Microalgae-Derived Peptides Targeting Lifestyle-Related Diseases: Discovery, Mechanisms, Structure–Activity Relationships, and Structural Modifications
Abstract
1. Introduction
2. Preparation and Discovery of Microalgae-Derived Protein Hydrolysates/Bioactive Peptides
2.1. Enzymatic Hydrolysis
2.2. Microbial Fermentation
2.3. Purification and Identification of Microalgae-Derived Peptides
2.4. Bioinformatics and Computational Tools
2.4.1. In Silico Enzymatic Hydrolysis
2.4.2. Quantitative Structure–Activity Relationship (QSAR)
2.4.3. Molecular Docking
3. Health Benefits, Mechanism and Structure–Activity Relationship of Microalgae-Derived Bioactive Peptides
3.1. Antioxidant Peptides
3.2. Antihypertensive Peptides
3.3. Antidiabetic Peptides
3.4. Anti-Obesity Peptides
3.5. Anti-Ageing Peptides
3.6. Other Bioactive Peptides Derived from Microalgae
4. Structural Modification of Microalgae-Derived Peptides for Enhanced Bioactivities
5. Conclusions and Future Perspective
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Noncommunicable Diseases 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 4 April 2025).
- Zhou, L.; Wu, B.; Bian, Y.; Lu, Y.; Zou, Y.; Lin, S.; Li, Q.; Liu, C. Hepatotoxicity Associated with Statins: A Retrospective Pharmacovigilance Study Based on the FAERS Database. PLoS ONE 2025, 20, e0327500. [Google Scholar] [CrossRef]
- Sheppard, J.P.; Koshiaris, C.; Stevens, R.; Lay-Flurrie, S.; Banerjee, A.; Bellows, B.K.; Clegg, A.; Hobbs, F.D.R.; Payne, R.A.; Swain, S.; et al. The Association between Antihypertensive Treatment and Serious Adverse Events by Age and Frailty: A Cohort Study. PLoS Med. 2023, 20, e1004223. [Google Scholar] [CrossRef]
- Barrientos-Ávalos, J.R.; Morel-Cerda, E.C.; Félix-Téllez, F.A.; Vidrio-Huerta, B.E.; Aceves-Ayala, A.R.; Flores-Rendón, Á.R.; Velarde-Ruiz Velasco, J.A. Gastrointestinal Adverse Effects of Old and New Antidiabetics: How Do We Deal with Them in Real Life? Rev. Gastroenterol. México Engl. Ed. 2024, 89, 521–532. [Google Scholar] [CrossRef]
- Ma, M.-M.; Xu, Y.-Y.; Sun, L.-H.; Cui, W.-J.; Fan, M.; Zhang, S.; Liu, L.; Wu, L.-Z.; Li, L.-C. Statin-Associated Liver Dysfunction and Muscle Injury: Epidemiology, Mechanisms, and Management Strategies. Int. J. Gen. Med. 2024, 17, 2055–2063. [Google Scholar] [CrossRef]
- Tadesse, S.A.; Emire, S.A. Production and Processing of Antioxidant Bioactive Peptides: A Driving Force for the Functional Food Market. Heliyon 2020, 6, e04765. [Google Scholar] [CrossRef]
- Lafarga, T.; Hayes, M. Bioactive Protein Hydrolysates in the Functional Food Ingredient Industry: Overcoming Current Challenges. Food Rev. Int. 2017, 33, 217–246. [Google Scholar] [CrossRef]
- Guo, C.; Ling, N.; Tian, H.; Wang, Z.; Gao, M.; Chen, Y.; Ji, C. Comprehensive Review of Extraction, Purification, Structural Characteristics, Pharmacological Activities, Structure-Activity Relationship and Application of Seabuckthorn Protein and Peptides. Int. J. Biol. Macromol. 2025, 294, 139447. [Google Scholar] [CrossRef] [PubMed]
- Elisha, C.; Bhagwat, P.; Pillai, S. Emerging Production Techniques and Potential Health Promoting Properties of Plant and Animal Protein-Derived Bioactive Peptides. Crit. Rev. Food Sci. Nutr. 2025, 65, 4729–4758. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, M.; Shavandi, A.; Mirdamadi, S.; Soleymanzadeh, N.; Motahari, P.; Mirdamadi, N.; Moser, M.; Subra, G.; Alimoradi, H.; Goriely, S. Bioactive Peptides from Yeast: A Comparative Review on Production Methods, Bioactivity, Structure-Function Relationship, and Stability. Trends Food Sci. Technol. 2021, 118, 297–315. [Google Scholar] [CrossRef]
- Tang, C.; Cheng, J.-H.; Sun, D.-W. Structure-Activity Relationships and Activity Enhancement Techniques of Marine Bioactive Peptides (MBPs). Crit. Rev. Food Sci. Nutr. 2025, 65, 4941–4963. [Google Scholar] [CrossRef]
- Gharehbeglou, P.; Sarabandi, K.; Akbarbaglu, Z. Insights into Enzymatic Hydrolysis: Exploring Effects on Antioxidant and Functional Properties of Bioactive Peptides from Chlorella Proteins. J. Agric. Food Res. 2024, 16, 101129. [Google Scholar] [CrossRef]
- Yay, C.; Cinar, Z.O.; Donmez, S.; Tumer, T.B.; Guneser, O.; Hosoglu, M.I. Optimizing Bioreactor Conditions for Spirulina Fermentation by Lactobacillus Helveticus and Kluyveromyces Marxianus: Impact on Chemical & Bioactive Properties. Bioresour. Technol. 2024, 403, 130832. [Google Scholar] [CrossRef] [PubMed]
- Verni, M.; Dingeo, C.; Rizzello, C.G.; Pontonio, E. Lactic Acid Bacteria Fermentation and Endopeptidase Treatment Improve the Functional and Nutritional Features of Arthrospira platensis. Front. Microbiol. 2021, 12, 744437. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.W.; Yang, M.H. Production and Purification of Novel Hypocholesterolemic Peptides from Lactic Fermented Spirulina platensis through High Hydrostatic Pressure-Assisted Protease Hydrolysis. Catalysts 2021, 11, 873. [Google Scholar] [CrossRef]
- Mora, L.; Toldrá, F. Advanced Enzymatic Hydrolysis of Food Proteins for the Production of Bioactive Peptides. Curr. Opin. Food Sci. 2023, 49, 100973. [Google Scholar] [CrossRef]
- Villaró, S.; Jiménez-Márquez, S.; Musari, E.; Bermejo, R.; Lafarga, T. Production of Enzymatic Hydrolysates with in Vitro Antioxidant, Antihypertensive, and Antidiabetic Properties from Proteins Derived from Arthrospira platensis. Food Res. Int. 2023, 163, 112270. [Google Scholar] [CrossRef]
- Pekkoh, J.; Kamngoen, A.; Wichaphian, A.; Zin, M.T.; Chaipoot, S.; Yakul, K.; Srinuanpan, S. Production of ACE Inhibitory Peptides via Ultrasonic-Assisted Enzymatic Hydrolysis of Microalgal Chlorella Protein: Process Improvement, Fractionation, Identification, and In Silico Structure-Activity Relationship. Future Foods 2025, 11, 100548. [Google Scholar] [CrossRef]
- Wang, Y.; Kong, X.; Du, M.; Qiao, Y.; Ye, M.; Han, B.; Gan, J. Preparation, Identification, and Digestive Stability of Antioxidant Peptides from Chlorella vulgaris: Optimization of Process and Digestive Stability of Novel Chlorella Peptides. J. Food Biochem. 2024, 2024, 3828251. [Google Scholar] [CrossRef]
- Suo, Q.; Wang, J.; Wu, N.; Geng, L.; Zhang, Q.; Yue, Y. Discovery of a Novel Nanomolar Angiotensin-I Converting Enzyme Inhibitory Peptide with Unusual Binding Mechanisms Derived from Chlorella pyrenoidosa. Int. J. Biol. Macromol. 2024, 280, 135873. [Google Scholar] [CrossRef]
