α-Asarone Maintains Protein Homeostasis Through SKN-1-Mediated Proteasome and Autophagy Pathways to Mitigate Aβ-Associated Toxicity in Caenorhabditis elegans
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. C. elegans Strains
2.3. C. elegans Maintenance
2.4. Paralysis Assay
2.5. Chemotaxis Assay
2.6. Serotonin Sensitivity Assay
2.7. Amyloid-Peptide Deposition Assay
2.8. Oxidative Stress Assay
2.9. ROS Accumulation Assay
2.10. Development Arrest Assay
2.11. Proteasome Activity Assay
2.12. Measuring the P62 Protein Fluorescence Intensity in BC12921 Worms
2.13. Thrashing Assay
2.14. RNA Extracted and Quantitative RT-PCR
2.15. Western Blotting Assay
2.16. RNAi-Mediated Interference (RNAi) Assay
2.17. Neuron Degeneration Assay
2.18. Statistical Analysis
3. Results
3.1. α-Asarone Ameliorated Aβ and Tau-Induced Damage in C. elegans
3.2. α-Asarone Mitigates Aβ-Induced Neurotoxicity by Enhancing Chemotaxis, Serotonin Sensitivity, and GABAergic Neuron Integrity in C. elegans
3.3. α-Asarone Decreased Amyloid Peptide Deposition in Nematodes
3.4. α-Asarone Attenuates Aβ-Induced Oxidative Stress by Enhancing Antioxidant Defense and Stress Resistance in C. elegans
3.5. α-Asarone Enhances Oxidative Stress Resistance via SKN-1/Nrf2 Pathway Activation to Protect Against Aβ Toxicity in C. elegans
3.6. α-Asarone-Decreased Aβ Accumulation Relies on Proteasome-Related Degradation Pathway
3.7. α-Asarone-Retarded Aβ Accumulation Likely Relies upon the Autophagy-Lysosome Protein Degradation Pathway
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Zhang, J.; Zhang, Y.; Wang, J.; Xia, Y.; Zhang, J.; Chen, L. Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct. Target. Ther. 2024, 9, 211. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, R.J.; Wong, P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci. 2011, 34, 185–204. [Google Scholar] [CrossRef]
- Ono, K.; Watanabe-Nakayama, T. Aggregation and structure of amyloid beta-protein. Neurochem. Int. 2021, 151, 105208. [Google Scholar] [CrossRef]
- Joe, E.; Ringman, J.M. Cognitive symptoms of Alzheimer’s disease: Clinical management and prevention. BMJ 2019, 367, l6217. [Google Scholar] [CrossRef] [PubMed]
- Clausen, L.; Abildgaard, A.B.; Gersing, S.K.; Stein, A.; Lindorff-Larsen, K.; Hartmann-Petersen, R. Protein stability and degradation in health and disease. Adv. Protein Chem. Struct. Biol. 2019, 114, 61–83. [Google Scholar] [CrossRef]
- Cozachenco, D.; Ribeiro, F.C.; Ferreira, S.T. Defective proteostasis in Alzheimer’s disease. Ageing Res. Rev. 2023, 85, 101862. [Google Scholar] [CrossRef] [PubMed]
- Qiduan, W.U.; Fang, Y.; Chen, Y.; Zhongsheng, K.; Wang, S.; Yuping, H.E. Protective Effects of Volatile Oil of Acorus tatarinowii Schott and β- Asarone on Cardiovascular System. Tradit. Chin. Drug Res. Clin. Pharmacol. 2005, 4, 244–247. [Google Scholar]
