Gallic Acid from Elaeocarpus floribundus Stem Bark: A Potent Natural Antioxidant with Enzymatic and Pharmacokinetic Validation
Abstract
1. Introduction
2. Materials and Methods
2.1. General Information
2.2. Plant Material, Extraction, and Isolation
2.3. Quantification of Total Phenolic and Total Flavonoid Contents
2.4. Radical Scavenging Potential Towards DPPH Free Radicals
2.5. Computational Toxicity Studies
2.6. Molecular Docking Studies
2.7. Statistical Analysis
3. Results
3.1. Isolation of Compounds
3.2. Quantification of TPC, TFC, and DPPH Scavenging Activity of Extract and Fractions of E. floribundus
3.3. DPPH Antioxidant Inhibitory Activity of Isolated Components
3.4. Prediction of Pharmacokinetic and Toxicological Properties
3.5. Determination of Antioxidant Activity Through Molecular Docking
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olufunmilayo, E.O.; Gerke-Duncan, M.B.; Holsinger, R.M.D. Oxidative Stress and Antioxidants in Neurodegenerative Disorders. Antioxidants 2023, 12, 517. [Google Scholar] [CrossRef] [PubMed]
- Rudrapal, M.; Rakshit, G.; Singh, R.P.; Garse, S.; Khan, J.; Chakraborty, S. Dietary Polyphenols: Review on Chemistry/Sources, Bioavailability/Metabolism, Antioxidant Effects, and Their Role in Disease Management. Antioxidants 2024, 13, 429. [Google Scholar] [CrossRef] [PubMed]
- Jegadeshwari, B.; Thenmozhi, K.; Sanmuga Priya, E.; Saraswathy, S.D. An Overview on the Ethnopharmacological, Nutritional, and Phytochemical Perspectives of Elaeocarpus floribundus Blume. Curr. Pharmacol. Rep. 2023, 9, 377–389. [Google Scholar] [CrossRef]
- Amit Dadhich, A.D.; Anirudha Rishi, A.R.; Gargi Sharma, G.S.; Subhash Chandra, S.C. Phytochemicals of Elaeocarpus with Their Therapeutic Value: A Review. Int. J. Pharma Bio Sci. 2013, 4, P-591–P-598. [Google Scholar]
- Mahomoodally, M.F.; Sookhy, V. Ethnobotany and Pharmacological Uses of Elaeocarpus floribundus Blume (Elaeocarpaceae). In BT—Plant and Human Health; Ozturk, M., Hakeem, K.R., Eds.; Ethnobotany and Physiology; Springer International Publishing: Cham, Switzerland, 2018; Volume 1, pp. 125–137. [Google Scholar] [CrossRef]
- Ogundele, A.V.; Yadav, A.; Haldar, S.; Das, A.M. Antimicrobial Activities of Extract, Fractions and Isolated Compounds from the Fruits of Elaeocarpus floribundus Growing in North-East India. J. Herb. Med. 2021, 30, 100511. [Google Scholar] [CrossRef]
- Ogundele, A.V.; Yadav, A.; Das, A.M. Antimicrobial and α-Amylase Inhibitory Activities of Constituents from Elaeocarpus floribundus. Rev. Bras. Farmacogn. 2021, 31, 330–334. [Google Scholar] [CrossRef]
- Ogundele, A.V.; Haldar, S.; Yadav, A.; Das, A.M. Elaeocarpus floribundus Bl. Seeds as a New Source of Bioactive Compounds with Promising Antioxidant and Antimicrobial Properties. Z. Für Naturforschung C 2021, 76, 141–146. [Google Scholar] [CrossRef]
- Ogundele, A.V.; Das, A.M. Chemical Constituents from the Leaves of Elaeocarpus floribundus. Nat. Prod. Res. 2021, 35, 517–520. [Google Scholar] [CrossRef]
- Hossen, K.; Teruya, T.; Tojo, S.; Kato-Noguchi, H. Phytotoxicity and Identification of Active Compounds from Elaeocarpus floribundus Blume Plant for Controlling Weeds. Sci. World J. 2024, 2024, 4995447. [Google Scholar] [CrossRef]