- Sun, L.; Liu, J.; He, Z.; Du, R. Plant-Derived as Alternatives to Animal-Derived Bioactive Peptides: A Review of the Preparation, Bioactivities, Structure–Activity Relationships, and Applications in Chronic Diseases. Nutrients 2024, 16, 3277. [Google Scholar] [CrossRef]
- Kaur, A.; Kehinde, B.A.; Sharma, P.; Sharma, D.; Kaur, S. Recently Isolated Food-Derived Antihypertensive Hydrolysates and Peptides: A Review. Food Chem. 2021, 346, 128719. [Google Scholar] [CrossRef]
- Leong, Y.K.; Chang, J.-S. Proteins and Bioactive Peptides from Algae: Insights into Antioxidant, Anti-Hypertensive, Anti-Diabetic and Anti-Cancer Activities. Trends Food Sci. Technol. 2024, 145, 104352. [Google Scholar] [CrossRef]
- Guo, X.; Wang, Q.; Wu, Y.; Liu, X.; Gong, Z. Comprehensive Insights into Microalgae Proteins: Nutritional Profiles and Innovative Applications as Sustainable Alternative Proteins in Health and Food Sciences. Food Hydrocoll. 2024, 154, 110112. [Google Scholar] [CrossRef]
- Kumar, R.; Hegde, A.S.; Sharma, K.; Parmar, P.; Srivatsan, V. Microalgae as a Sustainable Source of Edible Proteins and Bioactive Peptides–Current Trends and Future Prospects. Food Res. Int. 2022, 157, 111338. [Google Scholar] [CrossRef]
- Yaghoubzadeh, Z.; Safari, R. Extraction of Bioactive Peptides from Chlorella vulgaris Using Enzymatic Hydrolysis: A Green Natural Antioxidant. Int. J. Pept. Res. Ther. 2025, 31, 33. [Google Scholar] [CrossRef]
- Suo, Q.; Deng, Z.; Yue, Y.; Wang, J.; Wu, N.; Geng, L.; Zhang, Q. Response Surface Optimization of Preparation Parameters and Evaluation of the Antioxidant and Antihypertensive Activities of Spirulina Protein Hydrolysates. J. Oceanol. Limnol. 2025, 43, 196–209. [Google Scholar] [CrossRef]
- Thongcumsuk, B.; Woraprayote, W.; Janyaphisan, T.; Cheunkar, S.; Oaew, S. Microencapsulation and Peptide Identification of Purified Bioactive Fraction from Spirulina Protein Hydrolysates with Dipeptidyl Peptidase IV (DPP-IV) Inhibitory Activity. Food Biosci. 2023, 56, 103438. [Google Scholar] [CrossRef]
- Tamel Selvan, K.; Goon, J.A.; Makpol, S.; Tan, J.K. Therapeutic Potentials of Microalgae and Their Bioactive Compounds on Diabetes Mellitus. Mar. Drugs 2023, 21, 462. [Google Scholar] [CrossRef]
- Masoumifeshani, B.; Abedian Kenari, A.; Sottorff, I.; Crüsemann, M.; Amiri Moghaddam, J. Identification and Evaluation of Antioxidant and Anti-Aging Peptide Fractions from Enzymatically Hydrolyzed Proteins of Spirulina platensis and Chlorella vulgaris. Mar. Drugs 2025, 23, 162. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, S.; Lin, L.; Zheng, Z.; Sun, S.; Zhou, C.; Qian, Z.J. Pentapeptide AYP from Isochrysis zhanjiangensis Exhibits Antiangiogenic Activity in HT1080 Cells and HUVECs by Suppressing Migration and Invasion in Vitro. J. Agric. Food Chem. 2022, 70, 8481–8491. [Google Scholar] [CrossRef]
- Zhang, K.; Yin, X.; Huang, Y.; Liu, C.; Zhang, Q.; Liu, Q.; Qiu, L. A Potent Antibacterial Peptide (P6) from the De Novo Transcriptome of the Microalga Aureococcus Anophagefferens. Int. J. Mol. Sci. 2024, 25, 13736. [Google Scholar] [CrossRef]
- Paterson, S.; Majchrzak, M.; Gómez-Garre, D.; Ortega-Hernández, A.; Sánchez-González, S.; Fuente, M.Á.; Hernández-Ledesma, B. Role of Simulated Nannochloropsis Gaditana Digests in Shaping Gut Microbiota and Short-Chain Fatty Acid Levels. Nutrients 2024, 17, 99. [Google Scholar] [CrossRef]
- Akbarbaglu, Z.; Ayaseh, A.; Ghanbarzadeh, B.; Sarabandi, K. Biological Stabilization of Arthrospira Bioactive-Peptides within Biopolymers: Functional Food Formulation; Bitterness-Masking and Nutritional Aspects. LWT 2024, 191, 115653. [Google Scholar] [CrossRef]
- Akbarbaglu, Z.; Mirzapour-Kouhdasht, A.; Ayaseh, A.; Ghanbarzadeh, B.; Oz, F.; Sarabandi, K. Controlled Release and Biological Properties of Prochitosomes Loaded with Arthrospira Derived Peptides: Membrane Stability, Chemical, Morphological and Structural Monitoring. Int. J. Biol. Macromol. 2024, 281, 136608. [Google Scholar] [CrossRef]
- Fan, X.; Bai, L.; Zhu, L.; Yang, L.; Zhang, X. Marine Algae-Derived Bioactive Peptides for Human Nutrition and Health. J. Agric. Food Chem. 2014, 62, 9211–9222. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Chen, Q.; Zhang, T.; Liu, M.; Duan, S.; Sun, X. The Antihypertensive Effects and Potential Molecular Mechanism of Microalgal Angiotensin I-Converting Enzyme Inhibitor-Like Peptides: A Mini Review. Int. J. Mol. Sci. 2021, 22, 4068. [Google Scholar] [CrossRef] [PubMed]
- Karabulut, G.; Purkiewicz, A.; Goksen, G. Recent Developments and Challenges in Algal Protein and Peptide Extraction Strategies, Functional and Technological Properties, Bioaccessibility, and Commercial Applications. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13372. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, A.; Guo, Y.; Yang, T.; Ud Din, A.S.; Ahmad, K.; Li, W.; Hou, H. Microalgae-Derived Peptides: Exploring Bioactivities and Functional Food Innovations. J. Agric. Food Chem. 2025, 73, 1000–1013. [Google Scholar] [CrossRef]
- Giannoglou, M.; Andreou, V.; Thanou, I.; Markou, G.; Katsaros, G. Kinetic Study of the Combined Effect of High Pressure and pH-Value on Arthrospira platensis (Spirulina) Proteins Extraction. Innov. Food Sci. Emerg. Technol. 2023, 85, 103331. [Google Scholar] [CrossRef]
- Pereira, B.A.; Matos, C.T.; Costa, L.; Ferreira, L.M.; Crespo, J.G.; Brazinha, C. Sustainable Processing of Microalgae Protein: Design of Biphasic Partitioning Systems Based on Natural Deep Eutectic Solvents for C-Phycocyanin Recovery from Model Aqueous Solutions. Sep. Purif. Technol. 2025, 353, 128510. [Google Scholar] [CrossRef]
- Fan, X.; Hu, S.; Wang, K.; Yang, R.; Zhang, X. Coupling of Ultrasound and Subcritical Water for Peptides Production from Spirulina platensis. Food Bioprod. Process. 2020, 121, 105–112. [Google Scholar] [CrossRef]
- Zaharuddin, N.D.; Barkia, I.; Ibadullah, W.Z.W.; Zarei, M.; Saari, N. Identification, Molecular Docking, and Kinetic Studies of Six Novel Angiotensin-I-Converting Enzyme (ACE) Inhibitory Peptides Derived from Kenaf (Hibiscus cannabinus L.) Seed. Int. J. Biol. Macromol. 2022, 220, 1512–1522. [Google Scholar] [CrossRef] [PubMed]
- Hajfathalian, M.; Ghelichi, S.; García-Moreno, P.J.; Moltke Sørensen, A.D.; Jacobsen, C. Peptides: Production, Bioactivity, Functionality, and Applications. Crit. Rev. Food Sci. Nutr. 2018, 58, 3097–3129. [Google Scholar] [CrossRef] [PubMed]
