Exploratory Analysis of Phenolic Profiles and Antioxidant Capacity in Selected Romanian Monofloral Honeys: Influence of Botanical Origin and Acquisition Source
Abstract
1. Introduction
2. Materials and Methods
2.1. Honey Samples
2.2. Chemicals
2.3. Color Intensity (ABS450) Determination
2.4. Determination of Total Phenolic Content (TPC)
2.5. HPLC-DAD-ESI+ Phenolic Compounds Method
2.6. Antioxidant Activity (DPPH, FRAP, ABTS Assays)
2.7. Kinetic Analysis of DPPH Radical Scavenging
2.8. Principal Component Analysis
2.9. Statistical Analysis
3. Results
3.1. Color Intensity (ABS450)
3.2. Total Phenolic Content
3.3. Identification of Phenolic Compounds
3.4. Quantitative Phenolic Profiles
3.5. Antioxidants Capacity
3.6. Correlation Between Phenolic Composition, Color, and Antioxidant Activity
3.7. Kinetic Modeling of DPPH Scavenging Activity
3.8. Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ABS450 | Absorbance at 450 nm |
| ABTS | 2,2′-azinobis-(3-ethylbenzthiazolin-6-sulfonic acid) |
| AUC | Area under the curve |
| DAD | Diode array detector |
| DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
| FRAP | Ferric reducing antioxidant power |
| GA | Gallic acid |
| GI | Gastrointestinal |
| HCl | Hydrochloric acid |
| HPLC | High performance liquid chromatography |
| mAU | Milli-absorbance units |
| MS | Mass spectrometry |
| Na2CO3 | Sodium carbonate |
| NaNO2 | Sodium nitrite |
| NaOH | Sodium hydroxide |
| PCA | Principal component analysis |
| SPE | Solid phase extraction |
| TFC | Total flavonoid content |
| TPC | Total phenolic content |
| TE | Trolox equivalents |
| UV-Vis | Ultraviolet-visible (spectrophotometer) |
References
- Bungau, S.G.; Popa, V.C. Between Religion and Science: Some Aspects: Concerning Illness and Healing in Antiquity. Transylv. Rev. 2015, 24, 3–19. [Google Scholar]
- Kačániová, M.; Borotová, P.; Galovičová, L.; Kunová, S.; Štefániková, J.; Kowalczewski, P.Ł.; Šedík, P. Antimicrobial and Antioxidant Activity of Different Honey Samples from Beekeepers and Commercial Producers. Antibiotics 2022, 11, 1163. [Google Scholar] [CrossRef] [PubMed]
- Ranneh, Y.; Akim, A.M.; Hamid, H.A.; Khazaai, H.; Fadel, A.; Zakaria, Z.A.; Albujja, M.; Bakar, M.F.A. Honey and Its Nutritional and Anti-Inflammatory Value. BMC Complement. Med. Ther. 2021, 21, 30. [Google Scholar] [CrossRef]
- Vică, M.L.; Glevitzky, M.; Tit, D.M.; Behl, T.; Heghedűş-Mîndru, R.C.; Zaha, D.C.; Ursu, F.; Popa, M.; Glevitzky, I.; Bungău, S. The Antimicrobial Activity of Honey and Propolis Extracts from the Central Region of Romania. Food Biosci. 2021, 41, 101014. [Google Scholar] [CrossRef]
- Scepankova, H.; Combarros-Fuertes, P.; Fresno, J.M.; Tornadijo, M.E.; Dias, M.S.; Pinto, C.A.; Saraiva, J.A.; Estevinho, L.M. Role of Honey in Advanced Wound Care. Molecules 2021, 26, 4784. [Google Scholar] [CrossRef]
- Gheldof, N.; Engeseth, N.J. Antioxidant Capacity of Honeys from Various Floral Sources Based on the Determination of Oxygen Radical Absorbance Capacity and Inhibition of In Vitro Lipoprotein Oxidation in Human Serum Samples. J. Agric. Food Chem. 2002, 50, 3050–3055. [Google Scholar] [CrossRef]
- Majewska, E.; Drużyńska, B.; Derewiaka, D.; Ciecierska, M.; Pakosz, P. Comparison of Antioxidant Properties and Color of Selected Polish Honeys and Manuka Honey. Foods 2024, 13, 2666. [Google Scholar] [CrossRef]
- Bodor, Z.; Benedek, C.; Urbin, Á.; Szabó, D.; Sipos, L. Colour of Honey: Can We Trust the Pfund Scale?—An Alternative Graphical Tool Covering the Whole Visible Spectra. LWT 2021, 149, 111859. [Google Scholar] [CrossRef]
- Lawag, I.L.; Lim, L.-Y.; Joshi, R.; Hammer, K.A.; Locher, C. A Comprehensive Survey of Phenolic Constituents Reported in Monofloral Honeys around the Globe. Foods 2022, 11, 1152. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.; Brooks, P.; Boufridi, A. 4-Methoxymandelic Acid: A Leatherwood (Eucryphia lucidia) Honey Marker for Authentication. Curr. Res. Food Sci. 2025, 10, 101088. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Galiano, F.J.; Heinzen, H.; Gómez-Ramos, M.J.; Murcia-Morales, M.; Fernández-Alba, A.R. Identification of Novel Unique Mānuka Honey Markers Using High-Resolution Mass Spectrometry-Based Metabolomics. Talanta 2023, 260, 124647. [Google Scholar] [CrossRef]