- Utami, R.; Khalid, N.; Sukari, M.A.; Rahmani, M.; Abdul, A.B.; Dachriyanus, D. Phenolic Contents, Antioxidant and Cytotoxic Activities of Elaeocarpus floribundus Blume. Pak. J. Pharm. Sci. 2013, 26, 245–250. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M.B.T.-M. [14] Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Stankovic, M.S.; Neda, N.; Marina, T.; Solujic, S. Total Phenolic Content, Flavonoid Concentrations and Antioxidant Activity, of the Whole Plant and Plant Parts Extracts from Teucrium montanum L. Var. Montanum, F. Supinum (L.) Reichenb. Biotechnol. Biotechnol. Equip. 2011, 25, 2222–2227. [Google Scholar] [CrossRef]
- Zhao, M.; Zhu, D.; Sun-Waterhouse, D.; Su, G.; Lin, L.; Wang, X.; Dong, Y. In Vitro and In Vivo Studies on Adlay-Derived Seed Extracts: Phenolic Profiles, Antioxidant Activities, Serum Uric Acid Suppression, and Xanthine Oxidase Inhibitory Effects. J. Agric. Food Chem. 2014, 62, 7771–7778. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Banerjee, P.; Kemmler, E.; Dunkel, M.; Preissner, R. ProTox 3.0: A Webserver for the Prediction of Toxicity of Chemicals. Nucleic Acids Res. 2024, 52, W513–W520. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An Open Chemical Toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef]
- Alves, P.E.; Preet, G.; Dias, L.; Oliveira, M.; Silva, R.; Castro, I.; Silva, G.; Júnior, J.; Lima, N.; Silva, D.H.; et al. The Free Radical Scavenging Property of the Leaves, Branches, and Roots of Mansoa hirsuta DC: In Vitro Assessment, 3D Pharmacophore, and Molecular Docking Study. Molecules 2022, 27, 6016. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Tanemossu, S.A.F.; Franke, K.; Arnold, N.; Schmidt, J.; Wabo, H.K.; Tane, P.; Wessjohann, L.A. Rare Biscoumarin Derivatives and Flavonoids from Hypericum riparium. Phytochemistry 2014, 105, 171–177. [Google Scholar] [CrossRef]
- Cha, J.M.; Kim, D.H.; Lee, T.H.; Subedi, L.; Kim, S.Y.; Lee, K.R. Phytochemical Constituents of Capsella bursa-Pastoris and Their Anti-Inflammatory Activity. Nat. Prod. Sci. 2018, 24, 132–138. [Google Scholar] [CrossRef]
- Nair, R.V.R.; Devi Velayudhan, J.; Prabath Gopalakrishnan, B.; Baby, S. Anti-Inflammatory and Anticancer Activities of Erythrodiol-3-Acetate and 2,4-Di-Tert-Butylphenol Isolated from Humboldtia unijuga. Nat. Prod. Res. 2020, 34, 2319–2322. [Google Scholar] [CrossRef] [PubMed]
- Abri, A.; Maleki, M. Isolation and Identification of Gallic Acid from the Elaeagnus Angustifolia Leaves and Determination of Total Phenolic, Flavonoids Contents and Investigation of Antioxidant Activity. Iran. Chem. Commun. 2016, 4, 146–154. [Google Scholar]
- Choi, S.J.; Hong, Y.D.; Lee, B.; Park, J.S.; Jeong, H.W.; Kim, W.G.; Shin, S.S.; Yoon, K.D. Separation of Polyphenols and Caffeine from the Acetone Extract of Fermented Tea Leaves (Camellia sinensis) Using High-Performance Countercurrent Chromatography. Molecules 2015, 20, 13216–13225. [Google Scholar] [CrossRef] [PubMed]
- Rani, J.M.S.; Akkarshana, P.; Neelaveni, V.; Mohan, S.; Rekha, P.D.; Rao, R.M.; Muthulakshmi, L. Evaluation of the Inhibitory Potential of Bioactive Compounds against SARS-CoV-2 by in Silico Approach. J. Mol. Model. 2024, 30, 60. [Google Scholar] [CrossRef]
- Castro, J.; Clauss, G.; Fontes, J.V.; Oliveira, L.S.; Abbehausen, C. Oxidative Stress Mechanism by Gold Compounds: A Close Look at Total ROS Increase and the Inhibition of Antioxidant Enzymes. Chem.—Asian J. 2025, 20, e202400792. [Google Scholar] [CrossRef]
- Chandimali, N.; Bak, S.G.; Park, E.H.; Lim, H.-J.; Won, Y.-S.; Kim, E.-K.; Park, S.-I.; Lee, S.J. Free Radicals and Their Impact on Health and Antioxidant Defenses: A Review. Cell Death Discov. 2025, 11, 19. [Google Scholar] [CrossRef]
