Y.; Wu, H.; Zhang, S.; Zhou, G.; Zhang, D.; Yang, Q.; Liu, Y.; Huang, X. Research Progress on the Mechanism of Lysosome in Myocardial Ischemia-Reperfusion Injury Based on Autophagy. Rev. Cardiovasc. Med. 2024, 25, 113. [Google Scholar] [CrossRef]
  176. Martin, J.L.; Costa, A.S.H.; Gruszczyk, A.V.; Beach, T.E.; Allen, F.M.; Prag, H.A.; Hinchy, E.C.; Mahbubani, K.; Hamed, M.; Tronci, L.; et al. Succinate accumulation drives ischaemia-reperfusion injury during organ transplantation. Nat. Metab. 2019, 1, 966–974. [Google Scholar] [CrossRef]
  177. Tabata Fukushima, C.; Dancil, I.S.; Clary, H.; Shah, N.; Nadtochiy, S.M.; Brookes, P.S. Reactive oxygen species generation by reverse electron transfer at mitochondrial complex I under simulated early reperfusion conditions. Redox Biol. 2024, 70, 103047. [Google Scholar] [CrossRef]
  178. He, W.; McCarroll, C.S.; Nather, K.; Ford, K.; Mangion, K.; Riddell, A.; O’Toole, D.; Zaeri, A.; Corcoran, D.; Carrick, D.; et al. Inhibition of myocardial cathepsin-L release during reperfusion following myocardial infarction improves cardiac function and reduces infarct size. Cardiovasc. Res. 2022, 118, 1535–1547. [Google Scholar] [CrossRef]
  179. Tang, L.; Zhang, W.; Liao, Y.; Wang, W.; Deng, X.; Wang, C.; Shi, W. Autophagy: A double-edged sword in ischemia-reperfusion injury. Cell Mol. Biol. Lett. 2025, 30, 42. [Google Scholar] [CrossRef]
  180. Nishida, K.; Kyoi, S.; Yamaguchi, O.; Sadoshima, J.; Otsu, K. The role of autophagy in the heart. Cell Death Differ. 2009, 16, 31–38. [Google Scholar] [CrossRef]
  181. Gu, S.; Tan, J.; Li, Q.; Liu, S.; Ma, J.; Zheng, Y.; Liu, J.; Bi, W.; Sha, P.; Li, X.; et al. Downregulation of LAPTM4B Contributes to the Impairment of the Autophagic Flux via Unopposed Activation of mTORC1 Signaling During Myocardial Ischemia/Reperfusion Injury. Circ. Res. 2020, 127, e148–e165. [Google Scholar] [CrossRef]
  182. Zhao, X.; Wang, Z.; Wang, L.; Jiang, T.; Dong, D.; Sun, M. The PINK1/Parkin signaling pathway-mediated mitophagy: A forgotten protagonist in myocardial ischemia/reperfusion injury. Pharmacol. Res. 2024, 209, 107466. [Google Scholar] [CrossRef]
  183. Liu, R.; Xu, C.; Zhang, W.; Cao, Y.; Ye, J.; Li, B.; Jia, S.; Weng, L.; Liu, Y.; Liu, L.; et al. FUNDC1-mediated mitophagy and HIF1alpha activation drives pulmonary hypertension during hypoxia. Cell Death Dis. 2022, 13, 634. [Google Scholar] [CrossRef] [PubMed]
  184. Du, J.; Li, H.; Song, J.; Wang, T.; Dong, Y.; Zhan, A.; Li, Y.; Liang, G. AMPK Activation Alleviates Myocardial Ischemia-Reperfusion Injury by Regulating Drp1-Mediated Mitochondrial Dynamics. Front. Pharmacol. 2022, 13, 862204. [Google Scholar] [CrossRef] [PubMed]
  185. Zhao, B.H.; Ruze, A.; Zhao, L.; Li, Q.L.; Tang, J.; Xiefukaiti, N.; Gai, M.T.; Deng, A.X.; Shan, X.F.; Gao, X.M. The role and mechanisms of microvascular damage in the ischemic myocardium. Cell Mol. Life Sci. 2023, 80, 341. [Google Scholar] [CrossRef] [PubMed]
  186. Liu, W.; Hu, J.; Wang, Y.; Gan, T.; Ding, Y.; Wang, X.; Xu, Q.; Xiong, J.; Xiong, N.; Lu, S.; et al. 9-PAHSA ameliorates microvascular damage during cardiac ischaemia/reperfusion injury by promoting LKB1/AMPK/ULK1-mediated autophagy-dependent STING degradation. Phytomedicine 2025, 136, 156241. [Google Scholar] [CrossRef]
  187. Zhou, D.; Yang, Y.; Han, R.; He, J.; Liu, D.; Xia, W.; Cai, Y.; Perek, B.; Xia, Z. Ferroptosis and its Potential Determinant Role in Myocardial Susceptibility to Ischemia/Reperfusion Injury in Diabetes. Rev. Cardiovasc. Med. 2024, 25, 360. [Google Scholar] [CrossRef]
  188. Adameova, A.; Horvath, C.; Abdul-Ghani, S.; Varga, Z.V.; Suleiman, M.S.; Dhalla, N.S. Interplay of Oxidative Stress and Necrosis-like Cell Death in Cardiac Ischemia/Reperfusion Injury: A Focus on Necroptosis. Biomedicines 2022, 10, 127. [Google Scholar] [CrossRef]
  189. de Waha, S.; Patel, M.R.; Granger, C.B.; Ohman, E.M.; Maehara, A.; Eitel, I.; Ben-Yehuda, O.; Jenkins, P.; Thiele, H.; Stone, G.W. Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: An individual patient data pooled analysis from seven randomized trials. Eur. Heart J. 2017, 38, 3502–3510. [Google Scholar] [CrossRef]
  190. Prag, H.A.; Aksentijevic, D.; Dannhorn, A.; Giles, A.V.; Mulvey, J.F.; Sauchanka, O.; Du, L.; Bates, G.; Reinhold, J.; Kula-Alwar, D.; et al. Ischemia-Selective Cardioprotection by Malonate for Ischemia/Reperfusion Injury. Circ. Res. 2022, 131, 528–541. [Google Scholar] [CrossRef]
  191. Figueroa-Juarez, E. Uncovering the origin of oxidative damage in ischaemia-reperfusion injury in the heart. Nat. Rev. Endocrinol. 2023, 19, 560. [Google Scholar] [CrossRef] [PubMed]
  192. Stiermaier, T.; Thiele, H.; Eitel, I. Coronary Microvascular Obstruction: Key Factor in the Prognosis of ST-Segment-Elevation Myocardial Infarction. Circ. Cardiovasc. Imaging 2017, 10, e006568. [Google Scholar] [CrossRef] [PubMed]
  193. Garcia-de la Cruz, D.D.; Juarez-Rojop, I.E.; Tovilla-Zarate, C.A.; Nicolini, H.; Genis-Mendoza, A.D. Circulating Cell-Free Mitochondrial DNA in Plasma of Individuals with Schizophrenia and Cognitive Deficit in Mexican Population. Neuropsychiatr. Dis. Treat. 2024, 20, 1757–1765. [Google Scholar] [CrossRef] [PubMed]
  194. Quan, N.; Li, X.; Zhang, J.; Han, Y.; Sun, W.; Ren, D.; Tong, Q.; Li, J. Substrate metabolism regulated by Sestrin2-mTORC1 alleviates pressure overload-induced cardiac hypertrophy in aged heart. Redox Biol. 2020, 36, 101637. [Google Scholar] [CrossRef]
  195. Egan, D.; Kim, J.; Shaw, R.J.; Guan, K.L. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 2011, 7, 643–644. [Google Scholar] [CrossRef]
  196. Zhao, M.; Klionsky, D.J. AMPK-dependent phosphorylation of ULK1 induces autophagy. Cell Metab. 2011, 13, 119–120. [Google Scholar] [CrossRef]
  197. Titus, A.S.; Sung, E.A.; Zablocki, D.; Sadoshima, J. Mitophagy for cardioprotection. Basic Res. Cardiol. 2023, 118, 42. [Google Scholar] [CrossRef]
  198. Jiang, Y.J.; Sun, S.J.; Cao, W.X.; Lan, X.T.; Ni, M.; Fu, H.; Li, D.J.; Wang, P.; Shen, F.M. Excessive ROS production and enhanced autophagy contribute to myocardial injury induced by branched-chain amino acids: Roles for the AMPK-ULK1 signaling pathway and alpha7nAChR. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 165980. [Google Scholar] [CrossRef]