- Erejuwa, O.O.; Sulaiman, S.A.; Wahab, M.S.A. Honey—A Novel Antidiabetic Agent. Int. J. Biol. Sci. 2012, 8, 913–934. [Google Scholar] [CrossRef] [PubMed]
- Martinotti, S.; Bonsignore, G.; Ranzato, E. Understanding the Anticancer Properties of Honey. Int. J. Mol. Sci. 2024, 25, 11724. [Google Scholar] [CrossRef]
- Spilioti, E.; Jaakkola, M.; Tolonen, T.; Lipponen, M.; Virtanen, V.; Chinou, I.; Kassi, E.; Karabournioti, S.; Moutsatsou, P. Phenolic Acid Composition, Antiatherogenic and Anticancer Potential of Honeys Derived from Various Regions in Greece. PLoS ONE 2014, 9, e94860. [Google Scholar] [CrossRef]
- Mokaya, H.O.; Bargul, J.L.; Irungu, J.W.; Lattorff, H.M.G. Bioactive Constituents, In Vitro Radical Scavenging and Antibacterial Activities of Selected Apis mellifera Honey from Kenya. Int. J. Food Sci. Technol. 2020, 55, 1246–1254. [Google Scholar] [CrossRef]
- Giordano, A.; Retamal, M.; Fuentes, E.; Ascar, L.; Velásquez, P.; Rodríguez, K.; Montenegro, G. Rapid Scanning of the Origin and Antioxidant Potential of Chilean Native Honey Through Infrared Spectroscopy and Chemometrics. Food Anal. Methods 2019, 12, 1511–1519. [Google Scholar] [CrossRef]
- Mărgăoan, R.; Topal, E.; Balkanska, R.; Yücel, B.; Oravecz, T.; Cornea-Cipcigan, M.; Vodnar, D.C. Monofloral Honeys as a Potential Source of Natural Antioxidants, Minerals and Medicine. Antioxidants 2021, 10, 1023. [Google Scholar] [CrossRef] [PubMed]
- Becerril-Sánchez, A.L.; Quintero-Salazar, B.; Dublán-García, O.; Escalona-Buendía, H.B. Phenolic Compounds in Honey and Their Relationship with Antioxidant Activity, Botanical Origin, and Color. Antioxidants 2021, 10, 1700. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Amaral, J.S.; Oliveira, M.B.P.P.; Mafra, I. A Comprehensive Review on the Main Honey Authentication Issues: Production and Origin. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1072–1100. [Google Scholar] [CrossRef]
- Bratosin, E.D.; Tit, D.M.; Pasca, M.B.; Purza, A.L.; Bungau, G.; Marin, R.C.; Radu, A.F.; Gitea, D. Physicochemical and Sensory Evaluation of Romanian Monofloral Honeys from Different Supply Chains. Foods 2025, 14, 2372. [Google Scholar] [CrossRef]
- Hunter, M.; Ghildyal, R.; D’Cunha, N.M.; Gouws, C.; Georgousopoulou, E.N.; Naumovski, N. The Bioactive, Antioxidant, Antibacterial, and Physicochemical Properties of a Range of Commercially Available Australian Honeys. Curr. Res. Food Sci. 2021, 4, 532–542. [Google Scholar] [CrossRef]
- Brudzynski, K. Unexpected Value of Honey Color for Prediction of a Non-Enzymatic H2O2 Production and Honey Antibacterial Activity: A Perspective. Metabolites 2023, 13, 526. [Google Scholar] [CrossRef] [PubMed]
- Pauliuc, D.; Dranca, F.; Oroian, M. Antioxidant Activity, Total Phenolic Content, Individual Phenolics and Physicochemical Parameters Suitability for Romanian Honey Authentication. Foods 2020, 9, 306. [Google Scholar] [CrossRef] [PubMed]
- Lawag, I.L.; Nolden, E.S.; Schaper, A.A.M.; Lim, L.Y.; Locher, C. A Modified Folin-Ciocalteu Assay for the Determination of Total Phenolics Content in Honey. Appl. Sci. 2023, 13, 2135. [Google Scholar] [CrossRef]
- Gitea, D.; Gitea, M.A.; Radu, A.; Pasca, M.B.; Bungau, S.G.; Tit, D.M. Antioxidant Capacity and Phenolic Profile of Defatted Seed Powder Derived from Organically Grown Vine Crops. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Hortic. 2024, 81, 48–60. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Molaveisi, M.; Beigbabaei, A.; Akbari, E.; Noghabi, M.S.; Mohamadi, M. Kinetics of Temperature Effect on Antioxidant Activity, Phenolic Compounds and Color of Iranian Jujube Honey. Heliyon 2019, 5, e01129. [Google Scholar] [CrossRef] [PubMed]
- MATLAB Version R2023a, MathWorks. Available online: https://www.mathworks.com/products/matlab-test.html (accessed on 10 July 2025).