- Utami, R.; Syahputra, R.; Dona, R.; Fadhli, H.; Furi, M.; Ikhtiarudin, I. Total flavonoid content and in vitro study on the sunscreen activity of extracts of leaves of Elaeocarpus floribundus blume. Pharm. Educ. 2023, 23, 118–121. [Google Scholar] [CrossRef]
- Sircar, B.; Mandal, S. Indian olive, Elaeocarpus floribundus fruit: Perspective to the antioxidative capacity and antibacterial activity. EC Microbiol. 2017, 12, 273–282. [Google Scholar]
- Pérez, M.; Dominguez-López, I.; Lamuela-Raventós, R.M. The chemistry behind the folin–ciocalteu method for the estimation of (poly) phenol content in food: Total phenolic intake in a Mediterranean dietary pattern. J. Agric. Food Chem. 2023, 71, 17543–17553. [Google Scholar] [CrossRef]
- Torres, P.; Osaki, S.; Silveira, E.; dos Santos, D.Y.; Chow, F. Comprehensive evaluation of Folin-Ciocalteu assay for total phenolic quantification in algae (Chlorophyta, Phaeophyceae, and Rhodophyta). Algal Res. 2024, 80, 103503. [Google Scholar] [CrossRef]
- Nicolescu, A.; Bunea, C.I.; Mocan, A. Total flavonoid content revised: An overview of past, present, and future determinations in phytochemical analysis. Anal. Biochem. 2025, 700, 115794. [Google Scholar] [CrossRef] [PubMed]
- Bhuyan, U.; Handique, J.G. Chapter 6—Plant Polyphenols as Potent Antioxidants: Highlighting the Mechanism of Antioxidant Activity and Synthesis/Development of Some Polyphenol Conjugates. Stud. Nat. Prod. Chem. 2022, 75, 243–266. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.P.; Li, S.; Chen, Y.M.; Li, H.B. Natural polyphenols for prevention and treatment of cancer. Nutrients 2016, 8, 515. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zou, F.; Liu, W. Recent advancement in prevention against hepatotoxicity, molecular mechanisms, and bioavailability of gallic acid, a natural phenolic compound: Challenges and perspectives. Front. Pharmacol. 2025, 16, 1549526. [Google Scholar] [CrossRef]
- Badhani, B.; Sharma, N.; Kakkar, R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015, 5, 27540–27557. [Google Scholar] [CrossRef]
- Ho, O.M.; Hoang, T.; Lee, C. Aromatic Residue F443 Modulates the Dimer Interface and Activity of Pseudomonas mandelii Glutathione Reductase. ACS Omega 2025, 10, 8709–8717. [Google Scholar] [CrossRef]
- Zheng, M.; Liu, Y.; Zhang, G.; Yang, Z.; Xu, W.; Chen, Q. The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics. Antioxidants 2023, 12, 1675. [Google Scholar] [CrossRef]
- Lanez, E.; Mokhtar, S.; Lanez, T. Assessment of Antioxidant and DPPH Free Radical Scavenging Activity of 1,2-Dithiole-3-Thione Derivatives by Using Cyclic Voltammetry, Spectroscopic, and Molecular Docking Studies. J. Sulfur Chem. 2023, 44, 542–558. [Google Scholar] [CrossRef]
- Li, C.X.; Wang, F.R.; Zhang, B.; Deng, Z.Y.; Li, H.Y. Stability and Antioxidant Activity of Phenolic Compounds during in Vitro Digestion. J. Food Sci. 2023, 88, 696–716. [Google Scholar] [CrossRef]
- Soobrattee, M.A.; Neergheen, V.S.; Luximon-Ramma, A.; Aruoma, O.I.; Bahorun, T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2005, 579, 200–213. [Google Scholar] [CrossRef]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. 2011, 50, 586–621. [Google Scholar] [CrossRef] [PubMed]
- Prasannan, P.; Jeyaram, Y.; Pandian, A.; Raju, R.; Sekar, S. A review on taxonomy, phytochemistry, pharmacology, threats and conservation of Elaeocarpus L. (Elaeocarpaceae). Bot. Rev. 2020, 86, 298–328. [Google Scholar] [CrossRef]