- Pasković, I.; Popović, L.; Pongrac, P.; Polić Pasković, M.; Kos, T.; Jovanov, P.; Franić, M. Protein Hydrolysates—Production, Effects on Plant Metabolism, and Use in Agriculture. Horticulturae 2024, 10, 1041. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Hong, H.; Luo, Y.; Li, B.; Tan, Y. Mastering the Art of Taming: Reducing Bitterness in Fish by-Products Derived Peptides. Food Res. Int. 2023, 173, 113241. [Google Scholar] [CrossRef]
- López-Rodríguez, A.; Mayorga, J.; Flaig, D.; Fuentes, G.; Cotabarren, J.; Obregón, W.D.; Gómez, P.I. Comparison of Two Strains of the Edible Cyanobacteria Arthrospira: Biochemical Characterization and Antioxidant Properties. Food Biosci. 2021, 42, 101144. [Google Scholar] [CrossRef]
- Wang, K.; Luo, Q.; Hong, H.; Liu, H.; Luo, Y. Novel Antioxidant and ACE Inhibitory Peptide Identified from Arthrospira platensis Protein and Stability against Thermal/pH Treatments and Simulated Gastrointestinal Digestion. Food Res. Int. 2021, 139, 109908. [Google Scholar] [CrossRef]
- Liu, C.; Chen, G.; Rao, H.; Xiao, X.; Chen, Y.; Wu, C.; He, H. Novel Antioxidant Peptides Identified from Arthrospira platensis Hydrolysates Prepared by a Marine Bacterium Pseudoalteromonas sp. JS4-1 Extracellular Protease. Mar. Drugs 2023, 21, 133. [Google Scholar] [CrossRef]
- Olena, Z.; Yang, Y.; TingTing, Y.; XiaoTao, Y.; HaiLian, R.; Xun, X.; Hailun, H. Simultaneous Preparation of Antioxidant Peptides and Lipids from Microalgae by Pretreatment with Bacterial Proteases. Bioresour. Technol. 2022, 348, 126759. [Google Scholar] [CrossRef]
- Lin, Y.H.; Chen, G.W.; Yeh, C.H.; Song, H.; Tsai, J.S. Purification and Identification of Angiotensin I-Converting Enzyme Inhibitory Peptides and the Antihypertensive Effect of Chlorella Sorokiniana Protein Hydrolysates. Nutrients 2018, 10, 1397. [Google Scholar] [CrossRef]
- Li, Y.; Aiello, G.; Fassi, E.M.A.; Boschin, G.; Bartolomei, M.; Bollati, C.; Roda, G.; Arnoldi, A.; Grazioso, G.; Lammi, C. Investigation of Chlorella Pyrenoidosa Protein as a Source of Novel Angiotensin I-Converting Enzyme (ACE) and Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Peptides. Nutrients 2021, 13, 1624. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X. Inhibitory Effects of Small Molecular Peptides from Spirulina (Arthrospira) platensis on Cancer Cell Growth. Food Funct. 2016, 7, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Shen, W.; Weng, P.; Wu, Z.; Liu, Y. Novel Chlorella Pyrenoidosa Peptides Attenuate Weight Gain, Insulin Resistance, and Lipid Levels in Mice Fed a High-Fat Diet. J. Funct. Foods 2024, 112, 105908. [Google Scholar] [CrossRef]
- Liu, W.; Wang, J.; Gao, Q.; Shen, W.; Weng, P.; Wu, Z.; Liu, Y. Combined Analysis of Gut Microbiota and Metabolomics in High-Fat Model Mice Fed with Chlorella Pyrenoidosa Peptides. J. Funct. Foods 2024, 121, 106410. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, J.; Mao, X.; Qi, P.; Zhang, X. Separation and Lipid Inhibition Effects of a Novel Decapeptide from Chlorella pyenoidose. Molecules 2019, 24, 3527. [Google Scholar] [CrossRef]
- Fan, X.; Cui, Y.; Zhang, R.; Zhang, X. Purification and Identification of Anti-Obesity Peptides Derived from Spirulina platensis. J. Funct. Foods 2018, 47, 350–360. [Google Scholar] [CrossRef]
- Du, C.; Gong, H.; Zhao, H.; Wang, P. Recent Progress in the Preparation of Bioactive Peptides Using Simulated Gastrointestinal Digestion Processes. Food Chem. 2024, 453, 139587. [Google Scholar] [CrossRef]
- Chen, M.F.; Zhang, Y.Y.; He, M.; Li, C.Y.; Zhou, C.X.; Hong, P.Z.; Qian, Z.J. Antioxidant Peptide Purified from Enzymatic Hydrolysates of Isochrysis zhanjiangensis and Its Protective Effect against Ethanol Induced Oxidative Stress of HepG2 Cells. Biotechnol. Bioprocess Eng. 2019, 24, 308–317. [Google Scholar] [CrossRef]
- Paterson, S.; Majchrzak, M.; Alexandru, D.; Bella, S.; Fernández-Tomé, S.; Arranz, E.; Hernández-Ledesma, B. Impact of the Biomass Pretreatment and Simulated Gastrointestinal Digestion on the Digestibility and Antioxidant Activity of Microalgae Chlorella vulgaris and Tetraselmis chuii. Food Chem. 2024, 453, 139686. [Google Scholar] [CrossRef]
- Amiri, M.; Hosseini, S.E.; Asadi, G.; Khayambashi, B. Optimization of the Alcalase and Trypsin Hydrolysis Conditions of an Isolated Protein from Scenedesmus Obliquus Microalgae and Characterization of Its Functional Properties. LWT 2024, 210, 116819. [Google Scholar] [CrossRef]
- Cunha, S.A.; Coscueta, E.R.; Alexandre, A.M.; Partidário, A.M.C.; Fernández, N.; Paiva, A.; Pintado, M.E. Enzymatic Hydrolysis Allows an Integral Valorization of Nannochloropsis Oceanica Resulting in the Production of Bioactive Peptide Extracts and an Eicosapentaenoic Acid Enriched Fraction. Biotechnol. J. 2024, 19, 2300291. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S.A.; Coscueta, E.R.; Nova, P.; Silva, J.L.; Pintado, M.M. Bioactive hydrolysates from Chlorella vulgaris: Optimal process and bioactive properties. Molecules 2022, 27, 2505. [Google Scholar] [CrossRef] [PubMed]
- Nasri, R.; Abdelhedi, O.; Nasri, M.; Jridi, M. Fermented Protein Hydrolysates: Biological Activities and Applications. Curr. Opin. Food Sci. 2022, 43, 120–127. [Google Scholar] [CrossRef]
- Arulrajah, B.; Qoms, M.S.; Muhialdin, B.J.; Hussin, A.S.M.; Hasan, H.; Zarei, M.; Saari, N. Elucidating the Mechanisms Underlying the Action of Kenaf Seed Peptides Mixture against Gram-Positive and Gram-Negative Bacteria and Its Efficacy in Whole Milk Preservation. LWT 2023, 181, 114757. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Tagliazucchi, D.; Babini, E.; Rutella, G.S.; Saa, D.L.T.; Gianotti, A. Bioactive Peptides from Vegetable Food Matrices: Research Trends and Novel Biotechnologies for Synthesis and Recovery. J. Funct. Foods 2016, 27, 549–569. [Google Scholar] [CrossRef]
- Cruz-Casas, D.E.; Aguilar, C.N.; Ascacio-Valdés, J.A.; Rodríguez-Herrera, R.; Chávez-González, M.L.; Flores-Gallegos, A.C. Enzymatic Hydrolysis and Microbial Fermentation: The Most Favorable Biotechnological Methods for the Release of Bioactive Peptides. Food Chem. Mol. Sci. 2021, 3, 100047. [Google Scholar] [CrossRef]
- Özyurt, G.; Uslu, L.; Durmuş, M.; Sakarya, Y.; Uzlaşir, T.; Küley, E. Chemical and Physical Characterization of Microencapsulated Spirulina Fermented with Lactobacillus Plantarum. Algal Res. 2023, 73, 103149. [Google Scholar] [CrossRef]
- Fortuin, J.; Leclercq, C.C.; Iken, M.; Villas-Boas, S.G.; Soukoulis, C. Proteomic and Peptidomic Profiling of Spirulina-Fortified Probiotic Powder Formulations during in Vitro Digestion. Int. J. Biol. Macromol. 2025, 302, 140432. [Google Scholar] [CrossRef]