- Shafiee, S.; Minaei, S.; Moghaddam-Charkari, N.; Ghasemi-Varnamkhasti, M.; Barzegar, M. Potential Application of Machine Vision to Honey Characterization. Trends Food Sci. Technol. 2013, 30, 174–177. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Yung An, C.; Rao, P.V.; Hawlader, M.N.I.; Azlan, S.A.B.M.; Sulaiman, S.A.; Gan, S.H. Identification of Phenolic Acids and Flavonoids in Monofloral Honey from Bangladesh by High Performance Liquid Chromatography: Determination of Antioxidant Capacity. BioMed Res. Int. 2014, 2014, 737490. [Google Scholar] [CrossRef]
- JASP V10.19.3 Statistical Software. Available online: https://jasp-stats.org/ (accessed on 10 July 2025).
- Jaśkiewicz, K.; Szczęsna, T.; Jachuła, J. How Phenolic Compounds Profile and Antioxidant Activity Depend on Botanical Origin of Honey—A Case of Polish Varietal Honeys. Molecules 2025, 30, 360. [Google Scholar] [CrossRef]
- Islam, A.; Khalil, I.; Islam, N.; Moniruzzaman, M.; Mottalib, A.; Sulaiman, S.A.; Gan, S.H. Physicochemical and Antioxidant Properties of Bangladeshi Honeys Stored for More than One Year. BMC Complement. Altern. Med. 2012, 12, 177. [Google Scholar] [CrossRef]
- Mahani, M.; Ferdian, P.R.; Ghibran, H.M.; Herlina, A.F.; Nurhasanah, S.; Nurjanah, N.; Elfirta, R.R.; Pribadi, A.; Amalia, R.L.R.; Samudra, I.M. A Report on the Physicochemical and Antioxidant Properties of Three Indonesian Forest Honeys Produced by Apis dorsata. Food Chem. X 2025, 25, 102156. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Sulaiman, S.A.; Azlan, S.A.M.; Gan, S.H. Two-Year Variations of Phenolics, Flavonoids and Antioxidant Contents in Acacia Honey. Molecules 2013, 18, 14694–14710. [Google Scholar] [CrossRef] [PubMed]
- Delmoro, J.; Munoz, D.; Nadal, V.; Clementz, A.; Pranzetti, V. EL COLOR EN LOS ALIMENTOS: DETERMINACIÓN DE COLOR EN MIELES. INVENIO 2010, 13, 145–152. [Google Scholar]
- Kędzierska-Matysek, M.; Stryjecka, M.; Teter, A.; Skałecki, P.; Domaradzki, P.; Florek, M. Relationships between the Content of Phenolic Compounds and the Antioxidant Activity of Polish Honey Varieties as a Tool for Botanical Discrimination. Molecules 2021, 26, 1810. [Google Scholar] [CrossRef]
- Bok, V.V.; Šola, I.; Rusak, G.; Budisavljević, A.; Nguyen, R.; Ludwig-Müller, J.; Maleš, Ž. Phenolic Content and Antioxidant Activity of Croatian and German Honey. Acta Pharm. 2024, 74, 673–692. [Google Scholar] [CrossRef] [PubMed]
- Can, Z.; Yildiz, O.; Sahin, H.; Akyuz Turumtay, E.; Silici, S.; Kolayli, S. An Investigation of Turkish Honeys: Their Physico-Chemical Properties, Antioxidant Capacities and Phenolic Profiles. Food Chem. 2015, 180, 133–141. [Google Scholar] [CrossRef]
- Zou, S.; Tao, H.; Chang, Y.-N. Characterization of Antioxidant Activity and Analysis of Phenolic Acids and Flavonoids in Linden Honey. Food Sci. Technol. 2022, 42, e76621. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Vavoura, M.V.; Nikolaou, C.; Badeka, A.V.; Kontakos, S.; Kontominas, M.G. Floral Authentication of Greek Unifloral Honeys Based on the Combination of Phenolic Compounds, Physicochemical Parameters and Chemometrics. Food Res. Int. 2014, 62, 753–760. [Google Scholar] [CrossRef]
- Yankova-Nikolova, A.; Vlahova-Vangelova, D.; Balev, D.; Kolev, N.; Dragoev, S.; Lowndes-Nikolova, B. Comparative Study of Bulgarian Linden Honey (Tilia sp.). Foods 2025, 14, 175. [Google Scholar] [CrossRef] [PubMed]