  199. Chen, Y.Y.; Liu, C.X.; Liu, H.X.; Wen, S.Y. The Emerging Roles of Vacuolar-Type ATPase-Dependent Lysosomal Acidification in Cardiovascular Disease. Biomolecules 2025, 15, 525. [Google Scholar] [CrossRef]
  200. Hernandez-Resendiz, S.; Prakash, A.; Loo, S.J.; Semenzato, M.; Chinda, K.; Crespo-Avilan, G.E.; Dam, L.C.; Lu, S.; Scorrano, L.; Hausenloy, D.J. Targeting mitochondrial shape: At the heart of cardioprotection. Basic Res. Cardiol. 2023, 118, 49. [Google Scholar] [CrossRef]
  201. Vasquez-Trincado, C.; Garcia-Carvajal, I.; Pennanen, C.; Parra, V.; Hill, J.A.; Rothermel, B.A.; Lavandero, S. Mitochondrial dynamics, mitophagy and cardiovascular disease. J. Physiol. 2016, 594, 509–525. [Google Scholar] [CrossRef]
  202. Miotto, M.C.; Reiken, S.; Wronska, A.; Yuan, Q.; Dridi, H.; Liu, Y.; Weninger, G.; Tchagou, C.; Marks, A.R. Structural basis for ryanodine receptor type 2 leak in heart failure and arrhythmogenic disorders. Nat. Commun. 2024, 15, 8080. [Google Scholar] [CrossRef]
  203. Lopaschuk, G.D.; Karwi, Q.G.; Tian, R.; Wende, A.R.; Abel, E.D. Cardiac Energy Metabolism in Heart Failure. Circ. Res. 2021, 128, 1487–1513. [Google Scholar] [CrossRef] [PubMed]
  204. Caporizzo, M.A.; Prosser, B.L. The microtubule cytoskeleton in cardiac mechanics and heart failure. Nat. Rev. Cardiol. 2022, 19, 364–378. [Google Scholar] [CrossRef] [PubMed]
  205. La Vecchia, G.; Fumarulo, I.; Caffe, A.; Chiatto, M.; Montone, R.A.; Aspromonte, N. Microvascular Dysfunction across the Spectrum of Heart Failure Pathology: Pathophysiology, Clinical Features and Therapeutic Implications. Int. J. Mol. Sci. 2024, 25, 7628. [Google Scholar] [CrossRef] [PubMed]
  206. Hahn, V.S.; Selvaraj, S.; Sharma, K.; Shah, S.H. Towards Metabolomic-Based Precision Approaches for Classifying and Treating Heart Failure. JACC Basic Transl. Sci. 2024, 9, 1144–1158. [Google Scholar] [CrossRef]
  207. Rosano, G.M.C.; Vitale, C.; Spoletini, I. Precision Cardiology: Phenotype-targeted Therapies for HFmrEF and HFpEF. Int. J. Heart Fail. 2024, 6, 47–55. [Google Scholar] [CrossRef]
  208. Hong, K.N.; Eshraghian, E.A.; Arad, M.; Argiro, A.; Brambatti, M.; Bui, Q.; Caspi, O.; de Frutos, F.; Greenberg, B.; Ho, C.Y.; et al. International Consensus on Differential Diagnosis and Management of Patients With Danon Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2023, 82, 1628–1647. [Google Scholar] [CrossRef]
  209. Chi, C.; Leonard, A.; Knight, W.E.; Beussman, K.M.; Zhao, Y.; Cao, Y.; Londono, P.; Aune, E.; Trembley, M.A.; Small, E.M.; et al. LAMP-2B regulates human cardiomyocyte function by mediating autophagosome-lysosome fusion. Proc. Natl. Acad. Sci. USA 2019, 116, 556–565. [Google Scholar] [CrossRef]
  210. Nishino, I.; Fu, J.; Tanji, K.; Yamada, T.; Shimojo, S.; Koori, T.; Mora, M.; Riggs, J.E.; Oh, S.J.; Koga, Y.; et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 2000, 406, 906–910. [Google Scholar] [CrossRef]
  211. Yerabandi, N.; Kouznetsova, V.L.; Kesari, S.; Tsigelny, I.F. The role of BAG3 in dilated cardiomyopathy and its association with Charcot-Marie-Tooth disease type 2. Acta Myol. 2022, 41, 59–75. [Google Scholar] [CrossRef] [PubMed]
  212. Li, Y.; Liu, Y.; Liu, S.; Gao, M.; Wang, W.; Chen, K.; Huang, L.; Liu, Y. Diabetic vascular diseases: Molecular mechanisms and therapeutic strategies. Signal Transduct. Target. Ther. 2023, 8, 152. [Google Scholar] [CrossRef] [PubMed]
  213. Li, Z.; Chen, J.; Huang, H.; Zhan, Q.; Wang, F.; Chen, Z.; Lu, X.; Sun, G. Post-translational modifications in diabetic cardiomyopathy. J. Cell Mol. Med. 2024, 28, e18158. [Google Scholar] [CrossRef] [PubMed]
  214. Paneque, A.; Fortus, H.; Zheng, J.; Werlen, G.; Jacinto, E. The Hexosamine Biosynthesis Pathway: Regulation and Function. Genes 2023, 14, 933. [Google Scholar] [CrossRef]
  215. Zhang, W.; Feng, C.; Jiang, H. Novel target for treating Alzheimer’s Diseases: Crosstalk between the Nrf2 pathway and autophagy. Ageing Res. Rev. 2021, 65, 101207. [Google Scholar] [CrossRef]
  216. Shan, C.; Wang, Y.; Wang, Y. The Crosstalk between Autophagy and Nrf2 Signaling in Cancer: From Biology to Clinical Applications. Int. J. Biol. Sci. 2024, 20, 6181–6206. [Google Scholar] [CrossRef]
  217. Park, K.; Lim, H.; Kim, J.; Hwang, Y.; Lee, Y.S.; Bae, S.H.; Kim, H.; Kim, H.; Kang, S.W.; Kim, J.Y.; et al. Lysosomal Ca2+-mediated TFEB activation modulates mitophagy and functional adaptation of pancreatic beta-cells to metabolic stress. Nat. Commun. 2022, 13, 1300. [Google Scholar] [CrossRef]
  218. Yan, X.; Yang, L.; Fu, X.; Luo, X.; Wang, C.; Xie, Q.P.; OuYang, F. Transcription factor EB, a promising therapeutic target in cardiovascular disease. PeerJ 2024, 12, e18209. [Google Scholar] [CrossRef]
  219. Rudokas, M.W.; McKay, M.; Toksoy, Z.; Eisen, J.N.; Bogner, M.; Young, L.H.; Akar, F.G. Mitochondrial network remodeling of the diabetic heart: Implications to ischemia related cardiac dysfunction. Cardiovasc. Diabetol. 2024, 23, 261. [Google Scholar] [CrossRef]
  220. Kaludercic, N.; Di Lisa, F. Mitochondrial ROS Formation in the Pathogenesis of Diabetic Cardiomyopathy. Front. Cardiovasc. Med. 2020, 7, 12. [Google Scholar] [CrossRef]
  221. Giraldo-Gonzalez, G.C.; Roman-Gonzalez, A.; Canas, F.; Garcia, A. Molecular Mechanisms of Type 2 Diabetes-Related Heart Disease and Therapeutic Insights. Int. J. Mol. Sci. 2025, 26, 4548. [Google Scholar] [CrossRef]
  222. Panwar, A.; Malik, S.O.; Adib, M.; Lopaschuk, G.D. Cardiac energy metabolism in diabetes: Emerging therapeutic targets and clinical implications. Am. J. Physiol. Heart Circ. Physiol. 2025, 328, H1089–H1112. [Google Scholar] [CrossRef]
  223. Dubois, M.; Boulghobra, D.; Rochebloine, G.; Pallot, F.; Yehya, M.; Bornard, I.; Gayrard, S.; Coste, F.; Walther, G.; Meyer, G.; et al. Hyperglycemia triggers RyR2-dependent alterations of mitochondrial calcium homeostasis in response to cardiac ischemia-reperfusion: Key role of DRP1 activation. Redox Biol. 2024, 70, 103044. [Google Scholar] [CrossRef]