- Liu, H.J.; Lai, X.; Xu, Y.; Miao, J.K.; Li, C.; Liu, J.Y.; Hua, Y.Y.; Ma, Q.; Chen, Q. α-Asarone Attenuates Cognitive Deficit in a Pilocarpine-Induced Status Epilepticus Rat Modelviaa Decrease in the Nuclear Factor-κB Activation and Reduction in Microglia Neuroinflammation. Front. Neurol. 2017, 8, 661. [Google Scholar] [CrossRef]
- Treinin, M.; Jin, Y. Cholinergic transmission in C. elegans: Functions, diversity and maturation of ACh-activated ion channels. J. Neurochem. 2020, 158, 1274–1291. [Google Scholar] [CrossRef]
- Apfeld, J.; Alper, S. What Can We Learn About Human Disease from the Nematode C. elegans? Methods Mol. Biol. 2018, 1706, 53–75. [Google Scholar]
- Sutphin, G.L.; Kaeberlein, M. Measuring Caenorhabditis elegans life span on solid media. J. Vis. Exp. 2009, 1152. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Z.; Butko, P.; Christen, Y.; Lambert, M.P.; Klein, W.L.; Link, C.D.; Luo, Y. Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J. Neurosci. 2006, 26, 13102–13113. [Google Scholar] [CrossRef]
- Margie, O.; Palmer, C.; Chin-Sang, I. C. elegans chemotaxis assay. J. Vis. Exp. 2013, 74, e50069. [Google Scholar] [CrossRef]
- Wei, S.; Chen, W.; Qin, J.; Huangli, Y.; Wang, L.; Shen, Y.; Tang, H. Multitarget-directed oxoisoaporphine derivatives: Anti-acetylcholinesterase, anti-β-amyloid aggregation and enhanced autophagy activity against Alzheimer’s disease. Bioorganic Med. Chem. 2016, 24, 6031–6039. [Google Scholar] [CrossRef]
- Guo, H.; Cao, M.; Zou, S.; Ye, B.; Dong, Y. Cranberry Extract Standardized for Proanthocyanidins Alleviates beta-Amyloid Peptide Toxicity by Improving Proteostasis Through HSF-1 in Caenorhabditis elegans Model of Alzheimer’s Disease. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2016, 71, 1564–1573. [Google Scholar] [CrossRef] [PubMed]
- Cinar, H.; Keles, S.; Jin, Y. Expression profiling of GABAergic motor neurons in Caenorhabditis elegans. Curr. Biol. 2005, 15, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Fatouros, C.; Pir, G.J.; Biernat, J.; Koushika, S.P.; Mandelkow, E.; Mandelkow, E.M.; Schmidt, E.; Baumeister, R. Inhibition of tau aggregation in a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity. Hum. Mol. Genet. 2012, 21, 3587–3603. [Google Scholar] [CrossRef]
- Waldherr, S.M.; Strovas, T.J.; Vadset, T.A.; Liachko, N.F.; Kraemer, B.C. Constitutive XBP-1s-mediated activation of the endoplasmic reticulum unfolded protein response protects against pathological tau. Nat. Commun. 2019, 10, 4443. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, W.; Zhao, M.; Ma, L.; Jiang, X.; Pei, H.; Cao, Y.; Li, H. Interaction between Abeta and Tau in the Pathogenesis of Alzheimer’s Disease. Int. J. Biol. Sci. 2021, 17, 2181–2192. [Google Scholar] [CrossRef]