- Farkas, Á.; Horváth, G.; Kuzma, M.; Mayer, M.; Kocsis, M. Phenolic Compounds in Hungarian Acacia, Linden, Milkweed and Goldenrod Honeys. Curr. Res. Food Sci. 2023, 6, 100526. [Google Scholar] [CrossRef] [PubMed]
- Kıvrak, Ş.; Kivrak, İ.; Karababa, E. Characterization of Turkish Honeys Regarding of Physicochemical Properties, and Their Adulteration Analysis. Ciênc. Tecnol. Aliment. 2017, 37, 80–89. [Google Scholar] [CrossRef]
- Pătruică, S.; Alexa, E.; Obiștioiu, D.; Cocan, I.; Radulov, I.; Berbecea, A.; Lazăr, R.N.; Simiz, E.; Vicar, N.M.; Hulea, A.; et al. Chemical Composition, Antioxidant and Antimicrobial Activity of Some Types of Honey from Banat Region, Romania. Molecules 2022, 27, 4179. [Google Scholar] [CrossRef] [PubMed]
- Stebuliauskaitė, R.; Liaudanskas, M.; Žvikas, V.; Čeksterytė, V.; Sutkevičienė, N.; Sorkytė, Š.; Bračiulienė, A.; Trumbeckaitė, S. Changes in Ascorbic Acid, Phenolic Compound Content, and Antioxidant Activity In Vitro in Bee Pollen Depending on Storage Conditions: Impact of Drying and Freezing. Antioxidants 2025, 14, 462. [Google Scholar] [CrossRef]
- Lee, H.Y.; Ryu, S.; You, H.S.; Jeon, Y.N.; Jin, M.; Cho, C.-W.; Baek, J.-S. Enhanced Antioxidant and Anti-Inflammatory Effects of Bee Pollen and Honey Hybrid Formulation by Hot-Melt Extrusion. Food Hydrocoll. Health 2023, 4, 100167. [Google Scholar] [CrossRef]
- Valverde, S.; Ares, A.M.; Stephen Elmore, J.; Bernal, J. Recent Trends in the Analysis of Honey Constituents. Food Chem. 2022, 387, 132920. [Google Scholar] [CrossRef]
- Tlak Gajger, I.; Dar, S.A.; Ahmed, M.M.M.; Aly, M.M.; Vlainić, J. Antioxidant Capacity and Therapeutic Applications of Honey: Health Benefits, Antimicrobial Activity and Food Processing Roles. Antioxidants 2025, 14, 959. [Google Scholar] [CrossRef]
- Shahab-Navaei, F.; Asoodeh, A. Synthesis of Optimized Propolis Solid Lipid Nanoparticles with Desirable Antimicrobial, Antioxidant, and Anti-Cancer Properties. Sci. Rep. 2023, 13, 18290. [Google Scholar] [CrossRef]
- Kranjac, M.; Kuś, P.M.; Prđun, S.; Odžak, R.; Tuberoso, C.I. Chromatography-Based Metabolomics as a Tool in Bioorganic Research of Honey. Metabolites 2024, 14, 606. [Google Scholar] [CrossRef]
- Koulis, G.A.; Tsagkaris, A.S.; Aalizadeh, R.; Dasenaki, M.E.; Panagopoulou, E.I.; Drivelos, S.; Halagarda, M.; Georgiou, C.A.; Proestos, C.; Thomaidis, N.S. Honey Phenolic Compound Profiling and Authenticity Assessment Using HRMS Targeted and Untargeted Metabolomics. Molecules 2021, 26, 2769. [Google Scholar] [CrossRef]
- Shen, S.; Wang, J.; Zhuo, Q.; Chen, X.; Liu, T.; Zhang, S.-Q. Quantitative and Discriminative Evaluation of Contents of Phenolic and Flavonoid and Antioxidant Competence for Chinese Honeys from Different Botanical Origins. Molecules 2018, 23, 1110. [Google Scholar] [CrossRef] [PubMed]
- Akbari, E.; Baigbabaei, A.; Shahidi, M. Determination of the Floral Origin of Honey Based on Its Phenolic Profile and Physicochemical Properties Coupled with Chemometrics. Int. J. Food Prop. 2020, 23, 506–519. [Google Scholar] [CrossRef]