  224. Li, X.; Bi, X. Integrated Control of Fatty Acid Metabolism in Heart Failure. Metabolites 2023, 13, 615. [Google Scholar] [CrossRef] [PubMed]
  225. Ghazal, R.; Wang, M.; Liu, D.; Tschumperlin, D.J.; Pereira, N.L. Cardiac Fibrosis in the Multi-Omics Era: Implications for Heart Failure. Circ. Res. 2025, 136, 773–802. [Google Scholar] [CrossRef] [PubMed]
  226. Guo, Z.; Wang, M.; Ying, X.; Yuan, J.; Wang, C.; Zhang, W.; Tian, S.; Yan, X. Caloric restriction increases the resistance of aged heart to myocardial ischemia/reperfusion injury via modulating AMPK-SIRT(1)-PGC(1a) energy metabolism pathway. Sci. Rep. 2023, 13, 2045. [Google Scholar] [CrossRef]
  227. Shah, I.A.; Ishaq, S.; Lee, S.D.; Wu, B.T. Effects of Exercise Training on Cardiac Mitochondrial Functions in Diabetic Heart: A Systematic Review. Int. J. Mol. Sci. 2024, 26, 8. [Google Scholar] [CrossRef]
  228. Baartscheer, A.; Schumacher, C.A.; Wust, R.C.; Fiolet, J.W.; Stienen, G.J.; Coronel, R.; Zuurbier, C.J. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 2017, 60, 568–573. [Google Scholar] [CrossRef]
  229. Trum, M.; Riechel, J.; Lebek, S.; Pabel, S.; Sossalla, S.T.; Hirt, S.; Arzt, M.; Maier, L.S.; Wagner, S. Empagliflozin inhibits Na+/H+ exchanger activity in human atrial cardiomyocytes. ESC Heart Fail. 2020, 7, 4429–4437. [Google Scholar] [CrossRef]
  230. McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Kober, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Belohlavek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef]
  231. Matsuura, T.R.; Puchalska, P.; Crawford, P.A.; Kelly, D.P. Ketones and the Heart: Metabolic Principles and Therapeutic Implications. Circ. Res. 2023, 132, 882–898. [Google Scholar] [CrossRef]
  232. Gomora-Garcia, J.C.; Montiel, T.; Huttenrauch, M.; Salcido-Gomez, A.; Garcia-Velazquez, L.; Ramiro-Cortes, Y.; Gomora, J.C.; Castro-Obregon, S.; Massieu, L. Effect of the Ketone Body, D-beta-Hydroxybutyrate, on Sirtuin2-Mediated Regulation of Mitochondrial Quality Control and the Autophagy-Lysosomal Pathway. Cells 2023, 12, 486. [Google Scholar] [CrossRef]
  233. Szrok-Jurga, S.; Czumaj, A.; Turyn, J.; Hebanowska, A.; Swierczynski, J.; Sledzinski, T.; Stelmanska, E. The Physiological and Pathological Role of Acyl-CoA Oxidation. Int. J. Mol. Sci. 2023, 24, 14857. [Google Scholar] [CrossRef] [PubMed]
  234. Lamb, R.J.; Griffiths, K.; Lip, G.Y.H.; Sorokin, V.; Frenneaux, M.P.; Feelisch, M.; Madhani, M. ALDH2 polymorphism and myocardial infarction: From alcohol metabolism to redox regulation. Pharmacol. Ther. 2024, 259, 108666. [Google Scholar] [CrossRef] [PubMed]
  235. Li, J.; Shi, X.; Chen, Z.; Xu, J.; Zhao, R.; Liu, Y.; Wen, Y.; Chen, L. Aldehyde dehydrogenase 2 alleviates mitochondrial dysfunction by promoting PGC-1alpha-mediated biogenesis in acute kidney injury. Cell Death Dis. 2023, 14, 45. [Google Scholar] [CrossRef] [PubMed]
  236. Wang, Q.; Hernandez-Ochoa, E.O.; Viswanathan, M.C.; Blum, I.D.; Do, D.C.; Granger, J.M.; Murphy, K.R.; Wei, A.C.; Aja, S.; Liu, N.; et al. CaMKII oxidation is a critical performance/disease trade-off acquired at the dawn of vertebrate evolution. Nat. Commun. 2021, 12, 3175. [Google Scholar] [CrossRef]
  237. Chiang, D.Y.; Lahiri, S.; Wang, G.; Karch, J.; Wang, M.C.; Jung, S.Y.; Heck, A.J.R.; Scholten, A.; Wehrens, X.H.T. Phosphorylation-Dependent Interactome of Ryanodine Receptor Type 2 in the Heart. Proteomes 2021, 9, 27. [Google Scholar] [CrossRef]
  238. Haugsten Hansen, M.; Sadredini, M.; Hasic, A.; Anderson, M.E.; Sjaastad, I.; Korseberg Stokke, M. CaMKII and reactive oxygen species contribute to early reperfusion arrhythmias, but oxidation of CaMKIIdelta at methionines 281/282 is not a determining factor. J. Mol. Cell Cardiol. 2023, 175, 49–61. [Google Scholar] [CrossRef]
  239. Erickson, J.R.; Joiner, M.L.; Guan, X.; Kutschke, W.; Yang, J.; Oddis, C.V.; Bartlett, R.K.; Lowe, J.S.; O’Donnell, S.E.; Aykin-Burns, N.; et al. A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 2008, 133, 462–474. [Google Scholar] [CrossRef]
  240. Hamilton, S.; Terentyev, D. ER stress and calcium-dependent arrhythmias. Front. Physiol. 2022, 13, 1041940. [Google Scholar] [CrossRef]
  241. Murphy, E.; Liu, J.C. Mitochondrial calcium and reactive oxygen species in cardiovascular disease. Cardiovasc. Res. 2023, 119, 1105–1116. [Google Scholar] [CrossRef] [PubMed]
  242. Hamilton, S.; Terentyeva, R.; Clements, R.T.; Belevych, A.E.; Terentyev, D. Sarcoplasmic reticulum-mitochondria communication; implications for cardiac arrhythmia. J. Mol. Cell Cardiol. 2021, 156, 105–113. [Google Scholar] [CrossRef] [PubMed]
  243. Glynn, P.; Musa, H.; Wu, X.; Unudurthi, S.D.; Little, S.; Qian, L.; Wright, P.J.; Radwanski, P.B.; Gyorke, S.; Mohler, P.J.; et al. Voltage-Gated Sodium Channel Phosphorylation at Ser571 Regulates Late Current, Arrhythmia, and Cardiac Function In Vivo. Circulation 2015, 132, 567–577. [Google Scholar] [CrossRef] [PubMed]
  244. Howard, T.; Greer-Short, A.; Satroplus, T.; Patel, N.; Nassal, D.; Mohler, P.J.; Hund, T.J. CaMKII-dependent late Na+ current increases electrical dispersion and arrhythmia in ischemia-reperfusion. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H794–H801. [Google Scholar] [CrossRef]
  245. Horvath, B.; Szentandrassy, N.; Almassy, J.; Dienes, C.; Kovacs, Z.M.; Nanasi, P.P.; Banyasz, T. Late Sodium Current of the Heart: Where Do We Stand and Where Are We Going? Pharmaceuticals 2022, 15, 231. [Google Scholar] [CrossRef]
  246. Di Diego, J.M.; Cordeiro, J.M.; Goodrow, R.J.; Fish, J.M.; Zygmunt, A.C.; Perez, G.J.; Scornik, F.S.; Antzelevitch, C. Ionic and cellular basis for the predominance of the Brugada syndrome phenotype in males. Circulation 2002, 106, 2004–2011. [Google Scholar] [CrossRef]
  247. Trum, M.; Islam, M.M.T.; Lebek, S.; Baier, M.; Hegner, P.; Eaton, P.; Maier, L.S.; Wagner, S. Inhibition of cardiac potassium currents by oxidation-activated protein kinase A contributes to early afterdepolarizations in the heart. Am. J. Physiol. Heart Circ. Physiol. 2020, 319, H1347–H1357. [Google Scholar] [CrossRef]
