Reassessing Whether Biodegradable Microplastics Are Environmentally Friendly: Differences in Earthworm Physiological Responses and Soil Carbon Function Impacts
Abstract
1. Introduction
2. Materials and Methods
2.1. Characterization of Microplastics
2.2. Test Reagents
2.3. Test Soil
2.4. Tested Earthworms
2.5. Experimental Design
2.6. Sample Collection
2.7. Determination of Enzyme Indexes
2.8. Data Analysis
2.8.1. Factor Analysis
2.8.2. Principal Component Analysis
2.8.3. Path Analysis
3. Results and Discussion
3.1. Characteristics of Microplastics
3.2. Physiological Response of Earthworms Under Microplastic Stress
3.2.1. Oxidative Stress Effects in Earthworms
3.2.2. Screening of Sensitive Oxidative Stress Indicators
3.3. Relationship Between the Physiological Response of Earthworms and Soil Ecological Functions Under Microplastic Stress
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PP | polypropylene |
PS | polystyrene |
PLA | polylactic acid |
PHA | polyhydroxyalkanoates |
TP | total protein |
POD | peroxidase |
SOD | superoxide dismutase |
GPX | glutathione peroxidase |
GST | glutathione-S-transferase |
CAT | catalase |
MDA | malondialdehyde |
TBA | thiobarbituric acid |
AChE | acetylcholinesterase |
Appendix A
Z-Score Method for Standardization
Appendix B
Extraction and Interpretation of the Main Factors
Principal Factor | Sum of Extracted Square Loads | Sum of Rotating Square Loads | ||||
---|---|---|---|---|---|---|
Eigen Value | Contribution Rate% | Cumulative Contribution Rate% | Eigen Value | Contribution Rate% | Cumulative Contribution Rate% | |
Fpp-7-1 | 5.424 | 67.803 | 67.803 | 5.282 | 66.022 | 66.022 |
Fpp-7-2 | 1.773 | 22.167 | 89.97 | 1.916 | 23.948 | 89.97 |
Fps-7-1 | 5.772 | 72.147 | 72.147 | 4.399 | 54.989 | 54.989 |
Fps-7-2 | 1.754 | 21.92 | 94.067 | 3.126 | 39.078 | 94.067 |
Fpla-7-1 | 7.07 | 88.371 | 88.371 | - | - | - |
Fpha-7-1 | 6.356 | 79.455 | 79.455 | 4.522 | 56.521 | 56.521 |
Fpha-7-2 | 1.178 | 14.731 | 94.186 | 3.013 | 37.665 | 94.186 |
Fpp-14-1 | 5.018 | 62.723 | 62.723 | 5.004 | 62.55 | 62.55 |
Fpp-14-2 | 1.682 | 21.022 | 83.745 | 1.383 | 17.292 | 79.841 |
Fpp-14-3 | 1.019 | 12.733 | 96.478 | 1.331 | 16.636 | 96.478 |
Fps-14-1 | 4.276 | 53.456 | 53.456 | 3.641 | 45.508 | 45.508 |
Fps-14-2 | 1.823 | 22.784 | 76.24 | 1.997 | 24.961 | 70.469 |
Fps-14-3 | 1.387 | 17.338 | 93.577 | 1.849 | 23.109 | 93.577 |
Fpla-14-1 | 3.705 | 46.307 | 46.307 | 3.091 | 38.638 | 38.638 |
Fpla-14-2 | 2.894 | 36.176 | 82.483 | 2.999 | 37.491 | 76.129 |
Fpla-14-3 | 1.327 | 16.591 | 99.074 | 1.836 | 22.945 | 99.074 |
Fpha-14-1 | 4.403 | 55.039 | 55.039 | 3.667 | 45.84 | 45.84 |
Fpha-14-2 | 2.4 | 30.005 | 85.044 | 3.136 | 39.204 | 85.044 |
Fpp-21-1 | 4.662 | 58.274 | 58.274 | 3.55 | 44.37 | 44.37 |
Fpp-21-2 | 1.772 | 22.149 | 80.423 | 2.516 | 31.449 | 75.819 |
Fpp-21-3 | 1.413 | 17.657 | 98.08 | 1.781 | 22.261 | 98.08 |
Fps-21-1 | 6.586 | 82.321 | 82.321 | - | - | - |
Fpla-21-1 | 6.796 | 84.951 | 84.951 | - | - | - |
Fpha-21-1 | 7.261 | 90.765 | 90.765 | - | - | - |
Fpp-28-1 | 3.148 | 39.348 | 39.348 | 2.845 | 35.566 | 35.566 |
Fpp-28-2 | 2.446 | 30.574 | 69.922 | 2.666 | 33.328 | 68.895 |
Fpp-28-3 | 1.95 | 24.38 | 94.302 | 2.033 | 25.408 | 94.302 |
Fps-28-1 | 3.894 | 48.67 | 48.67 | 3.71 | 46.379 | 46.379 |
Fps-28-2 | 2.283 | 28.536 | 77.206 | 2.396 | 29.95 | 76.329 |
Fps-28-3 | 1.611 | 20.141 | 97.347 | 1.681 | 21.018 | 97.347 |
Fpla-28-1 | 5.164 | 64.546 | 64.546 | 4.521 | 56.517 | 56.517 |