- Sun, C.; Tan, H.; Zhang, Y.; Zhang, H. Phenolics and Abscisic Acid Identified in Acacia Honey Comparing Different SPE Cartridges Coupled with HPLC-PDA. J. Food Compos. Anal. 2016, 53, 91–101. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Vavoura, M.V.; Badeka, A.; Kontakos, S.; Kontominas, M.G. Differentiation of Greek Thyme Honeys According to Geographical Origin Based on the Combination of Phenolic Compounds and Conventional Quality Parameters Using Chemometrics. Food Anal. Methods 2014, 7, 2113–2121. [Google Scholar] [CrossRef]
- Cheung, Y.; Meenu, M.; Xiaoming, Y.; Xu, B. Phenolic Acids and Flavonoids Profiles of Commercial Honey from Different Floral Sources and Geographic Sources. Int. J. Food Prop. 2019, 22, 290–308. [Google Scholar] [CrossRef]
- Kıvrak, Ş.; Kıvrak, İ. Assessment of Phenolic Profile of Turkish Honeys. Int. J. Food Prop. 2017, 20, 864–876. [Google Scholar] [CrossRef]
- Nedić, N.; Nešović, M.; Radišić, P.; Gašić, U.; Baošić, R.; Joksimović, K.; Pezo, L.; Tešić, Ž.; Vovk, I. Polyphenolic and Chemical Profiles of Honey From the Tara Mountain in Serbia. Front. Nutr. 2022, 9, 941463. [Google Scholar] [CrossRef]
- Albu, A.; Radu-Rusu, R.-M.; Simeanu, D.; Radu-Rusu, C.-G.; Pop, I.M. Phenolic and Total Flavonoid Contents and Physicochemical Traits of Romanian Monofloral Honeys. Agriculture 2022, 12, 1378. [Google Scholar] [CrossRef]
- Wilczyńska, A. Phenolic Content and Antioxidant Activity of Different Types of Polish Honey—A Short Report. Pol. J. Food Nutr. Sci. 2010, 60, 309–313. [Google Scholar]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.P.; Zhang, J.; Bravo Lamas, L.; Martínez Flórez, S.; Agudo Toyos, P.; et al. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef]
- Qi, N.; Zhao, W.; Xue, C.; Zhang, L.; Hu, H.; Jin, Y.; Xue, X.; Chen, R.; Zhang, J. Phenolic Acid and Flavonoid Content Analysis with Antioxidant Activity Assessment in Chinese C. Pi. Shen Honey. Molecules 2025, 30, 370. [Google Scholar]
- Tananaki, C.; Rodopoulou, M.-A.; Dimou, M.; Kanelis, D.; Liolios, V. The Total Phenolic Content and Antioxidant Activity of Nine Monofloral Honey Types. Appl. Sci. 2024, 14, 4329. [Google Scholar] [CrossRef]
- Gośliński, M.; Nowak, D.; Szwengiel, A. Multidimensional Comparative Analysis of Bioactive Phenolic Compounds of Honeys of Various Origin. Antioxidants 2021, 10, 530. [Google Scholar] [CrossRef]
- Can, Z.; Gıdık, B.; Kara, Y.; Kolaylı, S. Antioxidant Activity and Phenolic Content of Bee Breads from Different Regions of Türkiye by Chemometric Analysis (PCA and HCA). Eur. Food Res. Technol. 2024, 250, 2961–2971. [Google Scholar] [CrossRef]
- Selamat, J.; Rozani, N.A.; Murugesu, S. Application of the Metabolomics Approach in Food Authentication. Molecules 2021, 26, 7565. [Google Scholar] [CrossRef]
- Khakimov, B.; Gürdeniz, G.; Engelsen, S. Trends in the Application of Chemometrics to Foodomics Studies. Acta Aliment. 2015, 44, 4–31. [Google Scholar] [CrossRef]







| Sample Code | Botanical Origin | Source |
|---|---|---|
| AH_P | Acacia | Producer |
| AH_C | Acacia | Commercial |
| RH_P | Rapeseed | Producer |
| RH_C | Rapeseed | Commercial |
| TLH_P | Linden | Producer |
| TLH_C | Linden | Commercial |
| LH_P | Lavender | Producer |
| TH_P | Thyme | Producer |
| Molecular Formula (Reagent)/Usual Name | CAS/Concentration | Producer | Country |
|---|---|---|---|
| C14H18O4 (6-hydroxy-2,5,5,7,8-tetramethylchroman-2-carboxylic acid)/trolox | 53188-07-1/97% | Sigma Aldrich (St. Louis, MO, USA) | USA |