  248. Orfali, R.; Gamal El-Din, A.H.; Karthick, V.; Lamis, E.; Xiao, V.; Ramanishka, A.; Alwatban, A.; Alkhamees, O.; Alaseem, A.; Nam, Y.W.; et al. Modulation of Redox-Sensitive Cardiac Ion Channels. Antioxidants 2025, 14, 836. [Google Scholar] [CrossRef]
  249. Kistamas, K.; Hezso, T.; Horvath, B.; Nanasi, P.P. Late sodium current and calcium homeostasis in arrhythmogenesis. Channels 2021, 15, 1–19. [Google Scholar] [CrossRef]
  250. Shiferaw, Y.; Aistrup, G.L.; Wasserstrom, J.A. Intracellular Ca2+ waves, afterdepolarizations, and triggered arrhythmias. Cardiovasc. Res. 2012, 95, 265–268. [Google Scholar] [CrossRef]
  251. Pun, R.; Kim, M.H.; North, B.J. Role of Connexin 43 phosphorylation on Serine-368 by PKC in cardiac function and disease. Front. Cardiovasc. Med. 2022, 9, 1080131. [Google Scholar] [CrossRef]
  252. Fong, J.T.; Kells, R.M.; Gumpert, A.M.; Marzillier, J.Y.; Davidson, M.W.; Falk, M.M. Internalized gap junctions are degraded by autophagy. Autophagy 2012, 8, 794–811. [Google Scholar] [CrossRef] [PubMed]
  253. Beardslee, M.A.; Laing, J.G.; Beyer, E.C.; Saffitz, J.E. Rapid turnover of connexin43 in the adult rat heart. Circ. Res. 1998, 83, 629–635. [Google Scholar] [CrossRef] [PubMed]
  254. Sykora, M.; Szeiffova Bacova, B.; Andelova, K.; Egan Benova, T.; Martiskova, A.; Kurahara, L.H.; Hirano, K.; Tribulova, N. Connexin43, A Promising Target to Reduce Cardiac Arrhythmia Burden in Pulmonary Arterial Hypertension. Int. J. Mol. Sci. 2024, 25, 3275. [Google Scholar] [CrossRef] [PubMed]
  255. Bejarano, E.; Girao, H.; Yuste, A.; Patel, B.; Marques, C.; Spray, D.C.; Pereira, P.; Cuervo, A.M. Autophagy modulates dynamics of connexins at the plasma membrane in a ubiquitin-dependent manner. Mol. Biol. Cell 2012, 23, 2156–2169. [Google Scholar] [CrossRef]
  256. Liu, X.; Wang, S.; Guo, X.; Li, Y.; Ogurlu, R.; Lu, F.; Prondzynski, M.; de la Serna Buzon, S.; Ma, Q.; Zhang, D.; et al. Increased Reactive Oxygen Species-Mediated Ca2+/Calmodulin-Dependent Protein Kinase II Activation Contributes to Calcium Handling Abnormalities and Impaired Contraction in Barth Syndrome. Circulation 2021, 143, 1894–1911. [Google Scholar] [CrossRef]
  257. Hudgins, E.C.; Bonar, A.M.; Nguyen, T.; Fancher, I.S. Targeting Lipid-Ion Channel Interactions in Cardiovascular Disease. Front. Cardiovasc. Med. 2022, 9, 876634. [Google Scholar] [CrossRef]
  258. Cs Szabo, B.; Szabo, M.; Nagy, P.; Varga, Z.; Panyi, G.; Kovacs, T.; Zakany, F. Novel insights into the modulation of the voltage-gated potassium channel K(V)1.3 activation gating by membrane ceramides. J. Lipid Res. 2024, 65, 100596. [Google Scholar] [CrossRef]
  259. Ajoolabady, A.; Chiong, M.; Lavandero, S.; Klionsky, D.J.; Ren, J. Mitophagy in cardiovascular diseases: Molecular mechanisms, pathogenesis, and treatment. Trends Mol. Med. 2022, 28, 836–849. [Google Scholar] [CrossRef]
  260. Forte, M.; D’Ambrosio, L.; Schiattarella, G.G.; Salerno, N.; Perrone, M.A.; Loffredo, F.S.; Bertero, E.; Pilichou, K.; Manno, G.; Valenti, V.; et al. Mitophagy modulation for the treatment of cardiovascular diseases. Eur. J. Clin. Investig. 2024, 54, e14199. [Google Scholar] [CrossRef]
  261. Belardinelli, L.; Liu, G.; Smith-Maxwell, C.; Wang, W.Q.; El-Bizri, N.; Hirakawa, R.; Karpinski, S.; Li, C.H.; Hu, L.; Li, X.J.; et al. A novel, potent, and selective inhibitor of cardiac late sodium current suppresses experimental arrhythmias. J. Pharmacol. Exp. Ther. 2013, 344, 23–32. [Google Scholar] [CrossRef]
  262. Mitchell, W.; Pharaoh, G.; Tyshkovskiy, A.; Campbell, M.; Marcinek, D.J.; Gladyshev, V.N. The Mitochondria-Targeted Peptide Therapeutic Elamipretide Improves Cardiac and Skeletal Muscle Function During Aging Without Detectable Changes in Tissue Epigenetic or Transcriptomic Age. Aging Cell 2025, 24, e70026. [Google Scholar] [CrossRef]
  263. Rouhana, S.; Virsolvy, A.; Fares, N.; Richard, S.; Thireau, J. Ranolazine: An Old Drug with Emerging Potential; Lessons from Pre-Clinical and Clinical Investigations for Possible Repositioning. Pharmaceuticals 2021, 15, 31. [Google Scholar] [CrossRef]
  264. Rakoubian, A.; Khinchin, J.; Yarbro, J.; Kobayashi, S.; Liang, Q. Isoform-specific roles of AMP-activated protein kinase in cardiac physiology and pathophysiology. Front. Cardiovasc. Med. 2025, 12, 1638515. [Google Scholar] [CrossRef] [PubMed]
  265. Tan, J.X.; Finkel, T. Lysosomes in senescence and aging. EMBO Rep. 2023, 24, e57265. [Google Scholar] [CrossRef] [PubMed]
  266. Xie, S.; Xu, S.C.; Deng, W.; Tang, Q. Metabolic landscape in cardiac aging: Insights into molecular biology and therapeutic implications. Signal Transduct. Target. Ther. 2023, 8, 114. [Google Scholar] [CrossRef]
  267. Vakka, A.; Warren, J.S.; Drosatos, K. Cardiovascular aging: From cellular and molecular changes to therapeutic interventions. J. Cardiovasc. Aging 2023, 3, 23. [Google Scholar] [CrossRef]
  268. Zhang, Q.; Siyuan, Z.; Xing, C.; Ruxiu, L. SIRT3 regulates mitochondrial function: A promising star target for cardiovascular disease therapy. Biomed. Pharmacother. 2024, 170, 116004. [Google Scholar] [CrossRef]
  269. Lu, Y.; An, L.; Taylor, M.R.G.; Chen, Q.M. Nrf2 signaling in heart failure: Expression of Nrf2, Keap1, antioxidant, and detoxification genes in dilated or ischemic cardiomyopathy. Physiol. Genomics 2022, 54, 115–127. [Google Scholar] [CrossRef]
  270. Ribeiro, A.S.F.; Zerolo, B.E.; Lopez-Espuela, F.; Sanchez, R.; Fernandes, V.S. Cardiac System during the Aging Process. Aging Dis. 2023, 14, 1105–1122. [Google Scholar] [CrossRef]
  271. Vahle, B.; Heilmann, L.; Schauer, A.; Augstein, A.; Jarabo, M.P.; Barthel, P.; Mangner, N.; Labeit, S.; Bowen, T.S.; Linke, A.; et al. Modulation of Titin and Contraction-Regulating Proteins in a Rat Model of Heart Failure with Preserved Ejection Fraction: Limb vs. Diaphragmatic Muscle. Int. J. Mol. Sci. 2024, 25, 6618. [Google Scholar] [CrossRef]
  272. Newman, L.E.; Shadel, G.S. Mitochondrial DNA Release in Innate Immune Signaling. Annu. Rev. Biochem. 2023, 92, 299–332. [Google Scholar] [CrossRef]
  273. Dasgupta, N.; Arnold, R.; Equey, A.; Gandhi, A.; Adams, P.D. The role of the dynamic epigenetic landscape in senescence: Orchestrating SASP expression. NPJ Aging 2024, 10, 48. [Google Scholar] [CrossRef] [PubMed]
