Organophosphate Pesticide Exposure and Semen Quality in Healthy Young Men: A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participant Recruitment and Study Design
2.2. Semen Collection and Assessment of Semen Quality
2.3. Measurement of Seminal Oxidation-Reduction Potential (ORP)
2.4. Measurement of Urinary Dialkylphosphate (DAP) Metabolites
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACh | Acetylcholine |
BMI | Body mass index |
CI | Confidence interval |
DEP | Diethylphosphate |
DETP | Diethylthiophosphate |
∑DE | Total molar concentration of diethyl ether (DE) metabolites |
DMDTP | Dimethyldithiophosphate |
DMP | Dimethylphosphate |
DMTP | Dimethylthiophosphate |
∑DM | Total molar concentrations of dimethyl ether (DM) metabolites |
∑DAP | Total molar concentration of dialkylphosphate (DAP) metabolites |
LOD | Limit of detection |
MiOXSYS | Male Infertility Oxidative System |
NHANES | National Health and Nutrition Examination Survey |
NH | Non-Hispanic |
GSI | Global severity index |
OP | Organophosphate pesticide |
ORP | Oxidation-reduction potential |
References
- Eisenberg, M.L.; Lathi, R.B.; Baker, V.L.; Westphal, L.M.; Milki, A.A.; Nangia, A.K. Frequency of the male infertility evaluation: Data from the national survey of family growth. J. Urol. 2013, 189, 1030–1034. [Google Scholar] [CrossRef]
- Guzick, D.S.; Overstreet, J.W.; Factor-Litvak, P.; Brazil, C.K.; Nakajima, S.T.; Coutifaris, C.; Carson, S.A.; Cisneros, P.; Steinkampf, M.P.; Hill, J.A.; et al. Sperm morphology, motility, and concentration in fertile and infertile men. N. Engl. J. Med. 2001, 345, 1388–1393. [Google Scholar] [CrossRef]
- Ku, J.Y.; Park, N.C.; Jeon, T.G.; Park, H.J. Semen Analysis in Cancer Patients Referred for Sperm Cryopreservation before Chemotherapy over a 15-Year Period in Korea. World J. Mens Health 2015, 33, 8–13. [Google Scholar] [CrossRef]
- La Vignera, S.; Condorelli, R.; Vicari, E.; D’Agata, R.; Calogero, A.E. Diabetes mellitus and sperm parameters. J. Androl. 2012, 33, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, M.L.; Li, S.; Behr, B.; Pera, R.R.; Cullen, M.R. Relationship between semen production and medical comorbidity. Fertil. Steril. 2015, 103, 66–71. [Google Scholar] [CrossRef]
- Eisenberg, M.L.; Li, S.; Behr, B.; Cullen, M.R.; Galusha, D.; Lamb, D.J.; Lipshultz, L.I. Semen quality, infertility and mortality in the USA. Hum. Reprod. 2014, 29, 1567–1574. [Google Scholar] [CrossRef]
- Jensen, T.K.; Jacobsen, R.; Christensen, K.; Nielsen, N.C.; Bostofte, E. Good semen quality and life expectancy: A cohort study of 43,277 men. Am. J. Epidemiol. 2009, 170, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Levine, H.; Jørgensen, N.; Martino-Andrade, A.; Mendiola, J.; Weksler-Derri, D.; Jolles, M.; Pinotti, R.; Swan, S.H. Temporal trends in sperm count: A systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries. Hum. Reprod. Update 2023, 29, 157–176. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yang, L.; Wang, S.; Zhang, Z.; Yu, Y.; Wang, M.; Cromie, M.; Gao, W.; Wang, S.L. The classic EDCs, phthalate esters and organochlorines, in relation to abnormal sperm quality: A systematic review with meta-analysis. Sci. Rep. 2016, 6, 19982. [Google Scholar] [CrossRef]