| C18H12N5O6 (1,1-diphenyl-2-picrylhydrazyl hydrate)/DPPH | 3923-52-2/99% | Sigma Aldrich | USA |
| C18H12N6 (2,4,6-tris(2-pyridyl)-S-triazine)/TPTZ | 3682-35-7/98% | Sigma Aldrich | USA |
| C14H12N (2,9-dimethyl-1, 10-phenanthroline)/ Neocuproine | 484-11-7/98% | Sigma Aldrich | USA |
| C16H18O (3-(3,4-dihydroxycinnamoyl) quinic acid)/ Chlorogenic acid | 327-97-9/98% HPLC | Sigma Aldrich | USA |
| C6H2(OH)3COOH (3,4,5-trihydroxybenzoic acid)/ Gallic acid | 149-91-7/98% HPLC | Sigma Aldrich | USA |
| C15H10O6 (3′,4′,5,7-tetrahydroxyflavone)/Luteolin | 491-70-3/99% HPLC | Sigma Aldrich | USA |
| C27H30O16 (Rutin) | 153-18-4/99% | Sigma Aldrich | USA |
| C18H18N4O6S4 (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt)/ABTS | 30931-67-0/98% | Thermo Fisher Scientific (Waltham, MA, USA) | USA |
| (CH3)2SO (Dimethyl sulfoxide)/DMSO | 67-68-5/99.9% | Chempur (Piekary Śląskie, Poland) | Poland |
| Folin–Ciocalteu reagent | 12111-13-6 | Carl Roth GmbH + Co KG (Karlsruhe, Germany) | Germany |
| FeCl3·6H2O/iron (III) chloride hexahydrate | 10025-77-1/97% | Carl Roth GmbH + Co KG | Germany |
| CuCl2/copper (II) chloride | 7447-39-4/97% | Carl Roth GmbH + Co KG | Germany |
| Na2CO3/sodium carbonate | 497-19-8/99.5% | Carl Roth GmbH + Co KG | Germany |
| C2H5OH/Ethanol | 64-17-5/70% | Chimreactiv SRL (Bucharest, Romania) | Romania |
| CH3OH/Methanol | 67-56-1/90% | Chimreactiv SRL | Romania |
| CH3CN/Acetonitrile | 75-05-8/99.8% HPLC | Merck (Darmstadt, Germany) | Germany |
| Gallic acid | 149-91-7/98% HPLC | Sigma Aldrich | USA |
| Chlorogenic acid | 327-97-9/98% HPLC | Sigma Aldrich | USA |
| Luteolin | 491-70-3/90% HPLC | Sigma Aldrich | USA |
| Rutin | 207671-50-9/94% HPLC | Sigma Aldrich | USA |
| Time (min) | % B | Description |
|---|---|---|
| 0 | 5 | Initial condition |
| 0–2 | 5 | Isocratic |
| 2–18 | 5–40 | Linear gradient |
| 18–20 | 40–90 | Linear gradient |
| 20–24 | 90 | Isocratic |
| 24–25 | 90–5 | Linear decrease |
| 25–30 | 5 | Re-equilibration (isocratic) |
| Sample | Total Phenolic Content (mg GAE/100 g) |
|---|---|
| AH_P | 179.26 ± 23.57 a |
| AH_C | 234.81 ± 18.33 b |
| RH_P | 342.22 ± 13.09 c |
| RH_C | 223.70 ± 28.81 ab |
| TLH_P | 495.93 ± 31.43 d |
| TLH_C | 586.67 ± 18.33 e |
| LH_P | 329.26 ± 10.48 c |
| TH_P | 562.59 ± 20.95 e |
| Rt (min) | UV λmax (nm) | [M+H]+ (m/z) | Compound | Subclass |
|---|---|---|---|---|
| 3.55 | 270 | 155 | 2,4-dihydroxybenzoic acid | Hydroxybenzoic acid |
| 7.41 | 270 | 171 | Gallic acid | Hydroxybenzoic acid |
| 9.55 | 280 | 155 | Protocatechuic acid | Hydroxybenzoic acid |
| 11.56 | 330 | 355 | Chlorogenic acid | Hydroxycinnamic acid |
| 12.60 | 270 | 139 | p-hydroxybenzoic acid | Hydroxybenzoic acid |
| 13.32 | 330 | 343 | Caffeic acid-glucoside | Hydroxycinnamic acid |
| 13.61 | 280 | 169 | Vanilic acid | Hydroxybenzoic acid |
| 14.69 | 340, 245 | 433, 271 | Apigenin-glucoside | Flavone |
| 14.90 | 340, 245 | 565, 271 | Apigenin-apiosyl-glucoside | Flavone |
| 15.23 | 360, 250 | 611, 303 | Quercetin-rutinoside | Flavonol |
| 16.02 | 360, 250 | 465, 303 | Quercetin-glucoside | Flavonol |
| 16.56 | 280 | 199 | Syringic acid | Hydroxybenzoic acid |
| 17.07 | 350, 250 | 419, 257 | Pinocembrin-glucoside | Flavanone |