- Piao, M.J.; Kang, K.A.; Zhang, R.; Ko, D.O.; Wang, Z.H.; Lee, K.H.; Hyun, J.W. Antioxidant properties of 1, 2, 3, 4, 6-penta-O-galloyl-β-d-glucose from Elaeocarpus sylvestris var. ellipticus. Food Chem. 2009, 115, 412–418. [Google Scholar] [CrossRef]
- Sharma, S.; Hussain, S.; Rai, D.V.; Singh, A.N. A comprehensive analysis on the ecosystem services of Elaeocarpus L. (Elaeocarpaceae): A review. J. Phytol. 2023, 15, 12–37. [Google Scholar]
Samples | TPC (mg GAE/g) a | TFC (mg RE/g) b | DPPH IC50 (μg/mL) c |
---|---|---|---|
Ethanol extract | 65.46 ± 0.31 a | 20.82 ± 0.58 a | 15.53 ± 0.48 b |
Ethyl acetate fraction | 58.71 ± 2.05 a | 8.05 ± 2.13 b | 6.19 ± 0.03 a |
Chloroform fraction | 18.21 ± 2.35 b | <1 c | 792.81 ± 0.09 c |
Hexane fraction | <1 c | <1 c | 1050 ± 0.10 c |
Ascorbic acid | - | - | 9.74 ± 0.22 a |
Compounds | IC50 (μM) * |
---|---|
DPPH | |
Pentadecanoic acid (1) | >500 b |
β-sitosterol (2) | >500 b |
2,4-di-tert-butylphenol (3) | 125.05 ± 0.20 b |
Gallic acid (4) | 16.04 ± 0.07 a |
Epigallocatechin gallate (5) | 8.05 ± 0.17 a |
Ascorbic acid | 55.29 ± 0.22 b |
Pharmacokinetics/Drug-Likeness | |||||
---|---|---|---|---|---|
Entry | Pentadecanoic Acid | β-Sitosterol | 2,4-di-tert- butylphenol | Gallic Acid | Epigallocatechin Gallate |
MW | 242.40 | 414.71 | 206.32 | 170.12 | 458.37 |
#Rotatable bonds | 13 | 6 | 2 | 1 | 4 |
#H-bond acceptors | 2 | 1 | 1 | 5 | 11 |
#H-bond donors | 1 | 1 | 1 | 4 | 8 |
TPSA | 37.30 | 20.23 | 20.23 | 97.99 | 197.37 |
Consensus log Po/w | 4.84 | 7.24 | 3.99 | 0.21 | 0.95 |
ESOL class | −4.66 | −7.90 | −4.55 | −1.64 | −3.56 |
GI absorption | High | Low | High | High | Low |
BBB permeant | Yes | No | Yes | No | No |
Pgp substrate | No | No | No | No | No |
CYP1A2 inhibitor | Yes | No | No | No | No |
CYP2C19 inhibitor | No | No | No | No | No |
CYP2C9 inhibitor | Yes | No | No | No | No |
CYP2D6 inhibitor | No | No | Yes | No | No |
CYP3A4 inhibitor | No | No | No | Yes | No |
log Kp (cm/s) | −3.07 | −2.20 | −3.87 | −6.84 | −8.27 |
Lipinski #violations | 0 | 1 | 0 | 0 | 2 |
Synthetic accessibility | 2.20 | 6.30 | 1.43 | 1.22 | 4.20 |
Toxicity | |||||
AMES toxicity | No | No | No | No | No |
Hepatotoxicity | No | No | No | No | No |
hERG I/II inhibitors | No | No/Yes | No | No | No/Yes |
Skin sensitization | Yes | No | Yes | No | No |
Compounds | Docking Score (-) (kcal/mol) | |
---|---|---|
PDB ID: 1BWC (Glutathione Reductase) | PDB ID: 2C9V (Superoxide Dismutase) | |
Gallic acid | 10.04 | 9.84 |
Quercetin | - | 7.54 |
Ajoene | 8.98 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogundele, A.V.; Das, A.M.; Paz, C. Gallic Acid from Elaeocarpus floribundus Stem Bark: A Potent Natural Antioxidant with Enzymatic and Pharmacokinetic Validation. Antioxidants 2025, 14, 1161. https://doi.org/10.3390/antiox14101161
Ogundele AV, Das AM, Paz C. Gallic Acid from Elaeocarpus floribundus Stem Bark: A Potent Natural Antioxidant with Enzymatic and Pharmacokinetic Validation. Antioxidants. 2025; 14(10):1161. https://doi.org/10.3390/antiox14101161
Chicago/Turabian StyleOgundele, Ayorinde Victor, Archana Moni Das, and Cristian Paz. 2025. "Gallic Acid from Elaeocarpus floribundus Stem Bark: A Potent Natural Antioxidant with Enzymatic and Pharmacokinetic Validation" Antioxidants 14, no. 10: 1161. https://doi.org/10.3390/antiox14101161
APA StyleOgundele, A. V., Das, A. M., & Paz, C. (2025). Gallic Acid from Elaeocarpus floribundus Stem Bark: A Potent Natural Antioxidant with Enzymatic and Pharmacokinetic Validation. Antioxidants, 14(10), 1161. https://doi.org/10.3390/antiox14101161