- Yu, J.; Liu, C.; Wang, M.; Liu, Y.; Ran, L.; Yu, Z.; Wu, Y. Nutrition and Flavor Analysis of Spirulina through Co-Fermentation with Lactobacillus Acidophilus and Kluyveromyces Marxianus and Its Effect on Attenuating Metabolic Associated Fatty Liver Disease. J. Funct. Foods 2024, 116, 106149. [Google Scholar] [CrossRef]
- Sahin, B.; Hosoglu, M.I.; Guneser, O.; Karagul-Yuceer, Y. Fermented Spirulina Products with Saccharomyces and Non-Saccharomyces Yeasts: Special Reference to Their Microbial, Physico-Chemical and Sensory Characterizations. Food Biosci. 2022, 47, 101691. [Google Scholar] [CrossRef]
- Masten Rutar, J.; Cillero-Pastor, B.; Mohren, R.; Poklar Ulrih, N.; Ogrinc, N.; Jamnik, P. Insight into the Antioxidant Effect of Fermented and Non-Fermented Spirulina Water and Ethanol Extracts at the Proteome Level Using a Yeast Cell Model. Antioxidants 2021, 10, 1366. [Google Scholar] [CrossRef]
- Kuley, E.; Uslu, L.; Durmus, M.; Sakarya, Y.; Özyurt, G. Enhancement of Spirulina platensis Bioactivity by Probiotic Fermentation and Encapsulation by Spray-drying. Int. J. Food Sci. Technol. 2023, 58, 6015–6024. [Google Scholar] [CrossRef]
- Choi, W.Y.; Kang, D.H.; Lee, H.Y. Effect of Fermented Spirulina Maxima Extract on Cognitive-enhancing Activities in Mice with Scopolamine-induced Dementia. Evid.-Based Complement. Altern. Med. 2018, 2018, 7218504. [Google Scholar] [CrossRef] [PubMed]
- Prasetyo, A.; Khaerunnisa, I.; Volkandari, S.D.; Yano, A.A.; Shidiq, F.; Haryanto, B.; Sugiharto, S. Composition and Essential Nutrients of Cyanobacterium Meal Produced from Spirulina (Arthrospira platensis) Fermented by Yeast on Small-Scale. Case Stud. Chem. Environ. Eng. 2024, 10, 100940. [Google Scholar] [CrossRef]
- Niccolai, A.; Bažec, K.; Rodolfi, L.; Biondi, N.; Zlatić, E.; Jamnik, P.; Tredici, M.R. Lactic Acid Fermentation of Arthrospira platensis (Spirulina) in a Vegetal Soybean Drink for Developing New Functional Lactose-Free Beverages. Front. Microbiol. 2020, 11, 560684. [Google Scholar] [CrossRef]
- Kurt, H.; Hosoglu, M.I.; Guneser, O.; Karagul-Yuceer, Y. Influence of Different Bacteria Species in Chemical Composition and Sensory Properties of Fermented Spirulina. Food Chem. 2023, 400, 133994. [Google Scholar] [CrossRef]
- Bao, J.; Zhang, X.; Zheng, J.H.; Ren, D.F.; Lu, J. Mixed Fermentation of Spirulina platensis with Lactobacillus Plantarum and Bacillus Subtilis by Random-Centroid Optimization. Food Chem. 2018, 264, 64–72. [Google Scholar] [CrossRef]
- Marco Castro, E.; Shannon, E.; Abu-Ghannam, N. Effect of Fermentation on Enhancing the Nutraceutical Properties of Arthrospira platensis (Spirulina). Fermentation 2019, 5, 28. [Google Scholar] [CrossRef]
- Wei, Y.F.; Wang, J.Q.; Luo, Y.J.; Zhao, X.F.; Zou, L.H.; Qiu, X.F.; Liu, H.Y. Isolation, Purification and Characterization of Antioxidant Peptides from Spirulina platensis Extracts Co-Fermentation with Thermus thermophilus HB27 and Saccharomyces cerevisiae CH006. LWT 2024, 205, 116497. [Google Scholar] [CrossRef]
- An, J.; Feng, Y.; Zheng, J.; Addy, M.; Zhang, L.; Ren, D. The Immune-enhancing Potential of Peptide Fractions from Fermented Spirulina platensis by Mixed Probiotics. J. Food Biochem. 2020, 44, e13245. [Google Scholar] [CrossRef]
- Elam, E.; Feng, J.; Lv, Y.M.; Ni, Z.J.; Sun, P.; Thakur, K.; Wei, Z.J. Recent Advances on Bioactive Food Derived Anti-Diabetic Hydrolysates and Peptides from Natural Resources. J. Funct. Foods 2021, 86, 104674. [Google Scholar] [CrossRef]
- Suo, Q.; Yue, Y.; Wang, J.; Wu, N.; Geng, L.; Zhang, Q. Isolation, Identification and in Vivo Antihypertensive Effect of Novel Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides from Spirulina Protein Hydrolysate. Food Funct. 2022, 13, 9108–9118. [Google Scholar] [CrossRef]
- Huang, T.H.; Liu, P.Y.; Lin, Y.L.; Tsai, J.S. Hypoglycemic Peptide-enriched Hydrolysates of Corbicula Fluminea and Chlorella Sorokiniana Possess Synergistic Hypoglycemic Activity through Inhibiting A-glucosidase and Dipeptidyl Peptidase-4 Activity. J. Sci. Food Agric. 2022, 102, 716–723. [Google Scholar] [CrossRef]
- Anekthanakul, K.; Senachak, J.; Hongsthong, A.; Charoonratana, T.; Ruengjitchatchawalya, M. Natural ACE Inhibitory Peptides Discovery from Spirulina (Arthrospira platensis) Strain C1. Peptides 2019, 118, 170107. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Chen, X.; Wu, J.; Zhang, Y.; Zhou, Y.; Zhang, L.; Wei, D. Antihypertensive Effects, Molecular Docking Study, and Isothermal Titration Calorimetry Assay of Angiotensin I-Converting Enzyme Inhibitory Peptides from Chlorella vulgaris. J. Agric. Food Chem. 2018, 66, 1359–1368. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, S.; Zhong, Y.; Liu, J.; Liu, H.; Cheng, J.; Wang, Q. Quantitative Structure-Activity Relationship Model to Predict Antioxidant Effects of the Peptide Fraction Extracted from a Co-Culture System of Chlorella Pyrenoidosa and Yarrowia Lipolytica. Mar. Drugs 2019, 17, 633. [Google Scholar] [CrossRef] [PubMed]
- FitzGerald, R.J.; Cermeño, M.; Khalesi, M.; Kleekayai, T.; Amigo-Benavent, M. Application of in Silico Approaches for the Generation of Milk Protein-Derived Bioactive Peptides. J. Funct. Foods 2020, 64, 103636. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, Y.; Jia, N.; Zhang, W.; Hou, H.; Xue, C.; Wang, Y. Identification of Three Novel Antioxidative Peptides from Auxenochlorella pyrenoidosa Protein Hydrolysates Based on a Peptidomics Strategy. Food Chem. 2022, 375, 131849. [Google Scholar] [CrossRef]
- Qoms, M.S.; Arulrajah, B.; Ibadullah, W.Z.W.; Ramli, N.S.; Shamsudin, R.; Chau, D.M.; Saari, N. Antihypertensive, Antidiabetic, and Antioxidant Properties of Novel Azolla Pinnata Fern Protein Hydrolysates: Inhibition Mechanism, Stability, Profiling, and Molecular Docking. Food Bioprocess Technol. 2024, 17, 4806–4823. [Google Scholar] [CrossRef]
- Hu, S.; Fan, X.; Qi, P.; Zhang, X. Identification of Anti-Diabetes Peptides from Spirulina platensis. J. Funct. Foods 2019, 56, 333–341. [Google Scholar] [CrossRef]
- Yu, Z.; Lv, H.; Zhou, M.; Fu, P.; Zhao, W. Identification and Molecular Docking of Tyrosinase Inhibitory Peptides from Allophycocyanin in Spirulina platensis. J. Sci. Food Agric. 2024, 104, 3648–3653. [Google Scholar] [CrossRef]
- Sarkar, P.; Lite, C.; Kumar, P.; Pasupuleti, M.; Saraswathi, N.T.; Arasu, M.V.; Arockiaraj, J. TL15 of Arthrospira platensis Sulfite Reductase Scavenges Free Radicals Demonstrated in Oxidant Induced Larval Zebrafish (Danio rerio) Model. Int. J. Biol. Macromol. 2021, 166, 641–653. [Google Scholar] [CrossRef]