| 17.27 | 270 | 139 | Salicylic acid | Hydroxybenzoic acid |
| 19.26 | 280 | 213, 199 | Methyl-syringic acid | Hydroxybenzoic acid |
| 21.86 | 355, 250 | 433, 271 | Galangin-glucoside | Flavanonol |
| 23.81 | 355, 250 | 273 | Pinobanksin | Flavanonol |
| Compound | AH_P | AH_C | RH_P | RH_C | TLH_P | TLH_C | LH_P | TH_P |
|---|---|---|---|---|---|---|---|---|
| 2,4-Dihydroxybenzoic acid | 4.06 ± 0.07 a | 3.80 ± 0.11 a | 6.27 ± 0.15 c | 7.13 ± 0.07 d | 4.51 ± 0.1 b | 4.21 ± 0.08 a,b | 5.94 ± 0.23 c | 9.25 ± 0.36 e |
| Gallic acid | 45.90 ± 2.17 b | 35.78 ± 0.10 a | 75.53 ± 2.26 e | 91.64 ± 0.64 f | 51.31 ± 1.47 b,c | 54.90 ± 2.30 c | 66.16 ± 1.93 d | 127.49 ± 5.69 g |
| Protocatechuic acid | nd | nd | nd | 3.38 ± 0.1 d | 0.05 ± 0.00 a | 1.06 ± 0.02 b | nd | 1.89 ± 0.07 c |
| Chlorogenic acid | nd | nd | 1.17 ± 0.04 a,b | 4.13 ± 0.12 c | 26.43 ± 0.82 f | 23.92 ± 1.08 e | 6.92 ± 0.19 d | 1.52 ± 0.04 b |
| p-Hydroxybenzoic acid | nd | nd | nd | 0.42 ± 0.02 b | 1.15 ± 0.05 d | 0.67 ± 0.02 c | nd | nd |
| Caffeic acid-glucoside | nd | nd | nd | nd | 2.05 ± 0.03 d | 1.79 ± 0.06 c | 1.32 ± 0.05 b | 1.30 ± 0.04 b |
| Vanilic acid | nd | nd | 0.15 ± 0.01 b | 0.17 ± 0.00 b | 0.80 ± 0.01 d | 1.03 ± 0.04 e | 0.03 ± 0.00 a | 0.51 ± 0.01 c |
| Apigenin-glucoside | nd | nd | 0.73 ± 0.03 a | 3.96 ± 0.13 b | 29.46 ± 0.84 e | 21.20 ± 0.34 d | 8.56 ± 0.31 c | 0.26 ± 0.01 a |
| Apigenin-apiosyl-glucoside | nd | nd | 0.83 ± 0.02 b | 2.69 ± 0.08 c | 19.29 ± 0.41 e | 12.69 ± 0.46 d | 3.09 ± 0.11 c | nd |
| Quercetin-rutinoside | 1.07 ± 0.01 a | 0.89 ± 0.01 a | 2.82 ± 0.07 a | 10.02 ± 0.38 b | 70.5 ± 2.51 e | 33.93 ± 0.05 d | 13.16 ± 0.30 c | 1.26 ± 0.02 a |
| Quercetin-glucoside | 0.92 ± 0.04 a | 1.04 ± 0.00 a | 1.44 ± 0.03 a | 5.12 ± 0.08 b | 29.62 ± 1.31 e | 25.69 ± 0.66 d | 7.99 ± 0.16 c | 2.02 ± 0.05 a |
| Syringic acid | nd | nd | nd | 0.17 ± 0.00 b | 8.97 ± 0.03 e | 5.52 ± 0.07 d | 1.50 ± 0.04 c | nd |
| Pinocembrin-glucoside | nd | nd | nd | nd | 13.45 ± 0.58 c | 7.72 ± 0.13 b | 7.16 ± 0.20 b | nd |
| Salicylic acid | 4.82 ± 0.04 b | 8.05 ± 0.14 c | 9.33 ± 0.31 d | 22.70 ± 0.16 g | 12.17 ± 0.23 e | 12.06 ± 0.32 e,f | nd | 12.60 ± 0.32 f |
| Methyl-Syringic acid | nd | nd | 3.32 ± 0.04 b | 3.26 ± 0.1 b | 4.75 ± 0.1 c | 7.07 ± 0.31 d | 0.24 ± 0.01 a | nd |
| Galangin-glucoside | 2.81 ± 0.09 b | nd | 1.89 ± 0.06 a,b | 7.14 ± 0.18 c | 57.47 ± 1.55 f | 39.54 ± 1.29 e | 10.54 ± 0.06 d | 1.26 ± 0.01 a,b |
| Pinobanksin | 3.04 ± 0.09 a | 4.28 ± 0.04 b | 2.61 ± 0.08 a | 2.72 ± 0.1 a | 13.51 ± 0.32 d | 8.67 ± 0.35 c | 2.78 ± 0.1 a | 2.71 ± 0.09 a |
| Total phenolic acid | 54.80 ± 1.55 a | 47.63 ± 1.65 a | 95.77 ± 2.3 c | 132.99 ± 5.2 e | 112.18 ± 2.6 d | 112.24 ± 2.8 d | 82.13 ± 1.6 b | 154.57 ± 2.6 f |
| Total Flavonoids | 7.82 ± 0.36 a | 6.21 ± 0.21 a | 10.32 ± 0.65 a | 31.66 ± 0.56 b | 233.31 ± 2.5 e | 149.43 ± 1.5 d | 53.26 ± 1.3 c | 7.5 ± 0.2 a |
| Total phenolics | 62.62 ± 1.6 b | 53.84 ± 1.8 a | 106.09 ± 3.1 c | 164.65 ± 6.1 f | 345.49 ± 5.2 h | 261.67 ± 4.1 g | 135.39 ± 3.1 d | 162.07 ± 2.8 e |
| Sample | DPPH | ABTS | FRAP |
|---|---|---|---|
| µmol TE/100 g | |||
| AH_P | 16.82 ± 0.01 a | 8.04 ± 0.01 a | 13.09 ± 0.01 a |
| AH_C | 19.60 ± 0.02 b | 8.30 ± 0.01 a | 36.09 ± 0.02 b |
| RH_P | 18.54 ± 0.01 a,b | 10.30 ± 0.01 a | 57.24 ± 0.01 c |