- Mileo, A.; Chianese, T.; Fasciolo, G.; Venditti, P.; Capaldo, A.; Rosati, L.; De Falco, M. Effects of Dibutylphthalate and Steroid Hormone Mixture on Human Prostate Cells. Int. J. Mol. Sci. 2023, 24, 14341. [Google Scholar] [CrossRef]
- Chianese, T.; Trinchese, G.; Leandri, R.; De Falco, M.; Mollica, M.P.; Scudiero, R.; Rosati, L. Glyphosate Exposure Induces Cytotoxicity, Mitochondrial Dysfunction and Activation of ERα and ERβ Estrogen Receptors in Human Prostate PNT1A Cells. Int. J. Mol. Sci. 2024, 25, 7039. [Google Scholar] [CrossRef]
- Sripada, S.; Townend, J.; Campbell, D.; Murdoch, L.; Mathers, E.; Bhattacharya, S. Relationship between semen parameters and spontaneous pregnancy. Fertil. Steril. 2010, 94, 624–630. [Google Scholar] [CrossRef]
- Cremonese, C.; Piccoli, C.; Pasqualotto, F.; Clapauch, R.; Koifman, R.J.; Koifman, S.; Freire, C. Occupational exposure to pesticides, reproductive hormone levels and sperm quality in young Brazilian men. Reprod. Toxicol. 2017, 67, 174–185. [Google Scholar] [CrossRef]
- Hossain, F.; Ali, O.; D’Souza, U.J.; Naing, D.K. Effects of pesticide use on semen quality among farmers in rural areas of Sabah, Malaysia. J. Occup. Health 2010, 52, 353–360. [Google Scholar] [CrossRef]
- Kamijima, M.; Hibi, H.; Gotoh, M.; Taki, K.; Saito, I.; Wang, H.; Itohara, S.; Yamada, T.; Ichihara, G.; Shibata, E.; et al. A survey of semen indices in insecticide sprayers. J. Occup. Health 2004, 46, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Padungtod, C.; Savitz, D.A.; Overstreet, J.W.; Christiani, D.C.; Ryan, L.M.; Xu, X. Occupational pesticide exposure and semen quality among Chinese workers. J. Occup. Environ. Med. 2000, 42, 982–992. [Google Scholar] [CrossRef]
- Ghafouri-Khosrowshahi, A.; Ranjbar, A.; Mousavi, L.; Nili-Ahmadabadi, H.; Ghaffari, F.; Zeinvand-Lorestani, H.; Nili-Ahmadabadi, A. Chronic exposure to organophosphate pesticides as an important challenge in promoting reproductive health: A comparative study. J. Educ. Health Promot. 2019, 8, 149. [Google Scholar] [CrossRef]
- Perry, M.J.; Venners, S.A.; Chen, X.; Liu, X.; Tang, G.; Xing, H.; Barr, D.B.; Xu, X. Organophosphorous pesticide exposures and sperm quality. Reprod. Toxicol. 2011, 31, 75–79. [Google Scholar] [CrossRef]
- Yucra, S.; Gasco, M.; Rubio, J.; Gonzales, G.F. Semen quality in Peruvian pesticide applicators: Association between urinary organophosphate metabolites and semen parameters. Environ. Health 2008, 7, 59. [Google Scholar] [CrossRef] [PubMed]