- Lin, L.; He, Y.L.; Liu, Y.; Hong, P.; Zhou, C.; Sun, S.; Qian, Z.J. Comparative in Silico and in Vitro Study of the Stability and Biological Activity of an Octapeptide from Microalgae Isochrysis zhanjiangensis and Its Truncated Short Peptide. Food Funct. 2023, 14, 3659–3672. [Google Scholar] [CrossRef]
- Velayutham, M.; Guru, A.; Arasu, M.V.; Al-Dhabi, N.A.; Choi, K.C.; Elumalai, P.; Arockiaraj, J. GR15 Peptide of S-Adenosylmethionine Synthase (SAMe) from Arthrospira platensis Demonstrated Antioxidant Mechanism against H2O2 Induced Oxidative Stress in in-Vitro MDCK Cells and in-Vivo Zebrafish Larvae Model. J. Biotechnol. 2021, 342, 79–91. [Google Scholar] [CrossRef]
- Zeng, Q.H.; Wang, J.J.; Zhang, Y.H.; Song, Y.Q.; Liang, J.L.; Zhang, X.W. Recovery and Identification Bioactive Peptides from Protein Isolate of Spirulina platensis and Their in Vitro Effectiveness against Oxidative Stress-induced Erythrocyte Hemolysis. J. Sci. Food Agric. 2020, 100, 3776–3782. [Google Scholar] [CrossRef]
- Lin, L.; He, Y.L.; Tang, Y.; Hong, P.; Zhou, C.; Sun, S.; Qian, Z.J. Mechanism Analysis of Octapeptide from Microalgae, Isochrysis zhanjiangensis for Suppressing Vascular Injury and Angiogenesis in Human Umbilical Vein Endothelial Cell. Int. Immunopharmacol. 2022, 111, 109149. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Lui, Y.; Cai, S.; Zhou, C.; Hong, P.; Qian, Z.J. A Novel Peptide Isolated from Microalgae Isochrysis zhanjiangensis Exhibits Anti-Apoptosis and Anti-Inflammation in Ox-LDL Induced HUVEC to Improve Atherosclerosis. Plant Foods Hum. Nutr. 2022, 77, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, P.; Stefi, R.V.; Pasupuleti, M.; Paray, B.A.; Al-Sadoon, M.K.; Arockiaraj, J. Antioxidant Molecular Mechanism of Adenosyl Homocysteinase from Cyanobacteria and Its Wound Healing Process in Fibroblast Cells. Mol. Biol. Rep. 2020, 47, 1821–1834. [Google Scholar] [CrossRef] [PubMed]
- Sannasimuthu, A.; Kumaresan, V.; Pasupuleti, M.; Paray, B.A.; Al-Sadoon, M.K.; Arockiaraj, J. Radical Scavenging Property of a Novel Peptide Derived from C-Terminal SOD Domain of Superoxide Dismutase Enzyme in Arthrospira platensis. Algal Res. 2018, 35, 519–529. [Google Scholar] [CrossRef]
- Sannasimuthu, A.; Kumaresan, V.; Anilkumar, S.; Pasupuleti, M.; Ganesh, M.R.; Mala, K.; Arockiaraj, J. Design and Characterization of a Novel Arthrospira platensis Glutathione Oxido-Reductase-Derived Antioxidant Peptide GM15 and Its Potent Anti-Cancer Activity via Caspase-9 Mediated Apoptosis in Oral Cancer Cells. Free Radic. Biol. Med. 2019, 135, 198–209. [Google Scholar] [CrossRef]
- Zeng, Q.; Fan, X.; Zheng, Q.; Wang, J.; Zhang, X. Anti-Oxidant, Hemolysis Inhibition, and Collagen-Stimulating Activities of a New Hexapeptide Derived from Arthrospira (Spirulina) platensis. J. Appl. Phycol. 2018, 30, 1655–1665. [Google Scholar] [CrossRef]
- Sannasimuthu, A.; Arockiaraj, J. Intracellular Free Radical Scavenging Activity and Protective Role of Mammalian Cells by Antioxidant Peptide from Thioredoxin Disulfide Reductase of Arthrospira platensis. J. Funct. Foods 2019, 61, 103513. [Google Scholar] [CrossRef]
- Sarkar, P.; Guru, A.; Raju, S.V.; Farasani, A.; Oyouni, A.A.A.; Alzahrani, O.R.; Arockiaraj, J. GP13, an Arthrospira platensis Cysteine Desulfurase-Derived Peptide, Suppresses Oxidative Stress and Reduces Apoptosis in Human Leucocytes and Zebrafish (Danio Rerio) Embryo via Attenuated Caspase-3 Expression. J. King Saud Univ.-Sci. 2021, 33, 101665. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, M.; Zhou, Q.; Yang, Y.; Du, L.; Gao, X. Preparation, Identification and in Vivo Study of Antioxidant Peptides from Haematococcus pluvialis Residue. Food Biosci. 2025, 66, 106140. [Google Scholar] [CrossRef]
- He, W.S.; Zheng, Q.S.; Chen, X.Y.; Xia, Z.H.; Cao, Y.; Liu, X.J. Preparation, Purification and Identification of a Novel Antioxidant Peptide from Haematococcus pluvialis and Its Effect on the Antioxidant Capacity of Caenorhabditis Elegans. Shipin Kexue Food Sci. 2023, 44, 116–125. [Google Scholar] [CrossRef]
- Li, H.; Li, L.; Mo, Y.; He, Y.L.; Qian, Z.J. Protective Effects and Structure-Activity Relationship of Oligopeptide AYAPE from Isochrysis zhanjiangensis on Oxidative Stress in HUVECs and SH-SY5Y Cells. Arab. J. Chem. 2024, 17, 105633. [Google Scholar] [CrossRef]
- Lin, L.; Li, H.; Hong, P.; Zhou, C.; Sun, S.; Qian, Z. Structural Characterization and Biological Activity of Oligopeptides from Isochrysis zhanjiangensis: Based on Quantum Mechanics, Molecular Docking and in Vitro Experiments. J. Ocean Univ. China 2023, 22, 1139–1150. [Google Scholar] [CrossRef]
- Montone, C.M.; Capriotti, A.L.; Cavaliere, C.; Barbera, G.; Piovesana, S.; Zenezini Chiozzi, R.; Laganà, A. Peptidomic Strategy for Purification and Identification of Potential ACE-Inhibitory and Antioxidant Peptides in Tetradesmus Obliquus Microalgae. Anal. Bioanal. Chem. 2018, 410, 3573–3586. [Google Scholar] [CrossRef]
- Hu, X.; Yang, X.; Wu, Q.; Li, L.; Wu, Y.; Chen, S.; Ren, J. Purification and Identification of Antioxidant Peptides from Schizochytrium Limacinum Hydrolysates by Consecutive Chromatography and Electrospray Ionization-Mass Spectrometry. Molecules 2019, 24, 3004. [Google Scholar] [CrossRef]
- Suttisuwan, R.; Phunpruch, S.; Saisavoey, T.; Sangtanoo, P.; Thongchul, N.; Karnchanatat, A. Isolation and Characterization of Anti-Inflammatory Peptides Derived from Trypsin Hydrolysis of Microalgae Protein (Synechococcus sp. VDW). Food Biotechnol. 2019, 33, 303–324. [Google Scholar] [CrossRef]
- Bai, R.; Nguyen, T.T.; Zhou, Y.; Diao, Y.; Zhang, W. Identification of Antioxidative Peptides Derived from Arthrospira Maxima in the Biorefinery Process after Extraction of C-Phycocyanin and Lipids. Mar. Drugs 2023, 21, 146. [Google Scholar] [CrossRef] [PubMed]
- Nwachukwu, I.D.; Aluko, R.E. Structural and Functional Properties of Food Protein-derived Antioxidant Peptides. J. Food Biochem. 2019, 43, 12761. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Li, F.; Zhang, T.; Li, C.Y.; Zhu, L.; Yan, S. Isolation, Identification, and Molecular Docking Analysis of Novel ACE Inhibitory Peptides from Spirulina platensis. Eur. Food Res. Technol. 2022, 248, 1107–1115. [Google Scholar] [CrossRef]
- World Health Organization. Hypertension. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension (accessed on 12 September 2025).