Fpla-28-2 | 2.224 | 27.805 | 92.351 | 2.867 | 35.834 | 92.351 |
Fpha-28-1 | 5.018 | 62.729 | 62.729 | 3.588 | 44.853 | 44.853 |
Fpha-28-2 | 1.562 | 19.53 | 82.259 | 2.993 | 37.407 | 82.259 |
Fpp-35-1 | 4.091 | 51.132 | 51.132 | 3.682 | 46.03 | 46.03 |
Fpp-35-2 | 1.795 | 22.433 | 73.565 | 2.009 | 25.113 | 71.143 |
Fpp-35-3 | 1.533 | 19.163 | 92.728 | 1.727 | 21.585 | 92.728 |
Fps-35-1 | 4.254 | 53.176 | 53.176 | 3.818 | 47.725 | 47.725 |
Fps-35-2 | 2.612 | 32.654 | 85.83 | 3.048 | 38.105 | 85.83 |
Fpla-35-1 | 4.138 | 51.719 | 51.719 | 3.336 | 41.704 | 41.704 |
Fpla-35-2 | 1.892 | 23.654 | 75.373 | 2.64 | 33 | 74.704 |
Fpla-35-3 | 1.328 | 16.602 | 91.974 | 1.382 | 17.27 | 91.974 |
Fpha-35-1 | 4.628 | 57.856 | 57.856 | 4.393 | 54.908 | 54.908 |
Fpha-35-2 | 1.515 | 18.943 | 76.798 | 1.751 | 21.891 | 76.798 |
Appendix C
Analysis of Factor Load Matrix
Principal Factor | Feature Vector | |||||||
---|---|---|---|---|---|---|---|---|
TP | POD | CAT | MDA | SOD | AChE | GST | GPX | |
Fpp-7-1 | −0.919 | 0.277 | 0.934 | 0.975 | 0.983 | 0.738 | 0.255 | −0.98 |
Fpp-7-2 | −0.357 | −0.756 | −0.287 | 0.036 | 0.183 | 0.642 | 0.828 | 0.044 |
Communalities | 0.972 | 0.649 | 0.956 | 0.952 | 1 | 0.956 | 0.751 | 0.963 |
Fps-7-1 | −0.724 | 0.957 | 0.184 | 0.766 | 0.769 | 0.927 | 0.062 | 0.941 |
Fps-7-2 | −0.676 | 0.273 | 0.909 | 0.576 | 0.578 | 0.327 | 0.959 | −0.277 |
Communalities | 0.788 | 0.995 | 0.985 | 0.929 | 0.976 | 0.945 | 0.907 | 0.962 |
Fpla-7-1 | −0.986 | 0.941 | 0.998 | 0.955 | 0.968 | 0.976 | 0.925 | −0.749 |
Communalities | 0.971 | 0.886 | 0.996 | 0.912 | 0.936 | 0.952 | 0.856 | 0.561 |
Fpha-7-1 | −0.814 | 0.97 | 0.817 | 0.916 | 0.919 | 0.503 | 0.558 | −0.059 |
Fpha-7-2 | −0.558 | 0.027 | 0.553 | 0.376 | 0.379 | 0.686 | 0.806 | −0.996 |
Communalities | 0.974 | 0.942 | 0.973 | 0.98 | 0.987 | 0.724 | 0.96 | 0.995 |
Fpp-14-1 | −0.987 | 0.862 | 0.159 | 0.966 | 0.955 | 0.927 | 0.088 | 0.74 |
Fpp-14-2 | −0.139 | −0.385 | 0.954 | 0.237 | 0.016 | 0.312 | −0.179 | −0.345 |
Fpp-14-3 | −0.059 | 0.324 | −0.148 | −0.032 | 0.152 | −0.204 | 0.954 | −0.475 |
Communalities | 0.997 | 0.997 | 0.958 | 0.991 | 0.935 | 0.998 | 0.949 | 0.893 |
Fps-14-1 | 0.506 | −0.731 | 0.855 | 0.104 | −0.945 | 0.96 | 0.224 | −0.491 |
Fps-14-2 | −0.698 | 0.574 | −0.431 | 0.957 | 0.088 | 0.144 | 0.225 | −0.025 |
Fps-14-3 | −0.213 | 0.361 | 0.261 | 0.053 | 0.273 | 0.046 | 0.898 | 0.849 |
Communalities | 0.788 | 0.995 | 0.985 | 0.929 | 0.976 | 0.945 | 0.907 | 0.962 |
Fpla-14-1 | 0.351 | −0.044 | −0.084 | 0.252 | −0.659 | −0.861 | 0.856 | 0.994 |
Fpla-14-2 | −0.933 | 0.067 | 0.98 | 0.938 | −0.253 | 0.466 | −0.014 | 0.038 |
Fpla-14-3 | 0.047 | 0.993 | −0.169 | 0.201 | 0.703 | 0.113 | −0.516 | 0.062 |
Communalities | 0.996 | 0.993 | 0.995 | 0.984 | 0.993 | 0.971 | 0.999 | 0.993 |
Fpha-14-1 | −0.073 | 0.971 | 0.136 | 0.636 | 0.816 | −0.179 | −0.967 | 0.814 |
Fpha-14-2 | −0.973 | 0.23 | 0.944 | 0.772 | 0.508 | 0.588 | 0.111 | −0.183 |
Communalities | 0.953 | 0.996 | 0.91 | 1 | 0.924 | 0.378 | 0.947 | 0.696 |
Fpp-21-1 | −0.884 | 0.929 | 0.923 | 0.328 | 0.142 | 0.903 | −0.025 | 0.331 |
Fpp-21-2 | −0.466 | 0.319 | −0.061 | 0.927 | −0.217 | 0.349 | 0.62 | 0.883 |
Fpp-21-3 | −0.03 | 0.098 | 0.332 | 0.138 | 0.947 | −0.247 | 0.777 | −0.279 |
Communalities | 1 | 0.974 | 0.966 | 0.987 | 0.965 | 0.997 | 0.989 | 0.968 |
Fps-21-1 | −0.963 | 0.839 | 0.821 | 0.949 | 0.953 | 0.938 | 0.941 | 0.84 |
Communalities | 0.928 | 0.704 | 0.674 | 0.901 | 0.908 | 0.879 | 0.886 | 0.705 |