| RH_C | 17.14 ± 0.01 a | 68.34 ± 0.02 c | 97.55 ± 0.03 f |
| TLH_P | 20.01 ± 0.02 b,c | 107.03 ± 0.01 e | 77.07 ± 0.01 e |
| TLH_C | 19.11 ± 0.01 b | 91.55 ± 0.02 d | 67.81 ± 0.02 d |
| LH_P | 18.54 ± 0.01 a,b | 45.12 ± 0.01 b | 70.46 ± 0.01 d,e |
| TH_P | 21.82 ± 0.02 c | 145.72 ± 0.01 f | 97.55 ± 0.09 f |
| Sample | Zero-Order Equation | k (Zero) | R2 (Zero) | First-Order Equation | k (First) | R2 (First) | Second-Order Equation | k (Second) | R2 (Second) |
|---|---|---|---|---|---|---|---|---|---|
| AH_P | y = 0.008x + 0.7915 | 0.008 | 0.9979 | y = 0.0059x − 0.1287 | 0.0059 | 0.9932 | y = −0.0044x + 1.0762 | −0.0044 | 0.9785 |
| AH_C | y = 0.0273x + 1.2373 | 0.0273 | 0.9985 | y = 0.0273x + 1.2373 | 0.0273 | 0.9974 | y = −0.0018x + 0.3908 | −0.0018 | 0.9797 |
| RH_C | y = 0.0184x + 1.6648 | 0.0184 | 0.9947 | y = 0.0062x + 0.6226 | 0.0062 | 0.9792 | y = −0.0022x + 0.5068 | −0.0022 | 0.9527 |
| RH_P | y = 0.0048x + 1.0462 | 0.0048 | 0.9885 | y = 0.003x + 0.1159 | 0.003 | 0.9683 | y = −0.0021x + 0.8729 | −0.0021 | 0.9747 |
| TLH_P | y = 0.0209x + 2.5655 | 0.0209 | 0.9947 | y = 0.0052x + 1.0158 | 0.0052 | 0.9842 | y = −0.0013x + 0.3472 | −0.0013 | 0.9663 |
| TLH_C | y = 0.0138x + 2.1561 | 0.0138 | 0.9993 | y = 0.0044x + 0.8216 | 0.0044 | 0.9954 | y = −0.0014x + 0.4255 | −0.0014 | 0.9842 |
| LH_P | y = 0.0091x + 1.6354 | 0.0091 | 0.9990 | y = 0.004x + 0.5341 | 0.004 | 0.9934 | y = −0.0018x + 0.5704 | −0.0018 | 0.9819 |
| TH_P | y = 0.0244x + 3.6572 | 0.0244 | 0.9964 | y = 0.0045x + 1.3531 | 0.0045 | 0.9918 | y = −0.0008x + 0.2497 | −0.0008 | 0.9787 |
| Sample | AUC (DPPH·min) | t1/2 (min) |
|---|---|---|
| AH_P | 493.72 | 64.82 |
| AH_C | 373.36 | 52.99 |
| RH_C | 370.91 | 59.33 |
| RH_P | 287.39 | 126.04 |
| TLH_P | 275.11 | 75.74 |
| TLH_C | 211.24 | 92.95 |
| LH_P | 126.91 | 104.4 |
| TH_P | 125.27 | 89.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bratosin, E.D.; Tit, D.M.; Purza, A.L.; Pasca, M.B.; Bungau, G.S.; Marin, R.C.; Radu, A.F.; Gitea, D. Exploratory Analysis of Phenolic Profiles and Antioxidant Capacity in Selected Romanian Monofloral Honeys: Influence of Botanical Origin and Acquisition Source. Antioxidants 2025, 14, 1248. https://doi.org/10.3390/antiox14101248
Bratosin ED, Tit DM, Purza AL, Pasca MB, Bungau GS, Marin RC, Radu AF, Gitea D. Exploratory Analysis of Phenolic Profiles and Antioxidant Capacity in Selected Romanian Monofloral Honeys: Influence of Botanical Origin and Acquisition Source. Antioxidants. 2025; 14(10):1248. https://doi.org/10.3390/antiox14101248
Chicago/Turabian StyleBratosin, Elena Daniela, Delia Mirela Tit, Anamaria Lavinia Purza, Manuela Bianca Pasca, Gabriela S. Bungau, Ruxandra Cristina Marin, Andrei Flavius Radu, and Daniela Gitea. 2025. "Exploratory Analysis of Phenolic Profiles and Antioxidant Capacity in Selected Romanian Monofloral Honeys: Influence of Botanical Origin and Acquisition Source" Antioxidants 14, no. 10: 1248. https://doi.org/10.3390/antiox14101248
APA StyleBratosin, E. D., Tit, D. M., Purza, A. L., Pasca, M. B., Bungau, G. S., Marin, R. C., Radu, A. F., & Gitea, D. (2025). Exploratory Analysis of Phenolic Profiles and Antioxidant Capacity in Selected Romanian Monofloral Honeys: Influence of Botanical Origin and Acquisition Source. Antioxidants, 14(10), 1248. https://doi.org/10.3390/antiox14101248