- Brandt, R.; Gergou, A.; Wacker, I.; Fath, T.; Hutter, H. A Caenorhabditis elegans model of tau hyperphosphorylation: Induction of developmental defects by transgenic overexpression of Alzheimer’s disease-like modified tau. Neurobiol. Aging 2009, 30, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Horvitz, H.; Chalfie, M.; Trent, C.; Sulston, J.; Evans, P. Serotonin and octopamine in the nematode Caenorhabditis elegans. Science 1982, 216, 1012–1014. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Li, H.Y.; Dong, J.; Yang, W.; Liu, T.; Wang, Y.; Wang, X.; Wang, M.; Zhi, D. Rose essential oil delayed AD-like symptoms by SKN-1 pathway in C. elegans. J. Agric. Food Chem. 2017, 65, 8855–8865. [Google Scholar] [CrossRef]
- Schenk, D.; Basi, G.S.; Pangalos, M.N. Treatment Strategies Targeting Amyloid beta-Protein. Cold Spring Harb. Perspect. Med. 2012, 2, a006387. [Google Scholar] [CrossRef] [PubMed]
- Alfadda, A.A.; Sallam, R.M. Reactive Oxygen Species in Health and Disease. J. Biomed. Biotechnol. 2012, 2012, 936486. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Braak, E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol. Aging 1997, 18, 351–357. [Google Scholar] [CrossRef]
- Arcanjo, N.O.; Andrade, M.J.; Padilla, P.; Rodriguez, A.; Madruga, M.S.; Estevez, M. Resveratrol protects Lactobacillus reuteri against H2O2-induced oxidative stress and stimulates antioxidant defenses through upregulation of the dhaT gene. Free Radic. Biol. Med. 2019, 135, 38–45. [Google Scholar] [CrossRef]
- Alizadeh, S.; Anani-Sarab, G.; Amiri, H.; Hashemi, M. Paraquat induced oxidative stress, DNA damage, and cytotoxicity in lymphocytes. Heliyon 2022, 8, e09895. [Google Scholar] [CrossRef] [PubMed]
- Holmstrom, K.M.; Kostov, R.V.; Dinkova-Kostova, A.T. The multifaceted role of Nrf2 in mitochondrial function. Curr. Opin. Toxicol. 2016, 1, 80–91. [Google Scholar] [CrossRef]
- Tonelli, C.; Chio, I.I.C.; Tuveson, D.A. Transcriptional Regulation by Nrf2. Antioxid. Redox Signal. 2018, 29, 1727–1745. [Google Scholar] [CrossRef]
- Chino, H.; Mizushima, N. ER-Phagy: Quality Control and Turnover of Endoplasmic Reticulum. Trends Cell Biol. 2020, 30, 384–398. [Google Scholar] [CrossRef]
- Fricker, L.D. Proteasome Inhibitor Drugs. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 457–476. [Google Scholar] [CrossRef]
- Ustun, S.; Bornke, F. Ubiquitin Proteasome Activity Measurement in Total Plant Extracts. Bio-Protocol 2017, 7, e2532. [Google Scholar] [CrossRef]
- Pickering, A.M.; Staab, T.A.; Tower, J.; Sieburth, D.; Davies, K.J. A conserved role for the 20S proteasome and Nrf2 transcription factor in oxidative stress adaptation in mammals, Caenorhabditis elegans and Drosophila melanogaster. J. Exp. Biol. 2013, 216, 543–553. [Google Scholar] [CrossRef]
- Levine, B.; Kroemer, G. Biological Functions of Autophagy Genes: A Disease Perspective. Cell 2019, 176, 11–42. [Google Scholar] [CrossRef]
- Fu, H.J.; Zhou, X.Y.; Li, Y.P.; Chen, X.; He, Y.N.; Qin, D.L.; Yu, L.; Yu, C.L.; Wu, J.M.; Wu, A.G.; et al. The Protective Effects of Reineckia carnea Ether Fraction against Alzheimer’s Disease Pathology: An Exploration in Caenorhabditis elegans Models. Int. J. Mol. Sci. 2023, 24, 6536. [Google Scholar] [CrossRef] [PubMed]