- Patel, S.; Rauf, A.; Khan, H.; Abu-Izneid, T. Renin-Angiotensin-Aldosterone (RAAS): The Ubiquitous System for Homeostasis and Pathologies. Biomed. Pharmacother. 2017, 94, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Cutrell, S.; Alhomoud, I.S.; Mehta, A.; Talasaz, A.H.; Van Tassell, B.; Dixon, D.L. ACE-Inhibitors in Hypertension: A Historical Perspective and Current Insights. Curr. Hypertens. Rep. 2023, 25, 243–250. [Google Scholar] [CrossRef]
- Iwai, M.; Horiuchi, M. Devil and Angel in the Renin–Angiotensin System: ACE–Angiotensin II–AT1 Receptor Axis vs. ACE2–Angiotensin-(1–7)–Mas Receptor Axis. Hypertens. Res. 2009, 32, 533–536. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, J.; Pan, H.; Wu, H.; Ren, D.; Lu, J. Effects of IQP, VEP and Spirulina Platensis Hydrolysates on the Local Kidney Renin Angiotensin System in Spontaneously Hypertensive Rats. Mol. Med. Rep. 2017, 16, 8485–8492. [Google Scholar] [CrossRef]
- Pan, H.; She, X.; Wu, H.; Ma, J.; Ren, D.; Lu, J. Long-Term Regulation of the Local Renin–Angiotensin System in the Myocardium of Spontaneously Hypertensive Rats by Feeding Bioactive Peptides Derived from Spirulina platensis. J. Agric. Food Chem. 2015, 63, 7765–7774. [Google Scholar] [CrossRef]
- Iwaniak, A.; Minkiewicz, P.; Darewicz, M. Food-originating ACE Inhibitors, Including Antihypertensive Peptides, as Preventive Food Components in Blood Pressure Reduction. Compr. Rev. Food Sci. Food Saf. 2014, 13, 114–134. [Google Scholar] [CrossRef]
- Pei, Y.; Cai, S.; Ryu, B.; Zhou, C.; Hong, P.; Qian, Z.J. An ACE Inhibitory Peptide from Isochrysis zhanjiangensis Exhibits Antihypertensive Effect via Anti-Inflammation and Anti-Apoptosis in HUVEC and Hypertensive Rats. J. Funct. Foods 2022, 92, 105061. [Google Scholar] [CrossRef]
- Heo, S.Y.; Ko, S.C.; Kim, C.S.; Oh, G.W.; Ryu, B.; Qian, Z.J.; Jung, W.K. A Heptameric Peptide Purified from Spirulina sp. Gastrointestinal Hydrolysate Inhibits Angiotensin I-Converting Enzyme-and Angiotensin II-Induced Vascular Dysfunction in Human Endothelial Cells. Int. J. Mol. Med. 2017, 39, 1072–1082. [Google Scholar] [CrossRef]
- Safitri, N.M.; Hsu, J.L. Screening of Angiotensin-I Converting Enzyme (ACE) Inhibitory Peptides from Thermolytic Hydrolysate of Arthrospira platensis. Mar. Biotechnol. 2025, 27, 61. [Google Scholar] [CrossRef] [PubMed]
- Carrizzo, A.; Conte, G.M.; Sommella, E.; Damato, A.; Ambrosio, M.; Sala, M.; Vecchione, C. Novel potent decameric peptide of Spirulina platensis reduces blood pressure levels through a PI3K/AKT/eNOS-dependent mechanism. Hypertension 2019, 73, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xu, N.; Sun, X.; Yu, H.; Zhou, C. Hydrolysis and Purification of ACE Inhibitory Peptides from the Marine Microalga Isochrysis Galbana. J. Appl. Phycol. 2015, 27, 351–361. [Google Scholar] [CrossRef]
- Chen, J.; Tan, L.; Li, C.; Zhou, C.; Hong, P.; Sun, S.; Qian, Z.J. Mechanism Analysis of a Novel Angiotensin-I-Converting Enzyme Inhibitory Peptide from Isochrysis zhanjiangensis Microalgae for Suppressing Vascular Injury in Human Umbilical Vein Endothelial Cells. J. Agric. Food Chem. 2020, 68, 4411–4423. [Google Scholar] [CrossRef]
- Hayes, M.; Mora, L.; Lucakova, S. Identification of Bioactive Peptides from Nannochloropsis Oculata Using a Combination of Enzymatic Treatment, in Silico Analysis and Chemical Synthesis. Biomolecules 2022, 12, 1806. [Google Scholar] [CrossRef]
- Lineweaver, H.; Burk, D. The Determination of Enzyme Dissociation Constants. J. Am. Chem. Soc. 1934, 56, 658–666. [Google Scholar] [CrossRef]
- Majumder, K.; Wu, J. Molecular Targets of Antihypertensive Peptides: Understanding the Mechanisms of Action Based on the Pathophysiology of Hypertension. Int. J. Mol. Sci. 2014, 16, 256–283. [Google Scholar] [CrossRef]
- Lubbe, L.; Cozier, G.E.; Oosthuizen, D.; Acharya, K.R.; Sturrock, E.D. ACE2 and ACE: Structure-Based Insights into Mechanism, Regulation and Receptor Recognition by SARS-CoV. Clin. Sci. 2020, 134, 2851–2871. [Google Scholar] [CrossRef]
- World Health Organization. Diabetes 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 7 May 2025).