  274. Mohammed, S.F.; Hussain, S.; Mirzoyev, S.A.; Edwards, W.D.; Maleszewski, J.J.; Redfield, M.M. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 2015, 131, 550–559. [Google Scholar] [CrossRef] [PubMed]
  275. Erlich, A.T.; Brownlee, D.M.; Beyfuss, K.; Hood, D.A. Exercise induces TFEB expression and activity in skeletal muscle in a PGC-1alpha-dependent manner. Am. J. Physiol. Cell Physiol. 2018, 314, C62–C72. [Google Scholar] [CrossRef] [PubMed]
  276. Huang, J.; Wang, X.; Zhu, Y.; Li, Z.; Zhu, Y.T.; Wu, J.C.; Qin, Z.H.; Xiang, M.; Lin, F. Exercise activates lysosomal function in the brain through AMPK-SIRT1-TFEB pathway. CNS Neurosci. Ther. 2019, 25, 796–807. [Google Scholar] [CrossRef]
  277. Ghosh, R.; Gillaspie, J.J.; Campbell, K.S.; Symons, J.D.; Boudina, S.; Pattison, J.S. Chaperone-mediated autophagy protects cardiomyocytes against hypoxic-cell death. Am. J. Physiol. Cell Physiol. 2022, 323, C1555–C1575. [Google Scholar] [CrossRef]
  278. Barcena, M.L.; Aslam, M.; Norman, K.; Ott, C.; Ladilov, Y. Role of AMPK and Sirtuins in Aging Heart: Basic and Translational Aspects. Aging Dis. 2024; online ahead of print. [Google Scholar] [CrossRef]
  279. Lu, H.; Sun, J.; Hamblin, M.H.; Chen, Y.E.; Fan, Y. Transcription factor EB regulates cardiovascular homeostasis. EBioMedicine 2021, 63, 103207. [Google Scholar] [CrossRef]
  280. Zhang, Y.; Zheng, Y.; Wang, S.; Fan, Y.; Ye, Y.; Jing, Y.; Liu, Z.; Yang, S.; Xiong, M.; Yang, K.; et al. Single-nucleus transcriptomics reveals a gatekeeper role for FOXP1 in primate cardiac aging. Protein Cell 2023, 14, 279–293. [Google Scholar] [CrossRef]
  281. Ciutac, A.M.; Pana, T.; Dawson, D.; Myint, P.K. Sex-related differences in heart failure patients: Physiological mechanisms of cardiovascular ageing and evidence-based sex-specific medical therapies. Ther. Adv. Cardiovasc. Dis. 2025, 19, 17539447241309673. [Google Scholar] [CrossRef]
  282. Ministrini, S.; Puspitasari, Y.M.; Beer, G.; Liberale, L.; Montecucco, F.; Camici, G.G. Sirtuin 1 in Endothelial Dysfunction and Cardiovascular Aging. Front. Physiol. 2021, 12, 733696. [Google Scholar] [CrossRef]
  283. Liu, J.; Zhou, J.; Luan, Y.; Li, X.; Meng, X.; Liao, W.; Tang, J.; Wang, Z. cGAS-STING, inflammasomes and pyroptosis: An overview of crosstalk mechanism of activation and regulation. Cell Commun. Signal 2024, 22, 22. [Google Scholar] [CrossRef]
  284. Kim, J.; Kim, H.S.; Chung, J.H. Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway. Exp. Mol. Med. 2023, 55, 510–519. [Google Scholar] [CrossRef] [PubMed]
  285. Kawai, T.; Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011, 34, 637–650. [Google Scholar] [CrossRef]
  286. Onomoto, K.; Onoguchi, K.; Yoneyama, M. Regulation of RIG-I-like receptor-mediated signaling: Interaction between host and viral factors. Cell Mol. Immunol. 2021, 18, 539–555. [Google Scholar] [CrossRef] [PubMed]
  287. Basit, A.; Cho, M.G.; Kim, E.Y.; Kwon, D.; Kang, S.J.; Lee, J.H. The cGAS/STING/TBK1/IRF3 innate immunity pathway maintains chromosomal stability through regulation of p21 levels. Exp. Mol. Med. 2020, 52, 643–657. [Google Scholar] [CrossRef] [PubMed]
  288. Biasizzo, M.; Kopitar-Jerala, N. Interplay Between NLRP3 Inflammasome and Autophagy. Front. Immunol. 2020, 11, 591803. [Google Scholar] [CrossRef]
  289. Paik, S.; Kim, J.K.; Silwal, P.; Sasakawa, C.; Jo, E.K. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol. Immunol. 2021, 18, 1141–1160. [Google Scholar] [CrossRef]
  290. Zhang, W.; Zhou, H.; Li, H.; Mou, H.; Yinwang, E.; Xue, Y.; Wang, S.; Zhang, Y.; Wang, Z.; Chen, T.; et al. Cancer cells reprogram to metastatic state through the acquisition of platelet mitochondria. Cell Rep. 2023, 42, 113147. [Google Scholar] [CrossRef]
  291. Lou, J.; Zhang, J.; Deng, Q.; Chen, X. Neutrophil extracellular traps mediate neuro-immunothrombosis. Neural Regen. Res. 2024, 19, 1734–1740. [Google Scholar] [CrossRef]
  292. Heckmann, B.L.; Boada-Romero, E.; Cunha, L.D.; Magne, J.; Green, D.R. LC3-Associated Phagocytosis and Inflammation. J. Mol. Biol. 2017, 429, 3561–3576. [Google Scholar] [CrossRef]
  293. Siapoush, S.; Rezaei, R.; Alavifard, H.; Hatami, B.; Zali, M.R.; Vosough, M.; Lorzadeh, S.; Los, M.J.; Baghaei, K.; Ghavami, S. Therapeutic implications of targeting autophagy and TGF-beta crosstalk for the treatment of liver fibrosis. Life Sci. 2023, 329, 121894. [Google Scholar] [CrossRef] [PubMed]
  294. Tsujimoto, K.; Jo, T.; Nagira, D.; Konaka, H.; Park, J.H.; Yoshimura, S.I.; Ninomiya, A.; Sugihara, F.; Hirayama, T.; Itotagawa, E.; et al. The lysosomal Ragulator complex activates NLRP3 inflammasome in vivo via HDAC6. EMBO J. 2023, 42, e111389. [Google Scholar] [CrossRef] [PubMed]
  295. Martin-Salgado, M.; Ochoa-Echeverria, A.; Merida, I. Diacylglycerol kinases: A look into the future of immunotherapy. Adv. Biol. Regul. 2024, 91, 100999. [Google Scholar] [CrossRef] [PubMed]
  296. Pan, Y.; Li, J.; Lin, P.; Wan, L.; Qu, Y.; Cao, L.; Wang, L. A review of the mechanisms of abnormal ceramide metabolism in type 2 diabetes mellitus, Alzheimer’s disease, and their co-morbidities. Front. Pharmacol. 2024, 15, 1348410. [Google Scholar] [CrossRef] [PubMed]
  297. Kazanietz, M.G.; Cooke, M. Protein kinase C signaling “in” and “to” the nucleus: Master kinases in transcriptional regulation. J. Biol. Chem. 2024, 300, 105692. [Google Scholar] [CrossRef]
  298. Otoda, T.; Aihara, K.I.; Takayama, T. Lysosomal Stress in Cardiovascular Diseases: Therapeutic Potential of Cardiovascular Drugs and Future Directions. Biomedicines 2025, 13, 1053. [Google Scholar] [CrossRef]
  299. Balka, K.R.; Venkatraman, R.; Saunders, T.L.; Shoppee, A.; Pang, E.S.; Magill, Z.; Homman-Ludiye, J.; Huang, C.; Lane, R.M.; York, H.M.; et al. Termination of STING responses is mediated via ESCRT-dependent degradation. EMBO J. 2023, 42, e112712. [Google Scholar] [CrossRef]