- Swan, S.H.; Kruse, R.L.; Liu, F.; Barr, D.B.; Drobnis, E.Z.; Redmon, J.B.; Wang, C.; Brazil, C.; Overstreet, J.W. Semen quality in relation to biomarkers of pesticide exposure. Environ. Health Perspect. 2003, 111, 1478–1484. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D.; Ryan, L.; Barr, D.B.; Herrick, R.F.; Bennett, D.H.; Bravo, R.; Hauser, R. The relationship of urinary metabolites of carbaryl/naphthalene and chlorpyrifos with human semen quality. Environ. Health Perspect. 2004, 112, 1665–1670. [Google Scholar] [CrossRef]
- Melgarejo, M.; Mendiola, J.; Koch, H.M.; Moñino-García, M.; Noguera-Velasco, J.A.; Torres-Cantero, A.M. Associations between urinary organophosphate pesticide metabolite levels and reproductive parameters in men from an infertility clinic. Environ. Res. 2015, 137, 292–298. [Google Scholar] [CrossRef]
- Ogut, S.; Gultekin, F.; Kisioglu, A.N.; Kucukoner, E. Oxidative stress in the blood of farm workers following intensive pesticide exposure. Toxicol. Ind. Health 2011, 27, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Janoš, T.; Ottenbros, I.; Bláhová, L.; Šenk, P.; Šulc, L.; Pálešová, N.; Sheardová, J.; Vlaanderen, J.; Čupr, P. Effects of pesticide exposure on oxidative stress and DNA methylation urinary biomarkers in Czech adults and children from the CELSPAC-SPECIMEn cohort. Environ. Res. 2023, 222, 115368. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.-J.; Peng, Y.-B.; Hu, Y.-P.; Shi, Y.-Z.; Yao, M.; Zhang, X. NADPH Oxidase 1 and Its Derived Reactive Oxygen Species Mediated Tissue Injury and Repair. Oxidative Med. Cell. Longev. 2014, 2014, 282854. [Google Scholar] [CrossRef]
- Sule, R.O.; Condon, L.; Gomes, A.V. A Common Feature of Pesticides: Oxidative Stress-The Role of Oxidative Stress in Pesticide-Induced Toxicity. Oxid. Med. Cell Longev. 2022, 2022, 5563759. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, X.; Li, H. Mechanisms of oxidative stress-induced sperm dysfunction. Front. Endocrinol. 2025, 16, 1520835. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Pan, C.; Feng, C.; Yan, C.; Yu, Y.; Chen, Z.; Guo, C.; Wang, X. Role of mitochondrial reactive oxygen species in homeostasis regulation. Redox Rep. 2022, 27, 45–52. [Google Scholar] [CrossRef]
- Uwamahoro, C.; Jo, J.-H.; Jang, S.-I.; Jung, E.-J.; Lee, W.-J.; Bae, J.-W.; Kwon, W.-S. Assessing the Risks of Pesticide Exposure: Implications for Endocrine Disruption and Male Fertility. Int. J. Mol. Sci. 2024, 25, 6945. [Google Scholar] [CrossRef]
- Hamed, M.A.; Akhigbe, T.M.; Adeogun, A.E.; Adesoye, O.B.; Akhigbe, R.E. Impact of organophosphate pesticides exposure on human semen parameters and testosterone: A systematic review and meta-analysis. Front. Endocrinol. 2023, 14, 1227836. [Google Scholar] [CrossRef]
- Sengupta, P.; Roychoudhury, S.; Nath, M.; Dutta, S. Oxidative Stress and Idiopathic Male Infertility. Adv. Exp. Med. Biol. 2022, 1358, 181–204. [Google Scholar] [CrossRef]
- Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of Oxidative Stress on Male Reproduction. World J. Mens. Health 2014, 32, 1. [Google Scholar] [CrossRef] [PubMed]
- WHO. Laboratory Manual for the Examination and Processing of Human Semen; WHO: Geneva, Switzerland, 2021; Volume 6. [Google Scholar]
- Agarwal, A.; Panner Selvam, M.K.; Arafa, M.; Okada, H.; Homa, S.; Killeen, A.; Balaban, B.; Saleh, R.; Armagan, A.; Roychoudhury, S.; et al. Multi-center evaluation of oxidation-reduction potential by the MiOXSYS in males with abnormal semen. Asian J. Androl. 2019, 21, 565–569. [Google Scholar] [CrossRef]
- Smarr, M.M.; Kannan, K.; Sun, L.; Honda, M.; Wang, W.; Karthikraj, R.; Chen, Z.; Weck, J.; Buck Louis, G.M. Preconception seminal plasma concentrations of endocrine disrupting chemicals in relation to semen quality parameters among male partners planning for pregnancy. Environ. Res. 2018, 167, 78–86. [Google Scholar] [CrossRef]
- Kannan, K.; Stathis, A.; Mazzella, M.J.; Andra, S.S.; Barr, D.B.; Hecht, S.S.; Merrill, L.S.; Galusha, A.L.; Parsons, P.J. Quality assurance and harmonization for targeted biomonitoring measurements of environmental organic chemicals across the Children’s Health Exposure Analysis Resource laboratory network. Int. J. Hyg. Environ. Health 2021, 234, 113741. [Google Scholar] [CrossRef]
- Li, A.J.; Kannan, K. Profiles of urinary neonicotinoids and dialkylphosphates in populations in nine countries. Environ. Int. 2020, 145, 106120. [Google Scholar] [CrossRef]
- Liu, H.; Campana, A.M.; Wang, Y.; Kannan, K.; Liu, M.; Zhu, H.; Mehta-Lee, S.; Brubaker, S.G.; Kahn, L.G.; Trasande, L.; et al. Organophosphate pesticide exposure: Demographic and dietary predictors in an urban pregnancy cohort. Environ. Pollut. 2021, 283, 116920. [Google Scholar] [CrossRef]
- Boeniger, M.F.; Lowry, L.K.; Rosenberg, J. Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: A review. Am. Ind. Hyg. Assoc. J. 1993, 54, 615–627. [Google Scholar] [CrossRef] [PubMed]
- The R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- US Centers for Disease Control and Prevention. Biomonitoring Data Tables for Environmental Chemicals. 2024. Available online: https://www.cdc.gov/exposurereport/data_tables.html?NER_SectionItem=NHANES (accessed on 15 May 2025).
- Agarwal, A.; Roychoudhury, S.; Sharma, R.; Gupta, S.; Majzoub, A.; Sabanegh, E. Diagnostic application of oxidation-reduction potential assay for measurement of oxidative stress: Clinical utility in male factor infertility. Reprod. Biomed. Online 2017, 34, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Aytu BioScience, Inc. MiOXSYS, the Male Infertility Oxidative System. Available online: https://mioxsys.com/ (accessed on 13 July 2019).
- Agarwal, A.; Roychoudhury, S.; Bjugstad, K.B.; Cho, C.L. Oxidation-reduction potential of semen: What is its role in the treatment of male infertility? Ther. Adv. Urol. 2016, 8, 302–318. [Google Scholar] [CrossRef]
- Agarwal, A.; Wang, S.M. Clinical Relevance of Oxidation-Reduction Potential in the Evaluation of Male Infertility. Urology 2017, 104, 84–89. [Google Scholar] [CrossRef]
- Cicek, O.S.Y.; Kaya, G.; Alyuruk, B.; Doger, E.; Girisen, T.; Filiz, S. The association of seminal oxidation reduction potential with sperm parameters in patients with unexplained and male factor ınfertility. Int. Braz. J. Urol. 2021, 47, 112–119. [Google Scholar] [CrossRef]
- Nguyen, N.D.; Le, M.T.; Dang, H.N.T.; Van Nguyen, T.; Nguyen, Q.H.V.; Cao, T.N. Impact of semen oxidative stress on sperm quality: Initial results from Vietnam. J. Int. Med. Res. 2023, 51, 03000605231188655. [Google Scholar] [CrossRef]
- Dcunha, R.; Hussein, R.S.; Ananda, H.; Kumari, S.; Adiga, S.K.; Kannan, N.; Zhao, Y.; Kalthur, G. Current Insights and Latest Updates in Sperm Motility and Associated Applications in Assisted Reproduction. Reprod. Sci. 2022, 29, 7–25. [Google Scholar] [CrossRef]
- Naughton, S.X.; Terry, A.V., Jr. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology 2018, 408, 101–112. [Google Scholar] [CrossRef]
- Hanley, P. Elusive physiological role of prostatic acid phosphatase (PAP): Generation of choline for sperm motility via auto-and paracrine cholinergic signaling. Front. Physiol. 2023, 14, 1327769. [Google Scholar] [CrossRef] [PubMed]
- Bray, C.; Son, J.-H.; Meizel, S. Acetylcholine causes an increase of intracellular calcium in human sperm. Mol. Hum. Reprod. 2006, 11, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Okunade, G.W.; Miller, M.L.; Pyne, G.J.; Sutliff, R.L.; O’Connor, K.T.; Neumann, J.C.; Andringa, A.; Miller, D.A.; Prasad, V.; Doetschman, T.; et al. Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J. Biol. Chem. 2004, 279, 33742–33750. [Google Scholar] [CrossRef] [PubMed]
- Karami-Mohajeri, S.; Abdollahi, M. Mitochondrial dysfunction and organophosphorus compounds. Toxicol. Appl. Pharmacol. 2013, 270, 39–44. [Google Scholar] [CrossRef]
- Contreras, H.R.; Bustos-Obregón, E. Morphological alterations in mouse testis by a single dose of malathion. J. Exp. Zool. 1999, 284, 355–359. [Google Scholar] [CrossRef]
- Ojha, A.; Yaduvanshi, S.K.; Srivastava, N. Effect of combined exposure of commonly used organophosphate pesticides on lipid peroxidation and antioxidant enzymes in rat tissues. Pestic. Biochem. Physiol. 2011, 99, 148–156. [Google Scholar] [CrossRef]
- Suleiman, S.A.; Ali, M.E.; Zaki, Z.M.; el-Malik, E.M.; Nasr, M.A. Lipid peroxidation and human sperm motility: Protective role of vitamin E. J. Androl. 1996, 17, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; De Iuliis, G.N. On the possible origins of DNA damage in human spermatozoa. Mol. Hum. Reprod. 2010, 16, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Makker, K.; Sharma, R. Clinical relevance of oxidative stress in male factor infertility: An update. Am. J. Reprod. Immunol. 2008, 59, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Kaushal, N.; Saleth, L.R.; Ghavami, S.; Dhingra, S.; Kaur, P. Oxidative stress-induced apoptosis and autophagy: Balancing the contrary forces in spermatogenesis. Biochim. Et Biophys. Acta (BBA) Mol. Basis Dis. 2023, 1869, 166742. [Google Scholar] [CrossRef]
- Huang, C.; Cao, X.; Pang, D.; Li, C.; Luo, Q.; Zou, Y.; Feng, B.; Li, L.; Cheng, A.; Chen, Z. Is male infertility associated with increased oxidative stress in seminal plasma? A-meta analysis. Oncotarget 2018, 9, 24494. [Google Scholar] [CrossRef]
- Chiu, Y.H.; Gaskins, A.J.; Williams, P.L.; Mendiola, J.; Jørgensen, N.; Levine, H.; Hauser, R.; Swan, S.H.; Chavarro, J.E. Intake of Fruits and Vegetables with Low-to-Moderate Pesticide Residues Is Positively Associated with Semen-Quality Parameters among Young Healthy Men. J. Nutr. 2016, 146, 1084–1092. [Google Scholar] [CrossRef]
- Hyland, C.; Bradman, A.; Gerona, R.; Patton, S.; Zakharevich, I.; Gunier, R.B.; Klein, K. Organic diet intervention significantly reduces urinary pesticide levels in U.S. children and adults. Environ. Res. 2019, 171, 568–575. [Google Scholar] [CrossRef]
Characteristic | Overall (N = 42) * | High ORP >1.76 mV/106 Sperm/mL (N = 10) | Normal ORP ≤1.76 mV/106 Sperm/mL (N = 32) * | p-Value + |
---|---|---|---|---|
Race-Ethnicity ** | ||||
Hispanic | 4 (9.8%) | 0 (0%) | 4 (12.9%) | 0.81 |
Other race, NH | 5 (12.2%) | 1 (10.0%) | 4 (12.9%) | |
White, NH | 32 (78.0%) | 9 (90.0%) | 23 (74.2%) | |
Current Marijuana Use | ||||
No | 18 (43.9%) | 3 (30.0%) | 15 (48.4%) | 0.47 |
Yes | 23 (56.1%) | 7 (70.0%) | 16 (51.6%) | |
Current Alcohol Use | ||||
No | 16 (39.0%) | 4 (40.0%) | 12 (38.7%) | 1 |
Yes | 25 (61.0%) | 6 (60.0%) | 19 (61.3%) | |
Current Nicotine Use | ||||
No | 23 (56.1%) | 5 (50.0%) | 18 (56.3%) | 0.72 |
Yes | 18 (43.9%) | 5 (50.0%) | 13 (40.6%) | |
Underwear Type | ||||
Combination of loose and tight-fitting underwear | 11 (26.8%) | 5 (50.0%) | 6 (19.4%) | 0.14 |
Briefs or tight-fitting underwear | 24 (58.5%) | 4 (40.0%) | 20 (64.5%) | |
Loose boxer shorts or No underwear | 6 (14.6%) | 1 (10.0%) | 5 (16.1%) | |
Sleep Duration (hours) | ||||
Less than 6 | 6 (14.6%) | 0 (0%) | 6 (19.4%) | 0.18 |
6–7 | 12 (29.3%) | 2 (20.0%) | 10 (32.3%) | |
7 or more | 23 (56.1%) | 8 (80.0%) | 15 (48.4%) | |
Perceived Stress Level | ||||
Low | 13 (31.7%) | 4 (40.0%) | 9 (28.1%) | 0.70 |
Moderate | 28 (68.3%) | 6 (60.0%) | 22 (68.8%) | |
Age (years) | ||||
Mean (SD) | 29.5 (3.79) | 30.1 (4.18) | 29.3 (3.71) | 0.61 |
Median [Min, Max] | 29.6 [23.5, 36.3] | 30.2 [23.5, 36.3] | 29.2 [23.6, 36.3] | |
Body Mass Index (BMI, kg/m2) | ||||
Mean (SD) | 24.9 (3.61) | 24.2 (1.51) | 25.2 (4.03) | 0.24 |
Median [Min, Max] | 24.1 [19.5, 39.2] | 23.8 [21.9, 27.3] | 24.2 [19.5, 39.2] | |
BMI Categories | ||||
Normal | 26 (61.9%) | 8 (80.0%) | 18 (56.3%) | 0.48 |
Overweight | 12 (28.6%) | 2 (20.0%) | 10 (31.3%) | |
Obese | 4 (9.5%) | 0 (0%) | 4 (12.5%) | |
Depression/Anxiety (GSI score) | ||||
Mean (SD) | 30.6 (9.93) | 28.9 (8.54) | 31.1 (10.4) | 0.51 |
Median [Min, Max] | 29.0 [18.0, 63.0] | 27.5 [18.0, 45.0] | 29.0 [18.0, 63.0] | |
Creatine-adjusted ∑DAP, nmol/mL | ||||
Mean (SD) | 56.2 (75.2) | 45.5 (19.1) | 59.6 (85.6) | 0.39 |
Median [Min, Max] | 40.4 [8.66, 492] | 39.2 [20.2, 80.0] | 40.9 [8.66, 492] | |
Sperm Concentration (106/mL) | ||||
Mean (SD) | 76.9 (52.6) | 27.7 (14.3) | 92.3 (50.7) | <0.001 |
Median [Min, Max] | 61.0 [4.00, 208] | 26.0 [4.00, 44.0] | 83.5 [18.0, 208] | |
Low (<20 × 106/mL) | 4 (9.5%) | 3 (30.0%) | 1 (3.1%) | 0.04 |
Sperm Motility (%) | ||||
Mean (SD) | 59.0 (12.6) | 58.2 (16.0) | 59.2 (11.6) | 0.86 |
Median [Min, Max] | 60.5 [35.0, 81.0] | 58.5 [35.0, 81.0] | 60.5 [38.0, 79.0] | |
Low (<50%) | 10 (23.8%) | 3 (30.0%) | 7 (21.9%) | 0.68 |
Morphology (%) | ||||
Mean (SD) | 45.19 (13.9) | 42.2 (11.9) | 46.1 (14.6) | 0.40 |
Median [Min, Max] | 45.0 [18.0, 75.0] | 43.5 [22.0, 65.0] | 45.5 [18.0, 75.0] | |
Low (<30%) | 7 (16.7%) | 2 (20.0%) | 5 (15.6%) | 1 |
Overall Semen Quality | ||||
Low *** | 16 (38.1%) | 5 (50.0%) | 11 (34.4%) | 0.47 |
Chemicals a | % <LOD | 25th Percentile | Median (50% Percentile) | 75th Percentile | 50% Percentile (95% CI) NHANES 2017–2018 Adult Males |
---|---|---|---|---|---|
DEDTP | 100.0 | <LOD | <LOD | <LOD | <LOD |
DEP | 0.00 | 1.33 | 2.45 | 4.62 | 2.18 (1.94–2.47) |
DETP | 46.70 | <LOD | 0.38 | 0.67 | 0.13 (0.10–0.16) |
∑DE | - | 10.87 | 17.26 | 34.18 | - |
DMDTP | 88.90 | <LOD | <LOD | <LOD | 0.12 (<LOD–0.14) |
DMP | 0.00 | 0.96 | 0.67 | 1.85 | 1.34 (1.13–1.54) |
DMTP | 4.40 | 0.24 | 0.11 | 0.82 | 0.67 (0.57–0.86) |
∑DM | - | 6.17 | 9.72 | 25.76 | - |
∑DAP | - | 19.21 | 30.90 | 83.73 | - |
Sperm Concentration * (106/mL) | Motile Sperm (%) | Normal Morphology (%) | ||
---|---|---|---|---|
Predictor | beta (95% CI) | beta (95% CI) | beta (95% CI) | |
Seminal fluid ORP * (mV/106 sperm/mL) | −0.48 (−0.62, −0.33) | 1.40 (−1.80, 4.60) | 0.31 (−3.27, 3.89) | |
Low Sperm Concentration (<20 × 106 Sperm/mL) | Low % Motile Sperm (<50%) | Low % Normal Morphology (<30%) | Any Low Parameter | |
Predictor | Odds Ratio (95% CI) | Odds Ratio (95% CI) | Odds Ratio (95% CI) | Odds Ratio (95% CI) |
Seminal fluid ORP * (mV/106 sperm/mL) | 3.95 (1.41, 18.93) | 0.78 (0.42, 1.40) | 1.14 (0.58, 2.26) | 0.94 (0.56, 1.57) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stapleton, J.L.; Adelman, S.; Najari, B.B.; Kannan, K.; Albergamo, V.; Kahn, L.G. Organophosphate Pesticide Exposure and Semen Quality in Healthy Young Men: A Pilot Study. Antioxidants 2025, 14, 1158. https://doi.org/10.3390/antiox14101158
Stapleton JL, Adelman S, Najari BB, Kannan K, Albergamo V, Kahn LG. Organophosphate Pesticide Exposure and Semen Quality in Healthy Young Men: A Pilot Study. Antioxidants. 2025; 14(10):1158. https://doi.org/10.3390/antiox14101158
Chicago/Turabian StyleStapleton, Jenisha L., Sarah Adelman, Bobby B. Najari, Kurunthachalam Kannan, Vittorio Albergamo, and Linda G. Kahn. 2025. "Organophosphate Pesticide Exposure and Semen Quality in Healthy Young Men: A Pilot Study" Antioxidants 14, no. 10: 1158. https://doi.org/10.3390/antiox14101158
APA StyleStapleton, J. L., Adelman, S., Najari, B. B., Kannan, K., Albergamo, V., & Kahn, L. G. (2025). Organophosphate Pesticide Exposure and Semen Quality in Healthy Young Men: A Pilot Study. Antioxidants, 14(10), 1158. https://doi.org/10.3390/antiox14101158