Fpla-21-1 | −0.971 | 0.991 | 0.954 | 0.985 | 0.909 | 0.952 | 0.627 | 0.93 |
Communalities | 0.944 | 0.982 | 0.911 | 0.97 | 0.827 | 0.906 | 0.393 | 0.864 |
Fpha-21-1 | −0.976 | 0.992 | 0.98 | 0.996 | 0.93 | 0.998 | 0.794 | 0.938 |
Communalities | 0.952 | 0.984 | 0.961 | 0.993 | 0.864 | 0.997 | 0.631 | 0.88 |
Fpp-28-1 | −0.455 | 0.932 | 0.854 | 0.932 | 0.16 | −0.36 | −0.072 | −0.113 |
Fpp-28-2 | −0.878 | 0.223 | 0.013 | −0.068 | 0.974 | 0.914 | 0.203 | 0.128 |
Fpp-28-3 | −0.117 | 0.049 | 0.378 | −0.348 | −0.159 | 0.186 | 0.934 | −0.905 |
Communalities | 0.991 | 0.92 | 0.872 | 0.993 | 1 | 0.999 | 0.92 | 0.849 |
Fps-28-1 | −0.897 | 0.317 | 0.919 | −0.609 | 0.988 | 0.082 | 0.223 | 0.746 |
Fps-28-2 | −0.37 | 0.915 | 0.36 | 0.219 | 0.054 | 0.955 | −0.03 | −0.573 |
Fps-28-3 | −0.176 | 0.247 | −0.052 | 0.761 | −0.078 | −0.057 | 0.973 | 0.226 |
Communalities | 0.972 | 0.999 | 0.978 | 0.998 | 0.985 | 0.922 | 0.998 | 0.936 |
Fpla-28-1 | −0.997 | 0.896 | 0.246 | 0.83 | 0.572 | 0.858 | −0.354 | 0.887 |
Fpla-28-2 | −0.032 | 0.4 | 0.91 | −0.332 | −0.72 | −0.497 | 0.894 | −0.449 |
Communalities | 0.995 | 0.962 | 0.889 | 0.799 | 0.846 | 0.983 | 0.925 | 0.988 |
Fpha-28-1 | −0.859 | 0.462 | −0.183 | 0.693 | 0.392 | 0.9 | −0.8 | 0.721 |
Fpha-28-2 | −0.27 | 0.787 | 0.895 | 0.475 | 0.891 | 0.21 | 0.086 | 0.654 |
Communalities | 0.81 | 0.834 | 0.834 | 0.705 | 0.947 | 0.854 | 0.647 | 0.948 |
Fpp-35-1 | −0.114 | −0.335 | 0.896 | 0.906 | −0.409 | −0.881 | 0.991 | −0.096 |
Fpp-35-2 | 0.157 | 0.773 | 0.335 | −0.194 | 0.343 | 0.379 | −0.113 | −0.982 |
Fpp-35-3 | 0.969 | −0.293 | 0.105 | 0.376 | −0.72 | 0.032 | −0.061 | −0.163 |
Communalities | 0.977 | 0.795 | 0.925 | 1 | 0.803 | 0.921 | 0.999 | 1 |
Fps-35-1 | 0.541 | −0.908 | 0.6 | 0.797 | 0.072 | 0.949 | −0.461 | −0.767 |
Fps-35-2 | −0.781 | −0.274 | 0.785 | 0.124 | 0.952 | 0.237 | −0.771 | 0.418 |
Communalities | 0.902 | 0.9 | 0.976 | 0.65 | 0.911 | 0.957 | 0.807 | 0.763 |
Fpla-35-1 | −0.968 | 0.898 | 0.129 | 0.361 | 0.746 | 0.304 | −0.247 | 0.858 |
Fpla-35-2 | 0.046 | 0.004 | −0.901 | 0.453 | 0.643 | 0.558 | −0.919 | 0.229 |
Fpla-35-3 | 0.105 | 0.329 | −0.058 | 0.798 | 0.132 | −0.771 | 0.05 | −0.086 |
Communalities | 0.95 | 0.915 | 0.831 | 0.972 | 0.987 | 0.998 | 0.909 | 0.796 |
Fpha-35-1 | −0.899 | 0.744 | 0.6 | 0.822 | 0.885 | 0.871 | −0.042 | 0.673 |
Fpha-35-2 | −0.378 | 0.534 | 0.215 | −0.077 | 0.449 | −0.344 | 0.974 | −0.054 |
Communalities | 0.951 | 0.838 | 0.406 | 0.681 | 0.985 | 0.876 | 0.95 | 0.456 |
Appendix D
Principal Component Comprehensive Score Chart
Appendix E
Partial Results of Path Analysis
Stress Concentration (PP) | Factor | Direct Path Coefficient | Indirect Path Coefficient | Coefficient of Determination | Total Indirect Coefficient | Total Effect | ||
---|---|---|---|---|---|---|---|---|
PP | ||||||||
100 mg/kg | →X1 | →X5 | →X6 | 0.947 | ||||
X1 | −0.894 | 0.392 | 0.086 | 0.478 | 0.417 | |||
X5 | −0.749 | 0.468 | −0.116 | 0.352 | 0.396 | |||
X6 | 0.517 | −0.148 | 0.168 | 0.020 | 0.537 | |||
500 mg/kg | →X3 | →X5 | →X7 | 0.971 | ||||
X3 | −1.248 | 0.103 | 0.431 | 0.534 | 0.715 | |||
X5 | 0.519 | −0.247 | −0.696 | −0.943 | 0.424 | |||
X7 | 1.094 | −0.492 | −0.330 | −0.821 | 0.273 | |||
1000 mg/kg | →X1 | →X2 | →X3 | 0.994 | ||||
X1 | −2.104 | 1.167 | 0.427 | 1.594 | 0.510 | |||
X2 | 1.467 | −1.674 | 0.291 | −1.383 | 0.084 | |||
X3 | 0.519 | −1.731 | 0.823 | −0.908 | 0.389 | |||
1500 mg/kg | →X1 | →X3 | →X4 | 0.999 | ||||
X1 | −0.403 | −0.054 | 0.297 | 0.242 | 0.160 | |||