  300. Marchi, S.; Bittremieux, M.; Missiroli, S.; Morganti, C.; Patergnani, S.; Sbano, L.; Rimessi, A.; Kerkhofs, M.; Parys, J.B.; Bultynck, G.; et al. Endoplasmic Reticulum-Mitochondria Communication Through Ca2+ Signaling: The Importance of Mitochondria-Associated Membranes (MAMs). Adv. Exp. Med. Biol. 2017, 997, 49–67. [Google Scholar] [CrossRef]
  301. Beretta, M.; Santos, C.X.; Molenaar, C.; Hafstad, A.D.; Miller, C.C.; Revazian, A.; Betteridge, K.; Schroder, K.; Streckfuss-Bomeke, K.; Doroshow, J.H.; et al. Nox4 regulates InsP3 receptor-dependent Ca2+ release into mitochondria to promote cell survival. EMBO J. 2020, 39, e103530. [Google Scholar] [CrossRef]
  302. Barazzuol, L.; Giamogante, F.; Brini, M.; Cali, T. PINK1/Parkin Mediated Mitophagy, Ca2+ Signalling, and ER-Mitochondria Contacts in Parkinson’s Disease. Int. J. Mol. Sci. 2020, 21, 1772. [Google Scholar] [CrossRef] [PubMed]
  303. Pena-Martinez, C.; Rickman, A.D.; Heckmann, B.L. Beyond autophagy: LC3-associated phagocytosis and endocytosis. Sci. Adv. 2022, 8, eabn1702. [Google Scholar] [CrossRef] [PubMed]
  304. Hooper, K.M.; Jacquin, E.; Li, T.; Goodwin, J.M.; Brumell, J.H.; Durgan, J.; Florey, O. V-ATPase is a universal regulator of LC3-associated phagocytosis and non-canonical autophagy. J. Cell Biol. 2022, 221, 202105112. [Google Scholar] [CrossRef] [PubMed]
  305. Magne, J.; Green, D.R. LC3-associated endocytosis and the functions of Rubicon and ATG16L1. Sci. Adv. 2022, 8, eabo5600. [Google Scholar] [CrossRef] [PubMed]
  306. Kim, N.; Li, H.E.; Hughes, R.N.; Watson, G.D.R.; Gallegos, D.; West, A.E.; Kim, I.H.; Yin, H.H. A striatal interneuron circuit for continuous target pursuit. Nat. Commun. 2019, 10, 2715. [Google Scholar] [CrossRef]
  307. Ferreira, A.V.; Dominguez-Andres, J.; Merlo Pich, L.M.; Joosten, L.A.B.; Netea, M.G. Metabolic Regulation in the Induction of Trained Immunity. Semin. Immunopathol. 2024, 46, 7. [Google Scholar] [CrossRef]
  308. Vuscan, P.; Kischkel, B.; Joosten, L.A.B.; Netea, M.G. Trained immunity: General and emerging concepts. Immunol. Rev. 2024, 323, 164–185. [Google Scholar] [CrossRef]
  309. Gupta, S.S.; Zeglinski, M.R.; Rattan, S.G.; Landry, N.M.; Ghavami, S.; Wigle, J.T.; Klonisch, T.; Halayko, A.J.; Dixon, I.M. Inhibition of autophagy inhibits the conversion of cardiac fibroblasts to cardiac myofibroblasts. Oncotarget 2016, 7, 78516–78531. [Google Scholar] [CrossRef]
  310. Migneault, F.; Hebert, M.J. Autophagy, tissue repair, and fibrosis: A delicate balance. Matrix Biol. 2021, 100–101, 182–196. [Google Scholar] [CrossRef]
  311. Saadat, S.; Noureddini, M.; Mahjoubin-Tehran, M.; Nazemi, S.; Shojaie, L.; Aschner, M.; Maleki, B.; Abbasi-Kolli, M.; Rajabi Moghadam, H.; Alani, B.; et al. Pivotal Role of TGF-beta/Smad Signaling in Cardiac Fibrosis: Non-coding RNAs as Effectual Players. Front. Cardiovasc. Med. 2020, 7, 588347. [Google Scholar] [CrossRef]
  312. Jain, M.; Rivera, S.; Monclus, E.A.; Synenki, L.; Zirk, A.; Eisenbart, J.; Feghali-Bostwick, C.; Mutlu, G.M.; Budinger, G.R.; Chandel, N.S. Mitochondrial reactive oxygen species regulate transforming growth factor-beta signaling. J. Biol. Chem. 2013, 288, 770–777. [Google Scholar] [CrossRef]
  313. Tian, K.; Yu, M.; Jiang, M.; Gao, Z.; Zheng, D.; Shi, W.; Cheng, D.; Zhao, X. Lysosomal Acidification: A New Perspective on the Pathogenesis and Treatment of Pulmonary Fibrosis. Compr. Physiol. 2025, 15, e70023. [Google Scholar] [CrossRef] [PubMed]
  314. Roark, K.M.; Iffland, P.H., 2nd. Rapamycin for longevity: The pros, the cons, and future perspectives. Front. Aging 2025, 6, 1628187. [Google Scholar] [CrossRef] [PubMed]
  315. Xie, M.; Cho, G.W.; Kong, Y.; Li, D.L.; Altamirano, F.; Luo, X.; Morales, C.R.; Jiang, N.; Schiattarella, G.G.; May, H.I.; et al. Activation of Autophagic Flux Blunts Cardiac Ischemia/Reperfusion Injury. Circ. Res. 2021, 129, 435–450. [Google Scholar] [CrossRef] [PubMed]
  316. Zhou, X.H.; Luo, Y.X.; Yao, X.Q. Exercise-driven cellular autophagy: A bridge to systematic wellness. J. Adv. Res. 2025, 76, 271–291. [Google Scholar] [CrossRef]
  317. Goel, S.; Singh, R.; Singh, V.; Singh, H.; Kumari, P.; Chopra, H.; Sharma, R.; Nepovimova, E.; Valis, M.; Kuca, K.; et al. Metformin: Activation of 5′ AMP-activated protein kinase and its emerging potential beyond anti-hyperglycemic action. Front. Genet. 2022, 13, 1022739. [Google Scholar] [CrossRef]
  318. Bensalem, J.; Teong, X.T.; Hattersley, K.J.; Hein, L.K.; Fourrier, C.; Dang, L.V.P.; Singh, S.; Liu, K.; Wittert, G.A.; Hutchison, A.T.; et al. Intermittent time-restricted eating may increase autophagic flux in humans: An exploratory analysis. J. Physiol. 2025, 603, 3019–3032. [Google Scholar] [CrossRef]
  319. Moradi, N.; Sanfrancesco, V.C.; Champsi, S.; Hood, D.A. Regulation of lysosomes in skeletal muscle during exercise, disuse and aging. Free Radic. Biol. Med. 2024, 225, 323–332. [Google Scholar] [CrossRef]
  320. Papini, N.; Giussani, P.; Tringali, C. Metformin Lysosomal Targeting: A Novel Aspect to Be Investigated for Metformin Repurposing in Neurodegenerative Diseases? Int. J. Mol. Sci. 2024, 25, 8884. [Google Scholar] [CrossRef]
  321. Feng, X.; Cai, W.; Li, Q.; Zhao, L.; Meng, Y.; Xu, H. Activation of lysosomal Ca2+ channels mitigates mitochondrial damage and oxidative stress. J. Cell Biol. 2025, 224, 3104. [Google Scholar] [CrossRef]
  322. Parker, A.M.; Lees, J.G.; Murray, A.J.; Velagic, A.; Lim, S.Y.; De Blasio, M.J.; Ritchie, R.H. Precision Medicine: Therapeutically Targeting Mitochondrial Alterations in Heart Failure. JACC Basic Transl. Sci. 2025, 10, 101345. [Google Scholar] [CrossRef]
  323. Hofer, S.J.; Daskalaki, I.; Bergmann, M.; Friscic, J.; Zimmermann, A.; Mueller, M.I.; Abdellatif, M.; Nicastro, R.; Masser, S.; Durand, S.; et al. Spermidine is essential for fasting-mediated autophagy and longevity. Nat. Cell Biol. 2024, 26, 1571–1584. [Google Scholar] [CrossRef] [PubMed]
  324. Carollo, C.; Sorce, A.; Cirafici, E.; Mule, G.; Caimi, G. Sirtuins and Resveratrol in Cardiorenal Diseases: A Narrative Review of Mechanisms and Therapeutic Potential. Nutrients 2025, 17, 1212. [Google Scholar] [CrossRef] [PubMed]