- Washburn, R.L.; Mueller, K.; Kaur, G.; Moreno, T.; Moustaid-Moussa, N.; Ramalingam, L.; Dufour, J.M. C-Peptide as a Therapy for Type 1 Diabetes Mellitus. Biomedicines 2021, 9, 270. [Google Scholar] [CrossRef]
- Yavari, A.; Mohammadi-Khanaposhtani, M.; Moradi, S.; Bahadorikhalili, S.; Pourbagher, R.; Jafari, N.; Faramarzi, M.A.; Zabihi, E.; Mahdavi, M.; Biglar, M.; et al. α-Glucosidase and α-Amylase Inhibition, Molecular Modeling and Pharmacokinetic Studies of New Quinazolinone-1,2,3-Triazole-Acetamide Derivatives. Med. Chem. Res. 2021, 30, 702–711. [Google Scholar] [CrossRef]
- Siahbalaei, R.; Kavoosi, G.; Noroozi, M. Protein Nutritional Quality, Amino Acid Profile, Anti-Amylase and Anti-Glucosidase Properties of Microalgae: Inhibition and Mechanisms of Action through in Vitro and in Silico Studies. LWT 2021, 150, 112023. [Google Scholar] [CrossRef]
- Liu, J.; Bai, X.; Fu, P. In Silico and in Vitro Assessment of Bioactive Peptides from Arthrospira platensis Phycobiliproteins for DPP-IV Inhibitory Activity, ACE Inhibitory Activity, and Antioxidant Activity. J. Appl. Phycol. 2022, 34, 1497–1511. [Google Scholar] [CrossRef]
- Aurino, E.; Mora, L.; Marzocchella, A.; Kuchendorf, C.M.; Ackermann, B.; Hayes, M. Functional and Bioactive Benefits of Selected Microalgal Hydrolysates Assessed In Silico and In Vitro. Mar. Drugs 2025, 23, 53. [Google Scholar] [CrossRef] [PubMed]
- Aiello, G.; Li, Y.; Boschin, G.; Bollati, C.; Arnoldi, A.; Lammi, C. Chemical and Biological Characterization of Spirulina Protein Hydrolysates: Focus on ACE and DPP-IV Activities Modulation. J. Funct. Foods 2019, 63, 103592. [Google Scholar] [CrossRef]
- Li, Y.; Aiello, G.; Bollati, C.; Bartolomei, M.; Arnoldi, A.; Lammi, C. Phycobiliproteins from Arthrospira platensis (Spirulina): A New Source of Peptides with Dipeptidyl Peptidase-IV Inhibitory Activity. Nutrients 2020, 12, 794. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Chen, X.; Wu, J.; Zhou, Y.; Qian, Y.; Fang, M.; Wei, D. Dipeptidyl Peptidase IV Inhibitory Peptides from Chlorella vulgaris: In Silico Gastrointestinal Hydrolysis and Molecular Mechanism. Eur. Food Res. Technol. 2017, 243, 1739–1748. [Google Scholar] [CrossRef]
- Berraquero-García, C.; Rivero-Pino, F.; Ospina, J.L.; Pérez-Gálvez, R.; Espejo-Carpio, F.J.; Guadix, A.; Guadix, E.M. Activity, Structural Features and in Silico Digestion of Antidiabetic Peptides. Food Biosci. 2023, 55, 102954. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight 2025. Available online: https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 29 May 2025).
- Zhao, J.; Zhou, A.; Qi, W. The Potential to Fight Obesity with Adipogenesis Modulating Compounds. Int. J. Mol. Sci. 2022, 23, 2299. [Google Scholar] [CrossRef]
- Birari, R.B.; Bhutani, K.K. Pancreatic Lipase Inhibitors from Natural Sources: Unexplored Potential. Drug Discov. Today 2007, 12, 879–889. [Google Scholar] [CrossRef]
- Suryaningtyas, I.T.; Je, J.Y. Bioactive Peptides from Food Proteins as Potential Anti-Obesity Agents: Mechanisms of Action and Future Perspectives. Trends Food Sci. Technol. 2023, 138, 141–152. [Google Scholar] [CrossRef]
- Otero, C.; Verdasco-Martín, C.M. Preparation and Characterization of a Multicomponent Arthrospira platensis Biomass Hydrolysate with Superior Anti-Hypertensive, Anti-Hyperlipidemic and Antioxidant Activities via Selective Proteolysis. Mar. Drugs 2023, 21, 255. [Google Scholar] [CrossRef] [PubMed]
- Ke, L.; He, W.; Zong, C.; Wang, T.; Xiao, J.; Cao, Y.; Liu, X. A Novel Peptide Derived from Haematococcus Pluvialis Residue Balanced Lipid Metabolism through NHR-49/PPARα and AAK-2/AMPK Pathways in Caenorhabditis Elegans. BioFactors 2025, 51, 70017. [Google Scholar] [CrossRef] [PubMed]
- Karimzadeh, K.; Unniappan, S.; Zahmatkesh, A. Spirulina Platensis Peptide-Loaded Nanoliposomes Alleviate Hepatic Lipid Accumulation in Male Wistar Rats by Influencing Redox Homeostasis and Lipid Metabolism via the AMPK Signaling Pathway. Appl. Biochem. Biotechnol. 2025, 197, 1696–1725. [Google Scholar] [CrossRef]
- Zhao, B.; Cui, Y.; Fan, X.; Qi, P.; Liu, C.; Zhou, X.; Zhang, X. Anti-Obesity Effects of Spirulina Platensis Protein Hydrolysate by Modulating Brain-Liver Axis in High-Fat Diet Fed Mice. PLoS ONE 2019, 14, 0218543. [Google Scholar] [CrossRef]
- Liu, J.; Zhen, D.; Hu, C.; Liu, Y.; Shen, X.; Fu, P.; He, Y. Reconfiguration of Gut Microbiota and Reprogramming of Liver Metabolism with Phycobiliproteins Bioactive Peptides to Rehabilitate Obese Rats. Nutrients 2022, 14, 3635. [Google Scholar] [CrossRef]
- He, Y.L.; Liu, Y.; Lin, L.; Mo, Y.; Li, H.; Zhou, C.; Qian, Z.J. Antioxidant Peptide ETT from Isochrysis zhanjiangensis Attenuate Skin Aging by Maintaining Homeostasis and Promoting Collagen Generation. Algal Res. 2024, 82, 103615. [Google Scholar] [CrossRef]
- Zheng, Z.; Xiao, Z.; He, Y.L.; Tang, Y.; Li, L.; Zhou, C.; Qian, Z.J. Heptapeptide Isolated from Isochrysis zhanjiangensis Exhibited Anti-Photoaging Potential via MAPK/AP-1/MMP Pathway and Anti-Apoptosis in UVB-Irradiated HaCaT Cells. Mar. Drugs 2021, 19, 626. [Google Scholar] [CrossRef]
- He, Y.L.; Lin, L.; Zheng, H.; Mo, Y.; Zhou, C.; Sun, S.; Qian, Z.J. Potential Anti-Skin Aging Effect of a Peptide AYAPE Isolated from Isochrysis zhanjiangensis on UVB-Induced HaCaT Cells and H2O2-Induced BJ Cells. J. Photochem. Photobiol. B 2022, 233, 112481. [Google Scholar] [CrossRef]
- Zeng, Q.; Jiang, J.; Wang, J.; Zhou, Q.; Zhang, X. N-Terminal Acetylation and c-Terminal Amidation of Spirulina platensis-Derived Hexapeptide: Anti-Photoaging Activity and Proteomic Analysis. Mar. Drugs 2019, 17, 520. [Google Scholar] [CrossRef]
- Kose, A.; Oncel, S.S. Design of Melanogenesis Regulatory Peptides Derived from Phycocyanin of the Microalgae Spirulina platensis. Peptides 2022, 152, 170783. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Xie, J.; Xia, Z.; Chen, X.; Xiao, J.; Cao, Y.; Liu, X. A Novel Peptide Derived from Haematococcus Pluvialis Residue Exhibits Anti-Aging Activity in Caenorhabditis Elegans via the Insulin/IGF-1 Signaling Pathway. Food Funct. 2023, 14, 5576–5588. [Google Scholar] [CrossRef] [PubMed]
- Srimongkol, P.; Sangtanoo, P.; Saisavoey, T.; Puthong, S.; Buakeaw, A.; Karnchanatat, A.; Suttisuwan, R. Synechococcus Marine Microalgae Peptide: Melanogenesis Inhibition in Cellular and Zebrafish Models. Algal Res. 2024, 82, 103601. [Google Scholar] [CrossRef]
- Norzagaray-Valenzuela, C.D.; Valdez-Ortiz, A.; Shelton, L.M.; Jiménez-Edeza, M.; Rivera-López, J.; Valdez-Flores, M.A.; Germán-Báez, L.J. Residual Biomasses and Protein Hydrolysates of Three Green Microalgae Species Exhibit Antioxidant and Anti-Aging Activity. J. Appl. Phycol. 2017, 29, 189–198. [Google Scholar] [CrossRef]
- Zhang, X.; Zhuang, H.; Wu, S.; Mao, C.; Dai, Y.; Yan, H. Marine Bioactive Peptides: Anti-Photoaging Mechanisms and Potential Skin Protective Effects. Curr. Issues Mol. Biol. 2024, 46, 990–1009. [Google Scholar] [CrossRef]
- Liu, R.; He, L.; Chen, L.; Zhang, Y.; Zhang, Y.; An, J.; Liu, X. Skin’s New Shield: Food-Derived Bioactive Peptides in Combating Photoaging—An Investigation Into Inhibitory Mechanisms and Structure–Activity Relationships. J. Food Biochem. 2025, 2025, 2836436. [Google Scholar] [CrossRef]
- Ubeid, A.A.; Zhao, L.; Wang, Y.; Hantash, B.M. Short-sequence oligopeptides with inhibitory activity against mushroom and human tyrosinase. J. Investig. Dermatol. 2009, 129, 2242–2249. [Google Scholar] [CrossRef]
- Hayes, M.; Aluko, R.E.; Aurino, E.; Mora, L. Generation of Bioactive Peptides from Porphyridium sp. and Assessment of Their Potential for Use in the Prevention of Hypertension, Inflammation and Pain. Mar. Drugs 2023, 21, 422. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, J.; Zheng, Y.; Yu, H.; Zhao, J.; Chen, J.; Zhu, J. Dunaliella Salina-Derived Peptide Protects from Bone Loss: Isolation, Purification and Identification. LWT 2021, 137, 110437. [Google Scholar] [CrossRef]
- Cai, X.; Lin, J.; Wang, S. Novel Peptide with Specific Calcium-Binding Capacity from Schizochytrium sp. Protein Hydrolysates and Calcium Bioavailability in Caco-2 Cells. Mar. Drugs 2016, 15, 3. [Google Scholar] [CrossRef]
- Cai, X.; Yan, A.; Fu, N.; Wang, S. In Vitro Antioxidant Activities of Enzymatic Hydrolysate from Schizochytrium sp. and Its Hepatoprotective Effects on Acute Alcohol-Induced Liver Injury in Vivo. Mar. Drugs 2017, 15, 115. [Google Scholar] [CrossRef]
- Sannasimuthu, A.; Ramani, M.; Paray, B.A.; Pasupuleti, M.; Al-Sadoon, M.K.; Alagumuthu, T.S.; Arockiaraj, J. Arthrospira platensis Transglutaminase Derived Antioxidant Peptide-Packed Electrospun Chitosan/Poly (Vinyl Alcohol) Nanofibrous Mat Accelerates Wound Healing, in Vitro, via Inducing Mouse Embryonic Fibroblast Proliferation. Colloids Surf. B Biointerfaces 2020, 193, 111124. [Google Scholar] [CrossRef]
- Tonawut, Y.; Rittiyan, N.; Kornrawudaphikasama, Y.; Klinsalee, R.; Laokua, N.; Preechaphonkul, N.; Maneeruttanarungroj, C. In Silico Encrypted Peptide from Green Alga Tetraspora sp. CU2551 Showed High Antimicrobial Activities. Algal Res. 2024, 78, 103382. [Google Scholar] [CrossRef]
- Sun, Y.; Chang, R.; Li, Q.; Li, B. Isolation and Characterization of an Antibacterial Peptide from Protein Hydrolysates of Spirulina platensis. Eur. Food Res. Technol. 2016, 242, 685–692. [Google Scholar] [CrossRef]
- Min, K.H.; Kim, D.H.; Shin, J.W.; Ki, M.R.; Pack, S.P. Microalgae-Derived Peptide with Dual-Functionalities of Silica Deposition and Antimicrobial Activity for Biosilica-Based Biomaterial Design. Process Biochem. 2024, 146, 204–213. [Google Scholar] [CrossRef]
- Raghunathan, S.; MubarakAli, D.; Mehboob Nousheen, M.G.; Vasimalai, N.; Thajuddin, N.; Kim, J.W. An Investigation of Pepsin Hydrolysate of Short Antibacterial Peptides Derived from Limnospira sp. Appl. Biochem. Biotechnol. 2022, 194, 5580–5593. [Google Scholar] [CrossRef]
- Guzmán, F.; Wong, G.; Román, T.; Cárdenas, C.; Alvárez, C.; Schmitt, P.; Rojas, V. Identification of Antimicrobial Peptides from the Microalgae Tetraselmis Suecica (Kylin) Butcher and Bactericidal Activity Improvement. Mar. Drugs 2019, 17, 453. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Lin, L.; Li, H.; Qian, Z.J. Neuroprotection of Truncated Peptide IIAVE from Isochrysis zhanjiangensis: Quantum Chemical, Molecular Docking, and Bioactivity Studies. Molecules 2024, 29, 692. [Google Scholar] [CrossRef]
- Fetse, J.; Kandel, S.; Mamani, U.F.; Cheng, K. Recent Advances in the Development of Therapeutic Peptides. Trends Pharmacol. Sci. 2023, 44, 425–441. [Google Scholar] [CrossRef]
- Barman, P.; Joshi, S.; Sharma, S.; Preet, S.; Sharma, S.; Saini, A. Strategic Approaches to Improvise Peptide Drugs as next Generation Therapeutics. Int. J. Pept. Res. Ther. 2023, 29, 61. [Google Scholar] [CrossRef]
- Gianfranceschi, G.L.; Gianfranceschi, G.; Quassinti, L.; Bramucci, M. Biochemical Requirements of Bioactive Peptides for Nutraceutical Efficacy. J. Funct. Foods 2018, 47, 252–263. [Google Scholar] [CrossRef]
- Arnesen, T. Towards a functional understanding of protein N-terminal acetylation. PLoS Biol. 2011, 9, 1001074. [Google Scholar] [CrossRef]
- Cui, J.; Sa, E.; Wei, J.; Fang, Y.; Zheng, G.; Wang, Y.; Liu, Z. The Truncated Peptide AtPEP1 (9–23) Has the Same Function as AtPEP1 (1–23) in Inhibiting Primary Root Growth and Triggering of ROS Burst. Antioxidants 2024, 13, 549. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qoms, M.S.; Wong, S.K.; Mohd Fauzi, N.; Husain, K.; Makpol, S.; Tan, J.K. Microalgae-Derived Peptides Targeting Lifestyle-Related Diseases: Discovery, Mechanisms, Structure–Activity Relationships, and Structural Modifications. Antioxidants 2025, 14, 1170. https://doi.org/10.3390/antiox14101170
Qoms MS, Wong SK, Mohd Fauzi N, Husain K, Makpol S, Tan JK. Microalgae-Derived Peptides Targeting Lifestyle-Related Diseases: Discovery, Mechanisms, Structure–Activity Relationships, and Structural Modifications. Antioxidants. 2025; 14(10):1170. https://doi.org/10.3390/antiox14101170
Chicago/Turabian StyleQoms, Mohammed S., Sok Kuan Wong, Norsyahida Mohd Fauzi, Khairana Husain, Suzana Makpol, and Jen Kit Tan. 2025. "Microalgae-Derived Peptides Targeting Lifestyle-Related Diseases: Discovery, Mechanisms, Structure–Activity Relationships, and Structural Modifications" Antioxidants 14, no. 10: 1170. https://doi.org/10.3390/antiox14101170
APA StyleQoms, M. S., Wong, S. K., Mohd Fauzi, N., Husain, K., Makpol, S., & Tan, J. K. (2025). Microalgae-Derived Peptides Targeting Lifestyle-Related Diseases: Discovery, Mechanisms, Structure–Activity Relationships, and Structural Modifications. Antioxidants, 14(10), 1170. https://doi.org/10.3390/antiox14101170