X3 | −0.184 | −0.119 | 0.852 | 0.733 | 0.550 | |||
X4 | 1.145 | −0.104 | −0.137 | −0.241 | 0.904 | |||
PS | ||||||||
100 mg/kg | →X2 | →X3 | →X5 | 0.998 | ||||
X2 | −0.277 | 0.414 | −0.084 | 0.330 | 0.053 | |||
X3 | 0.463 | −0.248 | −0.243 | −0.491 | 0.028 | |||
X5 | 1.056 | 0.022 | −0.107 | −0.085 | 0.971 | |||
500 mg/kg | →X2 | →X3 | →X7 | 0.980 | ||||
X2 | 1.279 | −0.391 | −0.643 | −1.035 | 0.245 | |||
X3 | −0.986 | 0.508 | −0.262 | 0.246 | 0.741 | |||
X7 | 0.708 | −1.162 | 0.365 | −0.798 | 0.090 | |||
1000 mg/kg | →X2 | →X6 | →X7 | 0.999 | ||||
X2 | −1.175 | 0.254 | 0.231 | 0.485 | 0.690 | |||
X6 | 0.335 | −0.891 | −0.224 | −1.115 | 0.781 | |||
X7 | 0.892 | −0.304 | −0.084 | −0.388 | 0.504 | |||
1500 mg/kg | →X1 | →X4 | →X7 | 0.988 | ||||
X1 | −2.255 | 1.335 | 0.324 | 1.659 | 0.596 | |||
X4 | 1.586 | −1.898 | 0.187 | −1.711 | 0.125 | |||
X7 | 0.528 | −1.385 | 0.560 | −0.824 | 0.296 | |||
PLA | ||||||||
100 mg/kg | →X2 | →X4 | →X7 | 0.980 | ||||
X2 | 2.041 | 0.010 | −2.274 | −2.264 | 0.223 | |||
X4 | −0.273 | −0.072 | −0.339 | −0.411 | 0.683 | |||
X7 | 2.408 | −1.928 | 0.038 | −1.889 | 0.519 | |||
500 mg/kg | →X1 | →X3 | →X6 | 0.988 | ||||
X1 | −0.992 | −0.538 | 1.289 | 0.751 | 0.241 | |||
X3 | 1.027 | 0.520 | −0.994 | −0.475 | 0.553 | |||
X6 | 1.576 | −0.812 | −0.648 | −1.460 | 0.116 | |||
1000 mg/kg | →X4 | →X6 | →X7 | 0.999 | ||||
X4 | 0.088 | −0.574 | −0.117 | −0.691 | 0.603 | |||
X6 | −0.941 | 0.054 | 0.151 | 0.205 | 0.736 | |||
X7 | 0.716 | −0.014 | −0.199 | −0.213 | 0.503 | |||
1500 mg/kg | →X1 | →X3 | →X7 | 0.998 | ||||
X1 | −0.751 | −0.156 | −0.025 | −0.181 | 0.931 | |||
X3 | 0.339 | 0.346 | 0.004 | 0.349 | 0.688 | |||
X7 | 0.215 | 0.086 | 0.006 | 0.092 | 0.307 | |||
PHA | ||||||||
100 mg/kg | →X3 | →X4 | →X5 | 0.998 | ||||
X3 | −0.845 | −0.061 | −0.083 | −0.144 | 0.989 | |||
X4 | −0.147 | −0.349 | −0.031 | −0.380 | 0.527 | |||
X5 | 0.105 | 0.664 | 0.043 | 0.707 | 0.812 | |||
500 mg/kg | →X2 | →X6 | →X7 | 0.999 | ||||
X2 | 0.944 | −0.123 | 0.141 | 0.018 | 0.962 | |||
X6 | −0.191 | 0.609 | 0.041 | 0.649 | 0.458 | |||
X7 | −0.230 | −0.579 | 0.034 | −0.546 | 0.776 | |||
1000 mg/kg | →X2 | →X3 | →X4 | 0.958 | ||||
X2 | 0.166 | −0.212 | −0.067 | −0.278 | 0.112 | |||
X3 | −0.459 | 0.077 | 0.366 | 0.442 | 0.017 | |||
X4 | −1.071 | 0.010 | 0.157 | 0.167 | 0.904 | |||
1500 mg/kg | →X1 | →X2 | →X3 | 1.000 | ||||
X1 | −0.065 | −0.221 | −0.079 | −0.300 | 0.366 | |||
X2 | 0.750 | 0.019 | 0.029 | 0.049 | 0.798 | |||
X3 | 0.592 | 0.009 | 0.037 | 0.046 | 0.638 |
References
- Li, S.H.; Li, Y.Z.; An, H.X.; Lian, J. Research status and hot trends of microplastics in the soil environment based on bibliometric methods. China Coal Chem. Ind. 2024, 47, 149–154. [Google Scholar]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.; Mcgonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- Zhang, Y.; Dou, M.; Hao, S.Z.; Li, P.; Wang, G.H.; Zhou, Y.Z.; Liang, Z.J. Research progress and prospects on the occurrence characteristics of microplastics in farmland soils in China. J. Irrig. Drain. 2024, 43, 11–20. [Google Scholar]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef] [PubMed]
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 2017, 102, 165–176. [Google Scholar] [CrossRef] [PubMed]
- United Nations Environment Programme. “Zero Draft of the Plastics Treaty (UNEP/PP/INC.3/4)”. 2023. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/43239/ZERODRAFT.pdf (accessed on 12 August 2025).
- European Bioplastics. “Bioplastic Market Development Update 2024”. 2024. Available online: https://www.european-bioplastics.org/bioplastics-market-development-update-2024/ (accessed on 12 August 2025).
- Karan, H.; Funk, C.; Grabert, M.; Oey, M.; Hankamer, B. Green bioplastics as part of a circular bioeconomy. Trends Plant Sci. 2019, 24, 237–249. [Google Scholar] [CrossRef]
- European Parliament and Council. “Directive (EU) 2019/904 of the European Parliament and of the Council of 5 June 2019 on the Reduction of the Impact of Certain Plastic Products on the Environment. 2019. Available online: http://data.europa.eu/eli/dir/2019/904/oj (accessed on 12 August 2025).
- Blouin, M.; Hodson, M.E.; Delgado, E.A.; Baker, G.; Brussaard, L.; Butt, K.R.; Dai, J.; Dendooven, L.; Peres, G.; Tondoh, J.E.; et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 2013, 64, 161–182. [Google Scholar] [CrossRef]
- Plaas, E.; Meyer-Wolfarth, F.; Banse, M.; Bengtsson, J.; Bergmann, H.; Faber, J.; Potthoff, M.; Runge, T.; Schrader, S.; Taylor, A. Towards valuation of biodiversity in agricultural soils: A case for earthworms. Ecol. Econ. 2019, 159, 291–300. [Google Scholar] [CrossRef]
- Calisi, A.; Zaccarelli, N.; Lionetto, M.G.; Schettino, T. Integrated biomarker analysis in the earthworm Lumbricus terrestris: Application to the monitoring of soil heavy metal pollution. Chemosphere 2013, 90, 2637–2644. [Google Scholar] [CrossRef]
- Forman, E.; Gass, S. The Analytic Hierarchy Process—An Exposition. Oper. Res. 2001, 49, 468–486. [Google Scholar] [CrossRef]
- Zhou, D.X.; Ning, Y.C.; Jin, C.M.; Liu, L.Y.; Pan, X.L.; Cao, X. Correlation of the oxidative stress indices and Cd exposure using a mathematical model in the earthworm, Eisenia fetida. Chemosphere 2019, 216, 157–167. [Google Scholar] [CrossRef]
- Zhao, W.; Zhou, Q.; Tian, Z.; Cui, Y.; Liang, Y.; Wang, H. Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain. Sci. Total Environ. 2020, 722, 137428. [Google Scholar] [CrossRef]
- Organization for Economic Cooperation and Development. Test No. 222: Earthworm Reproduction Test (Eisenia fetida/Eisenia andrei). OECD Publishing. 2004. Available online: https://www.oecd.org/en/publications/test-no-222-earthworm-reproduction-test-eisenia-fetida-eisenia-andrei_9789264264496-en.html (accessed on 3 May 2024).
- Ning, Y.C.; Jin, C.M.; Zhou, H.R.; Wang, E.Z.; Huang, X.N.; Zhou, D.X. Screening indices for cadmium—Contaminated soil using earthworm as bioindicator. Environ. Sci. Pollut. Res. 2018, 25, 32358–32372. [Google Scholar] [CrossRef]
- Wang, J.H. Effects of Microplastics on Oxidative Stress Response and Carbon Source Utilization Intensity of Microbial Communities in Earthworms. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2022. [Google Scholar]
- Rodríguez-Seijo, A.; Lourenço, J.; Rocha-Santos, T.A.P.; Costa, J.; Duarte, A.C.; Vala, H.; Pereira, R. Histopathological and moleculareffects of microplastics in Eisenia andrei Bouche. Environ. Pollut. 2017, 220, 495–503. [Google Scholar] [CrossRef]
- Chen, Y.L.; Liu, X.N.; Leng, Y.F.; Wang, L. Defense responses in earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics in soils. Ecotoxicol. Environ. Saf. 2020, 187, 109788. [Google Scholar] [CrossRef]
- Forsell, V.; Saartama, V.; Turja, R.; Haimi, J.; Selonen, S. Reproduction, growth and oxidative stress in earthworm Eisenia andrei exposed to conventional and biodegradable mulching film microplastics. Sci. Total Environ. 2024, 948, 174667. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhu, L.S.; Wang, J.; Wang, J.H.; Liu, W.; Xie, H. DNA damage and effects on antioxidative enzymes in earthworm (Eisenia foetida) induced by atrazine. Soil Biol. Biochem. 2009, 41, 905–909. [Google Scholar] [CrossRef]
- Fejes, P.; Kiricsi, I.; Lázár, K.; Marsi, I.; Rockenbauer, A.; Korecz, L. Attempts to produce uniform Fe (III) siting in Fe content SOD and LTA zeolites: An EPR and Mössbauer study. Appl. Catal. A Gen. 2003, 242, 63–76. [Google Scholar] [CrossRef]
- Yang, Y.; Ji, F.; Cui, Y.; Li, M. Ecotoxicological effects of earthworm following long-term Dechlorane Plus exposure. Chemosphere 2016, 144, 2476–2481. [Google Scholar] [CrossRef]
- Clark, A.G.; Dick, G.L.; Smith, J.N. Kinetic studies on a glutathione S-transferase from the larvae of Costelytra zealandica. Biochem. J. 1984, 217, 51–58. [Google Scholar] [CrossRef]
- Xu, J.B.; Yuan, X.F.; Lang, P.Z. The determination of enzymic activity and its inhibition on catalase by ultraviolet spectrophotometry. Environ. Chem. 1997, 16, 73–76. [Google Scholar]
- Zhang, W.; Liu, K.; Chen, L.; Chen, L.; Lin, K.; Fu, R. A multi-biomarker risk assessment of the impact of brominated flame retardant-decabromodiphenyl ether (BDE209) on the antioxidant system of earthworm Eisenia fetida. Environ. Toxicol. Pharmacol. 2014, 38, 297–304. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Kubota, R. Simultaneous Determination of Total Carbon, Nitrogen, Hydrogen and Sulfur in Twenty—Seven Geological Reference Materials by Elemental Analyser. Geostand. Geoanal. Res. 2009, 33, 271–283. [Google Scholar] [CrossRef]
- Wu, W.; Xie, D.T.; Liu, H.B. Spatial variability of soil heavy metals in the three gorges area: Multivariate and geostatistical analyses. Environ. Monit. Assess. 2009, 157, 63–71. [Google Scholar] [CrossRef]
- Zhou, D.X.; Ning, Y.C.; Wang, B.; Wang, G.D.; Su, Y.; Li, L.; Wang, Y. Study on the influential factors of Cd2+ on the earthworm Eisenia fetida in oxidative stress based on factor analysis approach. Chemosphere 2016, 157, 181–189. [Google Scholar] [CrossRef]
- He, X.Q. Applied Multivariate Statistical Analysis; China Statistics Press: Beijing, China, 2010. [Google Scholar]
- Tan, F.; Lu, Z. Study on the interaction and relation of society, economy and environment based on PCA–VAR model: As a case study of the Bohai Rim region. China Ecol. Indic. 2015, 48, 31–40. [Google Scholar] [CrossRef]
- Liu, M.; Mu, J.; Wang, M.; Hu, C.; Ji, J.; Wen, C.; Zhang, D. Impacts of polypropylene microplastics on lipid profiles of mouse liver uncovered by lipidomics analysis and Raman spectroscopy. J. Hazard. Mater. 2023, 458, 131918. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Rao, Z.F.; Yang, X.Y.; Lin, J.C.; Zhang, P.X. Determination of several plastics by Raman spectroscopy. China Plast. Ind. 2011, 39, 67–70. [Google Scholar]
- Zhi, Z.; Li, Y.; Liu, G.; Ou, Q. Identification and detection of label-free polystyrene microplastics in maize seedlings by Raman spectroscopy. Sci. Total Environ. 2025, 958, 178093. [Google Scholar] [CrossRef] [PubMed]
- McCreery, R.L. Raman Spectroscopy for Chemical Analysis; John Wiley & Sons: New York, NY, USA, 2005. [Google Scholar]
- Ren, L.; Liu, S.; Huang, S.; Wang, Q.; Lu, Y.; Song, J.; Guo, J. Identification of microplastics using a convolutional neural network based on micro-Raman spectroscopy. Talanta 2023, 260, 124611. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Kelpsiene, E.; Gupta, G.; Dobryden, I.; Cedervall, T.; Fadeel, B. Label-free detection of polystyrene nanoparticles in Daphnia magna using Raman confocal mapping. Nanoscale Adv. 2023, 5, 3453–3462. [Google Scholar] [CrossRef] [PubMed]
- Qin, D.; Kean, R.T. Crystallinity determination of polylactide by FT-Raman spectrometry. Appl. Spectrosc. 1998, 52, 488–495. [Google Scholar] [CrossRef]
- Padermshoke, A.; Katsumoto, Y.; Sato, H.; Ekgasit, S.; Noda, I.; Ozaki, Y. Surface melting and crystallization behavior of polyhydroxyalkanoates studied by attenuated total reflection infrared spectroscopy. Polymer 2004, 45, 6547–6554. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Shu, X.; Xie, M.; Gong, J.; Fan, Y.; Li, Y.K.; Kai, J.R.; Ma, J. Reproduction, metabolic enzyme activity, and metabolomics in earthworms Eisenia fetida exposed to different polymer microplastics. Ecotoxicol. Environ. Saf. 2025, 303, 119018. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Z.; Yang, T.; Zhao, W.; Yao, Y.; Liu, P.; Jia, H. Photoaged tire wear particles leading to the oxidative damage on earthworms (Eisenia fetida) by disrupting the antioxidant defense system: The definitive role of environmental free radicals. Environ. Sci. Technol. 2024, 58, 4500–4509. [Google Scholar] [CrossRef]
- Wang, H.; Xie, X.Y. Effects of combined pollution of Cd, Cu and Pb on antioxidant enzyme activities of earthworms. China J. Environ. Sci. 2014, 35, 2748–2754. [Google Scholar]
- Gaetani, G.F.; Ferraris, A.M.; Rolfo, M.; Mangerini, R.; Arena, S.; Kirkman, H.N. Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood 1996, 87, 1595–1599. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, L.; Wang, J.; Xie, H.; Wang, J.; Han, Y.; Yang, J. Oxidative stress and lipid peroxidation in the earthworm Eisenia fetida induced by low doses of fomesafen. Environ. Sci. Pollut. Res. 2013, 20, 201–208. [Google Scholar] [CrossRef]
- Wang, J.; Coffin, S.; Sun, C.; Schlenk, D.; Gan, J. Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil. Environ. Pollut. 2019, 249, 776–784. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Wang, G.; Zhu, L.; Wang, J. DNA damage and oxidative stress induced by imidacloprid exposure in the earthworm Eisenia fetida. Chemosphere 2016, 144, 510–517. [Google Scholar] [CrossRef]
- Li, L.L.; Feng, Y.Y.; Zhang, D.M.; Yang, C.F.; Xing, X.; Yuan, Z.Q.; Zhang, Z.C.; Zhang, X.Y. Cloning, bioinformatics and expression of StGST gene in potato against black scurf induced by sodium silicate. China Veg. 2025, 1, 77–87. [Google Scholar]
- Pickett, C.B.; Lu, A.Y. Glutathione S-transferases: Gene structure, regulation, and biological function. Annu. Rev. Biochem. 1989, 58, 743–764. [Google Scholar] [CrossRef]
- Zhao, L.; Zong, W.; Zhang, H.; Liu, R. Kidney toxicity and response of selenium containing protein-glutathione peroxidase (Gpx3) to CdTe QDs on different levels. Toxicol. Sci. 2019, 168, 201–208. [Google Scholar] [CrossRef]
- Shu, Y.; Zhang, Y.; Cheng, M.; Zeng, H.; Wang, J. Multilevel assessment of Cry1Ab Bt-maize straw return affecting the earthworm Eisenia fetida. Chemosphere 2015, 137, 59–69. [Google Scholar] [CrossRef]
- Ma, S. Research progress on glutathione peroxidase and glutathione transferase. Prog. Vet. Med. 2008, 10, 53–56. [Google Scholar]
- Bamidele, J.; Idowu, A.; Ademolu, K.; Akinloye, O.; Bamgbola, A. Heavy metal accumulation and biochemical evaluation of earthworms from sawmills in Abeokuta, South-Western Nigeria. Rev. De Biol. Trop. 2015, 63, 1213–1221. [Google Scholar] [CrossRef]
- Huang, L.L.; Liao, X.H.; Sun, H.; Jiang, X.; Liu, Q.; Zhang, L. Augmenter of liver regeneration protects the kidney from ischaemia—Reperfusion injury in ferroptosis. J. Cell. Mol. Med. 2019, 23, 4153–4164. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Q. Research on the interaction between acetylcholinesterase of different species and organophosphorus pesticides based on homology modeling and molecular docking technology. Agric. Technol. 2024, 44, 26–31. [Google Scholar]
- Zavala-Ocampo, L.M.; Aguirre-Hernández, E.; López-Camacho, P.Y.; Cárdenas-Vázquez, R.; Dorazco-González, A.; Basurto-Islas, G. Acetylcholinesterase inhibition and antioxidant activity properties of Petiveria alliacea L. J. Ethnopharmacol. 2022, 292, 115239. [Google Scholar] [CrossRef]
- Han, Y.N.; Fu, M.R.; Wu, J.H.; Zhou, S.Q.; Qiao, Z.H.; Cheng, P.; Zhang, W.; Liu, F.; Ye, C.M.; Yang, J. Polylactic acid microplastics induce higher biotoxicity of decabromodiphenyl ethane on earthworms (Eisenia fetida) compared to polyethylene and polypropylene microplastics. Sci. Total Environ. 2023, 862, 160909. [Google Scholar] [CrossRef]
- Zhang, J.; Meng, H.; Kong, X.; Cheng, X.; Ma, T.; He, H.; Du, W.C.; Yang, S.G.; Li, S.Y.; Zhang, L. Combined effects of polyethylene and organic contaminant on zebrafish (Danio rerio): Accumulation of 9-Nitroanthracene, biomarkers and intestinal microbiota. Environ. Pollut. 2021, 277, 116767. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.F.; Liu, J.M.; Li, G.L.; Li, X.H.; Wu, X.F.; Sun, J.T.; Sun, H.X.; Miao, Y.G. Effects of silkworm larvae powder containing manganese superoxide dismutase on immune activity of mice. Mol. Biol. Rep. 2008, 35, 513–517. [Google Scholar] [CrossRef]
- Li, T.; Lu, M.; Xu, B.; Chen, H.; Li, J.; Zhu, Z.Z.; Yu, M.W.; Zheng, J.Y.; Peng, P.L.; Wu, S.J. Multiple perspectives reveal the gut toxicity of polystyrene microplastics on Eisenia fetida: Insights into community signatures of gut bacteria and their translocation. Sci. Total Environ. 2022, 838, 156352. [Google Scholar] [CrossRef]
- Boots, B.; Russell, C.; Green, D. Effects of microplastics in soil ecosystems: Above and below ground. Environ. Sci. Technol. 2019, 53, 11496–11506. [Google Scholar] [CrossRef]
- Baihetiyaer, B.; Jiang, N.; Li, X.X.; He, B.; Wang, J.; Fan, X.T.; Sun, H.M.; Yin, X.Q. Oxidative stress and gene expression induced by biodegradable microplastics andimidacloprid in earthworms (Eisenia fetida) at environmentally relevant concentrations. Environ. Pollut. 2023, 323, 121285. [Google Scholar] [CrossRef]
- Ritschel, T.; Totsche, K.U. Modeling the formation of soil microaggregates. Comput. Geosci. 2019, 127, 36–43. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Wang, P.Y.; Wang, Y.B.; Zhou, R.; Koskei, K.; Munyasya, A.N.S.; Liu, W.; Wang, Y.; Su, Y.; Xiong, Y.C. Fate of plastic film residues in agro-ecosystem and its effects on aggregate-associated soil carbon and nitrogen stocks. J. Hazard. Mater. 2021, 416, 125954. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Li, Q.; Bogush, A.; Van De Wiel, M.; Wu, P.; Holtzman, R. Microplastic polymer type impacts water infiltration and its own transport in soil. iScience 2025, 28, 113193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.S.; Zhang, F.X.; Li, X.T. Effects of polyester microfibers on soil physical properties: Perception from a field and a pot experiment. Sci. Total Environ. 2019, 670, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.Y.; Ding, W.X.; Luo, J.F.; Donnison, A.; Zhang, J.B. Long-term effect of compost and inorganic fertilizer on activities of carbon-cycle enzymes in aggregates of an intensively cultivated sandy loam. Soil Use Manag. 2012, 28, 347–360. [Google Scholar] [CrossRef]
- Anderson, A.S.M.; Chung, W.L.; Jennifer, T.; Werner, K.; Anika, L.; Roland, B.; Matthias, C.R. Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 2018, 52, 9656–9665. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, W.F.; He, J.Z. Microplastic effects on carbon cycling in terrestrial soil ecosystems: Storage, formation, mineralization, and microbial mechanisms. Sci. Total Environ. 2024, 954, 176658. [Google Scholar] [CrossRef]
- Lu, C.; Qin, C.; Zhao, M.J.; Lu, C.X.; Zhao, L.X. Research progress on the toxic effects of antibiotics on earthworms. Asian J. Ecotoxicol. 2025, 19, 96–108. [Google Scholar]
- Wang, F.; Yu, L.; Monopoli, M.P.; Sandin, P.; Mahon, E.; Salvati, A.; Dawson, K.A. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 1159–1168. [Google Scholar] [CrossRef]
- Ruenraroengsak, P.; Novak, P.; Berhanu, D.; Thorley, A.J.; Valsami-Jones, E.; Gorelik, J.; Korchev, Y.E.; Tetley, T.D. Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine-modified nanoparticles. Nanotoxicology 2012, 6, 94–108. [Google Scholar] [CrossRef]
- Sultan, M.; Wei, X.Y.; Duan, J.J.; Zhang, B.F.; Wu, M.F.; Cai, Z.X.; Pei, D.S. Comparative toxicity of polystyrene, polypropylene, and polyethylene nanoplastics on Artemia franciscana nauplii: A multidimensional assessment. Environ. Sci. Nano 2024, 11, 1070–1084. [Google Scholar] [CrossRef]
- Lee, Y.K.; Murphy, K.R.; Hur, J. Fluorescence signatures of dissolved organic matter leached from microplastics: Polymers and additives. Environ. Sci. Technol. 2020, 54, 11905–11914. [Google Scholar] [CrossRef]
- Meng, F.; Yang, X.; Riksen, M.; Geissen, V. Effect of different polymers of microplastics on soil organic carbon and nitrogen–A mesocosm experiment. Environ. Res. 2022, 204, 111938. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, X.; Cao, N.; Duan, C.X.; Ding, C.F.; Huang, L.; Wanget, J. Biodegradable microplastics enhance soil microbial network complexity and ecological stochasticity. J. Hazard. Mater. 2022, 439, 129610. [Google Scholar] [CrossRef]
- Li, C.; Cui, Q.; Li, Y.; Zhang, K.; Lu, X.Q.; Zhang, Y. Effect of LDPE and biodegradable PBAT primary microplastics on bacterial community after four months of soil incubation. J. Hazard. Mater. 2022, 429, 128353. [Google Scholar] [CrossRef]
- Zhou, J.; Jia, R.; Brown, R.W.; Yang, Y.D.; Zeng, Z.H.; Jones, D.L.; Zang, H.D. The long-term uncertainty of biodegradable mulch film residues and associated microplastics pollution on plantsoil health. J. Hazard. Mater. 2023, 442, 130055. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Xia, M.L.; Su, X.J.; Yuan, P.; Li, X.K.; Zhou, C.U.; Wan, Z.P.; Zou, W. Photolytic degradation elevated the toxicity of polylactic acid microplastics to developing zebrafish by triggering mitochondrial dysfunction and apoptosis. J. Hazard. Mater. 2021, 413, 125321. [Google Scholar] [CrossRef] [PubMed]
Stress Test Group | Stress Time Day | ||||
---|---|---|---|---|---|
7 | 14 | 21 | 28 | 35 | |
PP | SOD | MDA | POD | MDA | GST |
PS | POD | AChE | SOD | SOD | AChE |
PLA | CAT | GPX | POD | POD | POD |
PHA | POD | POD | AChE, MDA | AChE | SOD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhou, D.; Wang, H.; Zhu, W.; Wang, R.; Ning, Y. Reassessing Whether Biodegradable Microplastics Are Environmentally Friendly: Differences in Earthworm Physiological Responses and Soil Carbon Function Impacts. Antioxidants 2025, 14, 1197. https://doi.org/10.3390/antiox14101197
Li Y, Zhou D, Wang H, Zhu W, Wang R, Ning Y. Reassessing Whether Biodegradable Microplastics Are Environmentally Friendly: Differences in Earthworm Physiological Responses and Soil Carbon Function Impacts. Antioxidants. 2025; 14(10):1197. https://doi.org/10.3390/antiox14101197
Chicago/Turabian StyleLi, Yuze, Dongxing Zhou, Hongyan Wang, Wenfei Zhu, Rui Wang, and Yucui Ning. 2025. "Reassessing Whether Biodegradable Microplastics Are Environmentally Friendly: Differences in Earthworm Physiological Responses and Soil Carbon Function Impacts" Antioxidants 14, no. 10: 1197. https://doi.org/10.3390/antiox14101197
APA StyleLi, Y., Zhou, D., Wang, H., Zhu, W., Wang, R., & Ning, Y. (2025). Reassessing Whether Biodegradable Microplastics Are Environmentally Friendly: Differences in Earthworm Physiological Responses and Soil Carbon Function Impacts. Antioxidants, 14(10), 1197. https://doi.org/10.3390/antiox14101197