  325. Ma, Y.; Ma, J.; Lu, L.; Xiong, X.; Shao, Y.; Ren, J.; Yang, J.; Liu, J. Melatonin Restores Autophagic Flux by Activating the Sirt3/TFEB Signaling Pathway to Attenuate Doxorubicin-Induced Cardiomyopathy. Antioxidants 2023, 12, 1716. [Google Scholar] [CrossRef] [PubMed]
  326. Du, B.; Fu, Q.; Yang, Q.; Yang, Y.; Li, R.; Yang, X.; Yang, Q.; Li, S.; Tian, J.; Liu, H. Different types of cell death and their interactions in myocardial ischemia-reperfusion injury. Cell Death Discov. 2025, 11, 87. [Google Scholar] [CrossRef]
  327. Oberle, C.; Huai, J.; Reinheckel, T.; Tacke, M.; Rassner, M.; Ekert, P.G.; Buellesbach, J.; Borner, C. Lysosomal membrane permeabilization and cathepsin release is a Bax/Bak-dependent, amplifying event of apoptosis in fibroblasts and monocytes. Cell Death Differ. 2010, 17, 1167–1178. [Google Scholar] [CrossRef]
  328. Liu, Y.; Shoji-Kawata, S.; Sumpter, R.M., Jr.; Wei, Y.; Ginet, V.; Zhang, L.; Posner, B.; Tran, K.A.; Green, D.R.; Xavier, R.J.; et al. Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc. Natl. Acad. Sci. USA 2013, 110, 20364–20371. [Google Scholar] [CrossRef]
  329. Schmeisser, K.; Parker, J.A. Pleiotropic Effects of mTOR and Autophagy During Development and Aging. Front. Cell Dev. Biol. 2019, 7, 192. [Google Scholar] [CrossRef]
  330. Bensalem, J.; Hattersley, K.J.; Hein, L.K.; Teong, X.T.; Carosi, J.M.; Hassiotis, S.; Grose, R.H.; Fourrier, C.; Heilbronn, L.K.; Sargeant, T.J. Measurement of autophagic flux in humans: An optimized method for blood samples. Autophagy 2021, 17, 3238–3255. [Google Scholar] [CrossRef]
  331. Ginet, V.; Puyal, J.; Truttmann, A.C. Autophagy-related proteins measured in umbilical blood cord samples from human newborns: What can we learn from? Pediatr. Res. 2024, 96, 1120–1122. [Google Scholar] [CrossRef]
  332. Wang, M.; Chen, Y.; Xu, B.; Zhu, X.; Mou, J.; Xie, J.; Che, Z.; Zuo, L.; Li, J.; Jia, H.; et al. Recent advances in the roles of extracellular vesicles in cardiovascular diseases: Pathophysiological mechanisms, biomarkers, and cell-free therapeutic strategy. Mol. Med. 2025, 31, 169. [Google Scholar] [CrossRef] [PubMed]
  333. Blumer, V.; Januzzi, J.L., Jr.; Lindenfeld, J.; Solomon, S.D.; Psotka, M.A.; Carson, P.E.; Bristow, M.R.; Abraham, W.T.; Gandotra, C.; Saville, B.R.; et al. Heart Failure Drug Development Over the Eras: From the Heart Failure Collaboratory. JACC Heart Fail. 2024, 12, 1803–1813. [Google Scholar] [CrossRef] [PubMed]
  334. Hou, W.; Peng, P.; Xiao, F.; Tian, J.; He, X.; Lu, S.; Xiao, H.; He, M.; Wei, Q. Plasma SQSTM1/p62 act as a biomarker for steroid-induced osteonecrosis of the femoral head. Sci. Rep. 2024, 14, 24932. [Google Scholar] [CrossRef] [PubMed]
  335. Mengozzi, A.; Armenia, S.; De Biase, N.; Punta, L.D.; Cappelli, F.; Duranti, E.; Nannipieri, V.; Remollino, R.; Trico, D.; Virdis, A.; et al. Circulating mitochondrial DNA signature in cardiometabolic patients. Cardiovasc. Diabetol. 2025, 24, 106. [Google Scholar] [CrossRef]
  336. Eisenberg, T.; Abdellatif, M.; Schroeder, S.; Primessnig, U.; Stekovic, S.; Pendl, T.; Harger, A.; Schipke, J.; Zimmermann, A.; Schmidt, A.; et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 2016, 22, 1428–1438. [Google Scholar] [CrossRef]
  337. Tao, M.; Dhaliwal, S.; Ghosalkar, D.; Sheng, S.; Dianati-Maleki, N.; Tam, E.; Rahman, T.; Mann, N.; Kort, S. Utility of native T1 mapping and myocardial extracellular volume fraction in patients with nonischemic dilated cardiomyopathy: A systematic review and meta-analysis. Int. J. Cardiol. Heart Vasc. 2024, 51, 101339. [Google Scholar] [CrossRef]
  338. Mihos, C.G.; Liu, J.E.; Anderson, K.M.; Pernetz, M.A.; O’Driscoll, J.M.; Aurigemma, G.P.; Ujueta, F.; Wessly, P.; American Heart Association Council on Peripheral Vascular Disease; Council on Cardiovascular and Stroke Nursing and Council on Clinical Cardiology; et al. Speckle-Tracking Strain Echocardiography for the Assessment of Left Ventricular Structure and Function: A Scientific Statement From the American Heart Association. Circulation 2025, 152, e96–e109. [Google Scholar] [CrossRef]
  339. Weng, H.; Zou, W.; Tian, F.; Xie, H.; Liu, A.; Liu, W.; Liu, Y.; Zhou, N.; Cai, X.; Wu, J.; et al. Inhalable cardiac targeting peptide modified nanomedicine prevents pressure overload heart failure in male mice. Nat. Commun. 2024, 15, 6058. [Google Scholar] [CrossRef]
  340. Tu, M.; Tan, V.P.; Yu, J.D.; Tripathi, R.; Bigham, Z.; Barlow, M.; Smith, J.M.; Brown, J.H.; Miyamoto, S. RhoA signaling increases mitophagy and protects cardiomyocytes against ischemia by stabilizing PINK1 protein and recruiting Parkin to mitochondria. Cell Death Differ. 2022, 29, 2472–2486. [Google Scholar] [CrossRef]
  341. Wang, B.; Nie, J.; Wu, L.; Hu, Y.; Wen, Z.; Dong, L.; Zou, M.H.; Chen, C.; Wang, D.W. AMPKalpha2 Protects Against the Development of Heart Failure by Enhancing Mitophagy via PINK1 Phosphorylation. Circ. Res. 2018, 122, 712–729. [Google Scholar] [CrossRef]
  342. Kim, Y.; Landstrom, A.P.; Shah, S.H.; Wu, J.C.; Seidman, C.E.; American Heart, A. Gene Therapy in Cardiovascular Disease: Recent Advances and Future Directions in Science: A Science Advisory From the American Heart Association. Circulation 2024, 150, e471–e480. [Google Scholar] [CrossRef]
Figure 1. Core modules and sequence of macroautophagy. Macroautophagy progresses from initiation to elongation and maturation and culminates in a sealed autophagosome. In the initiation module, inhibition of mTORC1, together with AMPK activity, permits activation of the ULK1 complex (ULK1 or ULK2, ATG13, FIP200, ATG101). ULK1 and AMBRA1 engage the class III phosphatidylinositol 3 kinase complex (VPS34, VPS15 p150, beclin-1, ATG14), which generates phosphatidylinositol 3 phosphate on ER-derived omegasomes to recruit DFCP1 and WIPI2 and nucleate the phagophore. During elongation, ATG9A or ATG9B vesicles and ATG2 supply the membrane, while the ATG12–ATG5–ATG16L1 complex assembles on the outer phagophore surface and positions the LC3 lipidation machinery. In maturation, pro-LC3 is cleaved by ATG4 to LC3-I and conjugated to phosphatidylethanolamine by ATG7 and ATG3 to form LC3-II, which decorates the autophagosomal membrane until closure. (Figure created in http://biorender.com.)