- Jo, M.J.; Kumar, H.; Joshi, H.P.; Choi, H.; Ko, W.K.; Kim, J.M.; Hwang, S.S.S.; Park, S.Y.; Sohn, S.; Bello, A.B.; et al. Oral Administration of alpha-Asarone Promotes Functional Recovery in Rats With Spinal Cord Injury. Front. Pharmacol. 2018, 9, 445. [Google Scholar] [CrossRef]
- Mao, J.; Huang, S.; Liu, S.; Feng, X.L.; Yu, M.; Liu, J.; Sun, Y.E.; Chen, G.; Yu, Y.; Zhao, J. A herbal medicine for Alzheimer’s disease and its active constituents promote neural progenitor proliferation. Aging Cell 2015, 14, 784–796. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Pahan, K. Gemfibrozil, a Lipid-Lowering Drug, Lowers Amyloid Plaque Pathology and Enhances Memory in a Mouse Model of Alzheimer’s Disease via Peroxisome Proliferator-Activated Receptor alpha. J. Alzheimers Dis. Rep. 2019, 3, 149–168. [Google Scholar] [CrossRef]
- Ionescu-Tucker, A.; Cotman, C.W. Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol. Aging 2021, 107, 86–95. [Google Scholar] [CrossRef]
- Osama, A.; Zhang, J.; Yao, J.; Yao, X.; Fang, J. Nrf2: A dark horse in Alzheimer’s disease treatment. Ageing Res. Rev. 2020, 64, 101206. [Google Scholar] [CrossRef]
- Lee, J.H.; Yang, D.S.; Goulbourne, C.N.; Im, E.; Stavrides, P.; Pensalfini, A.; Chan, H.; Bouchet-Marquis, C.; Bleiwas, C.; Berg, M.J.; et al. Faulty autolysosome acidification in Alzheimer’s disease mouse models induces autophagic build-up of Abeta in neurons, yielding senile plaques. Nat. Neurosci. 2022, 25, 688–701. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Sun, J.; Zhang, W.; Yu, J.; Zhuang, C. Transcription factor NRF2 as a promising therapeutic target for Alzheimer’s disease. Free Radic. Biol. Med. 2020, 159, 87–102. [Google Scholar] [CrossRef] [PubMed]
- Ohyagi, Y. Intracellular amyloid beta-protein as a therapeutic target for treating Alzheimer’s disease. Curr. Alzheimer Res. 2008, 5, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Sogbein, O.; Paul, P.; Umar, M.; Chaari, A.; Batuman, V.; Upadhyay, R. Bortezomib in cancer therapy: Mechanisms, side effects, and future proteasome inhibitors. Life Sci. 2024, 358, 123125. [Google Scholar] [CrossRef]
- Liu, M.; Liu, S.; Lin, Z.; Chen, X.; Jiao, Q.; Du, X.; Jiang, H. Targeting the Interplay Between Autophagy and the Nrf2 Pathway in Parkinson’s Disease with Potential Therapeutic Implications. Biomolecules 2025, 15, 149. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, Y. Tau and neuroinflammation in Alzheimer’s disease: Interplay mechanisms and clinical translation. J. Neuroinflammation 2023, 20, 165. [Google Scholar] [CrossRef]
- Kim, C.K.; Lee, Y.R.; Ong, L.; Gold, M.; Kalali, A.; Sarkar, J. Alzheimer’s Disease: Key Insights from Two Decades of Clinical Trial Failures. J. Alzheimers Dis. 2022, 87, 83–100. [Google Scholar] [CrossRef]
Strain | Genotype | Source | Key Characteristics/Use |
---|---|---|---|
N2 | Wild-type | CGC | Wild-type control |
CL4176 | smg-1(cc546ts) I; dvIs27 [myo-3p::A-Beta(1-42)::let-851 3′UTR + rol-6(su1006)] X | CGC | Temperature-inducible Aβ expression in body wall muscle |
CL2122 | dvIs15 [(pPD30.38) unc-54(vector) + (pCL26) mtl-2::GFP] | CGC | Aβ expression control strain |
CL2331 | dvIs37 [myo-3p::A-Beta(1-42)::GFP + rol-6(su1006)] | CGC | Aβ::GFP fusion protein expression in muscle |
CL2006 | dvIs2 [pCL12(unc-54::A-Beta(1-42)) + pCL26(mtl-2::GFP)] | CGC | Constitutive Aβ expression in body wall muscle |
CL6180 | smg-1(cc546ts) I; dvIs19 [gst-4p::GFP] III; skn-1(zu67) IV/nT1 [unc-?(n754) let-?] (IV;V); dvIs27 [myo-3p::A-Beta(1-42)::let-851 3′UTR + rol-6(su1006)] X | CGC | SKN-1 loss-of-function mutant with Aβ background |
CL2166 | dvIs19 [(pAF15)gst-4p::GFP::NLS] III | CGC | Oxidative stress reporter (GFP under gst-4 promoter) |
CL2355 | smg-1(cc546ts) I; dvIs50 [pCL12(snb-1::A-Beta(1-42)::3′UTR) + pCL26(mtl-2::GFP)] | CGC | Pan-neuronal Aβ expression |
GMC101 | dvIs100 [unc-54p::A-Beta(1-42)::unc-54 3′UTR + rol-6(su1006)] | CGC | Aβ aggregate formation model |
VH254 | pha-1(e2123ts) III; hdEx81 [unc-54p::Tau(4R/2N)-PHP + pha-1(+)] | CGC | Pseudohyperphosphorylated tau expression in muscle |
VH255 | pha-1(e2123ts) III; hdEx82 [unc-54p::Tau(4R/2N)-WT + pha-1(+)] | CGC | Wild-type human tau expression in muscle |
BC12921 | dpy-5(e907) I; sIs12716 [hlh-30p::hlh-30::GFP + rol-6(su1006)] | CGC | TFEB/HLH-30 nuclear translocation reporter |
EG1285 | lin-15B(n744)&lin-15A(n765) X; oxIs12 [unc-47p::GFP + lin-15(+)] | Qi Wang Lab (Peking University) | GABAergic motor neuron marker |
PHX3692 | smg-1(cc546ts) I; dvIs50 [pCL12(snb-1::A-Beta(1-42)::3′UTR) + pCL26(mtl-2::GFP)]; wgIs3692 [unc-47p::mCherry + rol-6(su1006)] | SunyBiotech Co., Ltd. (Fuzhou, China) | GABAergic neuronal marker in Aβ background |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, C.; Chen, X.; Sun, M.; Cao, J.; Liao, D.; Cheng, Z.; Wang, H. α-Asarone Maintains Protein Homeostasis Through SKN-1-Mediated Proteasome and Autophagy Pathways to Mitigate Aβ-Associated Toxicity in Caenorhabditis elegans. Antioxidants 2025, 14, 1255. https://doi.org/10.3390/antiox14101255
Wei C, Chen X, Sun M, Cao J, Liao D, Cheng Z, Wang H. α-Asarone Maintains Protein Homeostasis Through SKN-1-Mediated Proteasome and Autophagy Pathways to Mitigate Aβ-Associated Toxicity in Caenorhabditis elegans. Antioxidants. 2025; 14(10):1255. https://doi.org/10.3390/antiox14101255
Chicago/Turabian StyleWei, Congmin, Xinyan Chen, Menglu Sun, Jinjin Cao, Dechun Liao, Zhou Cheng, and Hongbing Wang. 2025. "α-Asarone Maintains Protein Homeostasis Through SKN-1-Mediated Proteasome and Autophagy Pathways to Mitigate Aβ-Associated Toxicity in Caenorhabditis elegans" Antioxidants 14, no. 10: 1255. https://doi.org/10.3390/antiox14101255
APA StyleWei, C., Chen, X., Sun, M., Cao, J., Liao, D., Cheng, Z., & Wang, H. (2025). α-Asarone Maintains Protein Homeostasis Through SKN-1-Mediated Proteasome and Autophagy Pathways to Mitigate Aβ-Associated Toxicity in Caenorhabditis elegans. Antioxidants, 14(10), 1255. https://doi.org/10.3390/antiox14101255