Figure 1. Core modules and sequence of macroautophagy. Macroautophagy progresses from initiation to elongation and maturation and culminates in a sealed autophagosome. In the initiation module, inhibition of mTORC1, together with AMPK activity, permits activation of the ULK1 complex (ULK1 or ULK2, ATG13, FIP200, ATG101). ULK1 and AMBRA1 engage the class III phosphatidylinositol 3 kinase complex (VPS34, VPS15 p150, beclin-1, ATG14), which generates phosphatidylinositol 3 phosphate on ER-derived omegasomes to recruit DFCP1 and WIPI2 and nucleate the phagophore. During elongation, ATG9A or ATG9B vesicles and ATG2 supply the membrane, while the ATG12–ATG5–ATG16L1 complex assembles on the outer phagophore surface and positions the LC3 lipidation machinery. In maturation, pro-LC3 is cleaved by ATG4 to LC3-I and conjugated to phosphatidylethanolamine by ATG7 and ATG3 to form LC3-II, which decorates the autophagosomal membrane until closure. (Figure created in http://biorender.com.)
Antioxidants 14 01263 g001
Figure 2. Compartmental handling of mtROS. Electron transfer through complexes I and II feeds the respiratory chain and gives rise to superoxide O2 at defined sites. In the matrix, MnSOD converts superoxide into hydrogen peroxide (H2O2), while Cu/ZnSOD in the intermembrane space and cytoplasm performs the same reaction. H2O2 diffuses across compartments and is reduced to water by glutathione peroxidases, peroxiredoxins, and catalase. Superoxide (O2) reacts with nitric oxide to form peroxynitrite (ONOO), which yields secondary oxidants and terminates as nitrate (NO3). The scheme also locates CoQ, complex III, cytochrome c, and complex IV to relate oxidant formation to the architecture of the inner membrane. (Figure created in http://biorender.com.)
Figure 2. Compartmental handling of mtROS. Electron transfer through complexes I and II feeds the respiratory chain and gives rise to superoxide O2 at defined sites. In the matrix, MnSOD converts superoxide into hydrogen peroxide (H2O2), while Cu/ZnSOD in the intermembrane space and cytoplasm performs the same reaction. H2O2 diffuses across compartments and is reduced to water by glutathione peroxidases, peroxiredoxins, and catalase. Superoxide (O2) reacts with nitric oxide to form peroxynitrite (ONOO), which yields secondary oxidants and terminates as nitrate (NO3). The scheme also locates CoQ, complex III, cytochrome c, and complex IV to relate oxidant formation to the architecture of the inner membrane. (Figure created in http://biorender.com.)
Antioxidants 14 01263 g002
Figure 3. Central schematic of autophagy–redox coupling across cardiovascular disease. Eight disease modules are illustrated, each annotated with four representative signaling nodes. Examples include NOX1/NOX2-derived ROS and eNOS uncoupling (atherosclerosis and vascular aging); succinate-driven reverse electron transport and DRP1-mediated fission (ischemia–reperfusion injury); mTORC1 ↑ with ULK1 ↓ (hypertrophy and heart failure); O-GlcNAcylation and reduced TRPML1 (diabetic cardiomyopathy); CaMKII oxidation with augmented late I_Na (arrhythmia); decreased AMPK/SIRT signaling with increased mTORC1 activity (cardiac aging); cGAS–STING and NLRP3 activation (inflammation); and TGF-β/SMAD signaling (fibroblast activation). Shared therapeutic entry points are indicated. Abbreviations are defined in the text. (Figure created in http://biorender.com.)
Figure 3. Central schematic of autophagy–redox coupling across cardiovascular disease. Eight disease modules are illustrated, each annotated with four representative signaling nodes. Examples include NOX1/NOX2-derived ROS and eNOS uncoupling (atherosclerosis and vascular aging); succinate-driven reverse electron transport and DRP1-mediated fission (ischemia–reperfusion injury); mTORC1 ↑ with ULK1 ↓ (hypertrophy and heart failure); O-GlcNAcylation and reduced TRPML1 (diabetic cardiomyopathy); CaMKII oxidation with augmented late I_Na (arrhythmia); decreased AMPK/SIRT signaling with increased mTORC1 activity (cardiac aging); cGAS–STING and NLRP3 activation (inflammation); and TGF-β/SMAD signaling (fibroblast activation). Shared therapeutic entry points are indicated. Abbreviations are defined in the text. (Figure created in http://biorender.com.)
Antioxidants 14 01263 g003
Table 1. Key terms and measurement approaches.
Table 1. Key terms and measurement approaches.
TermOperational DefinitionRepresentative
Measurement
Autophagic fluxNet turnover of autophagic cargo from autophagosome formation to lysosomal degradationLC3-II turnover with lysosomal inhibitors such as bafilomycin A1 or chloroquine, p62 or SQSTM1 degradation, tandem mRFP GFP LC3 reporter, electron microscopy quantifying autophagosomes and autolysosomes
MitophagySelective autophagic clearance of mitochondriaPINK1 stabilization and Parkin recruitment, mt-Keima or mito QC reporters, LC3 colocalization with mitochondrial markers, loss of mitochondrial proteins during flux blockade
Lysosomal competenceCapacity of lysosomes to acidify and degrade cargoLysosomal pH probes, such as LysoSensor or LysoTracker, with calibration; cathepsin activity assays; DQ BSA degradation; TFEB nuclear localization as an indirect marker
TFEB activationInduction of lysosome and autophagy gene programs by TFEBNuclear TFEB localization, expression of CLEAR network targets, reporter assays
Mitochondrial ROS
(mtROS)
Reactive oxygen species generated within mitochondriaMitoSOX with appropriate controls, targeted redox probes such as roGFP Orp1, electron paramagnetic resonance when available
Mitochondrial
membrane potential
(ΔΨm)
Electrical potential across the inner mitochondrial membraneTMRM or TMRE in non-quench mode with calibration, JC 1 with caution
Autophagosome–lysosome fusionFusion of LC3-positive autophagosomes with LAMP1- or LAMP2-positive lysosomesSTX17 SNAP29 VAMP8 assays, LC3 and LAMP co localization, tandem mRFP GFP LC3 quench analysis
Lysosomal membrane permeabilizationLoss of lysosomal integrity with cathepsin releaseGalectin 3 puncta, acridine orange relocation, cathepsin activity in cytosol
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Yun, H.R.; Singh, M.K.; Han, S.; Ranbhise, J.S.; Ha, J.; Kim, S.S.; Kang, I. Roles of Autophagy and Oxidative Stress in Cardiovascular Disease. Antioxidants 2025, 14, 1263. https://doi.org/10.3390/antiox14101263

AMA Style

Yun HR, Singh MK, Han S, Ranbhise JS, Ha J, Kim SS, Kang I. Roles of Autophagy and Oxidative Stress in Cardiovascular Disease. Antioxidants. 2025; 14(10):1263. https://doi.org/10.3390/antiox14101263

Chicago/Turabian Style

Yun, Hyeong Rok, Manish Kumar Singh, Sunhee Han, Jyotsna S. Ranbhise, Joohun Ha, Sung Soo Kim, and Insug Kang. 2025. "Roles of Autophagy and Oxidative Stress in Cardiovascular Disease" Antioxidants 14, no. 10: 1263. https://doi.org/10.3390/antiox14101263

APA Style

Yun, H. R., Singh, M. K., Han, S., Ranbhise, J. S., Ha, J., Kim, S. S., & Kang, I. (2025). Roles of Autophagy and Oxidative Stress in Cardiovascular Disease. Antioxidants, 14(10), 1263. https://doi.org/10.3390/antiox14101263

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop