The Impact of Air Pollution on the Lung–Gut–Liver Axis: Oxidative Stress and Its Role in Liver Disease
Abstract
1. Introduction
2. Lung–Gut–Liver Axis: A Tri-Organ Crosstalk in Immune and Metabolic Regulation
3. Impact of Air Pollutants on the Lung and Gut Microbiome
3.1. Impact of Air Pollution on Respiratory Tract Microbiome
3.2. Impact of Air Pollution on Gut Microbiome
3.3. Effects of Air Pollution-Induced Dysbiosis on Health and Disease
4. Oxidative Stress as a Central Mechanism in Pollution-Induced Liver Damage
5. Air Pollution and Liver Disease: From Steatosis to Cancer
5.1. Air Pollution and MASLD
5.2. Air Pollution and HCC
5.3. Differences in Susceptibility to Air Pollution
6. Future Perspectives
7. Limitations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABCB11 | ATP-Binding Cassette Subfamily B Member 11 |
ABCC2 | ATP-Binding Cassette Subfamily C Member 2 |
AKT | Protein Kinase B |
ATP | Adenosine Triphosphate |
BALB | Bagg Albino Laboratory-Bred (mouse strain) |
BC | Black Carbon |
BCL2 | B-cell lymphoma 2 gene |
CAT | Catalase |
CCL3 | Chemokine (C-C motif) Ligand 3 |
CXCL9 | C-X-C Motif Chemokine Ligand 9 |
DNA | Deoxyribonucleic Acid |
ER | Endoplasmic Reticulum |
FAS | Fatty Acid Synthase |
FEV1 | Forced Expiratory Volume in 1 Second |
FMT | Fecal Microbiota Transplantation |
FVC | Forced Vital Capacity |
FXR | Farnesoid X Receptor |
GSH | Glutathione (Reduced Form) |
HCC | Hepatocellular Carcinoma |
HFF | Hepatic Fat Fraction |
HO | Heme Oxygenase |
HR | Hazard Ratio |
HSC | Hepatic Stellate Cell |
ICR | Institute for Cancer Research (mouse strain) |
IL | Interleukin |
IRE1α | Inositol-Requiring Enzyme 1 Alpha |
LPS | Lipopolysaccharide |
MASH | Metabolic Dysfunction-Associated Steatohepatitis |
MASLD | Metabolic Dysfunction-Associated Steatotic Liver Disease |
NAD | Nicotinamide Adenine Dinucleotide |
NADPH | Nicotinamide Adenine Dinucleotide Phosphate |
NAFLD | Non-Alcoholic Fatty Liver Disease |
NLRP3 | NOD-like Receptor Pyrin Domain-Containing 3 |
NO2 | Nitrogen Dioxide |
NOD | Nucleotide-binding Oligomerization Domain |
NOx | Nitrogen Oxides |
NQO1 | NAD(P)H Quinone Dehydrogenase 1 |
OP | Osteoporosis |
PCB52 | Polychlorinated Biphenyl 52 |
PM2.5 | Particulate Matter ≤ 2.5 µm |
PM10 | Particulate Matter ≤ 10 µm |
PNPLA3 | patatin-like phospholipase domain-containing protein 3 |
PPARα | Peroxisome Proliferator-Activated Receptor Alpha |
QoL | Quality of Life |
RNA | Ribonucleic Acid |
ROS | Reactive Oxygen Species |
SCFA | Short-Chain Fatty Acids |
SOD | Superoxide Dismutase |
SOD1 | Superoxide Dismutase 1 |
SREBP | Sterol Regulatory Element-Binding Protein |
TCA | Tricarboxylic Acid (Cycle) |
TNF | Tumor Necrosis Factor |
UCG | Unconventional Gas |
UFPM | Ultrafine Particulate Matter |
References
- Feng, J.; Cavallero, S.; Hsiai, T.; Li, R. Impact of Air Pollution on Intestinal Redox Lipidome and Microbiome. Free Radic. Biol. Med. 2020, 151, 99–110. [Google Scholar] [CrossRef]
- Mariani, J.; Favero, C.; Spinazzè, A.; Cavallo, D.M.; Carugno, M.; Motta, V.; Bonzini, M.; Cattaneo, A.; Pesatori, A.C.; Bollati, V. Short-Term Particulate Matter Exposure Influences Nasal Microbiota in a Population of Healthy Subjects. Environ. Res. 2018, 162, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Zhang, M.; Bai, L.; Chen, S.; Chen, W.; Li, Z.; Yue, J.; Dong, C.; Li, R. Intestinal Bacterial Dysbiosis and Liver Fibrosis in Mice Through Gut-Liver Axis and NLRP3 Inflammatory Pathway Caused by Fine Particulate Matter. J. Appl. Toxicol. 2025, 45, 1030–1042. [Google Scholar] [CrossRef]
- Mignini, I.; Galasso, L.; Piccirilli, G.; Calvez, V.; Termite, F.; Esposto, G.; Borriello, R.; Miele, L.; Ainora, M.E.; Gasbarrini, A.; et al. Interplay of Oxidative Stress, Gut Microbiota, and Nicotine in Metabolic-Associated Steatotic Liver Disease (MASLD). Antioxidants 2024, 13, 1532. [Google Scholar] [CrossRef]
- He, X.; Zhang, S.; Bai, Q.; Pan, M.; Jiang, Y.; Liu, W.; Li, W.; Gong, Y.; Li, X. Air Pollution Exposure and Prevalence of Non-Alcoholic Fatty Liver Disease and Related Cirrhosis: A Systematic Review and Meta-Analysis. Ecotoxicol. Environ. Saf. 2025, 289, 117469. [Google Scholar] [CrossRef] [PubMed]
- Young, R.P.; Hopkins, R.J.; Marsland, B. The Gut-Liver-Lung Axis. Modulation of the Innate Immune Response and Its Possible Role in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Cell Mol. Biol. 2016, 54, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, A.; Debelius, J.; Brenner, D.A.; Karin, M.; Loomba, R.; Schnabl, B.; Knight, R. The Gut-Liver Axis and the Intersection with the Microbiome. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 397–411. [Google Scholar] [CrossRef]
- Zhang, D.; Li, S.; Wang, N.; Tan, H.-Y.; Zhang, Z.; Feng, Y. The Cross-Talk Between Gut Microbiota and Lungs in Common Lung Diseases. Front. Microbiol. 2020, 11, 301. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhu, W.; Zhou, H.; Wu, Z. Association between Exposure to Air Pollutants and NAFLD/MAFLD: A Meta-Analysis. BMC Public Health 2025, 25, 2672. [Google Scholar] [CrossRef]
- Kuo, S.-M. The Interplay between Fiber and the Intestinal Microbiome in the Inflammatory Response. Adv. Nutr. 2013, 4, 16–28. [Google Scholar] [CrossRef]
- Varraso, R.; Chiuve, S.E.; Fung, T.T.; Barr, R.G.; Hu, F.B.; Willett, W.C.; Camargo, C.A. Alternate Healthy Eating Index 2010 and Risk of Chronic Obstructive Pulmonary Disease among US Women and Men: Prospective Study. BMJ 2015, 350, h286. [Google Scholar] [CrossRef]
- Tabak, C.; Arts, I.C.; Smit, H.A.; Heederik, D.; Kromhout, D. Chronic Obstructive Pulmonary Disease and Intake of Catechins, Flavonols, and Flavones: The MORGEN Study. Am. J. Respir. Crit. Care Med. 2001, 164, 61–64. [Google Scholar] [CrossRef]
- Pasta, A.; Formisano, E.; Calabrese, F.; Marabotto, E.; Furnari, M.; Bodini, G.; Torres, M.C.P.; Pisciotta, L.; Giannini, E.G.; Zentilin, P. From Dysbiosis to Hepatic Inflammation: A Narrative Review on the Diet-Microbiota-Liver Axis in Steatotic Liver Disease. Microorganisms 2025, 13, 241. [Google Scholar] [CrossRef]
- Ha, S.; Wong, V.W.-S.; Zhang, X.; Yu, J. Interplay between Gut Microbiome, Host Genetic and Epigenetic Modifications in MASLD and MASLD-Related Hepatocellular Carcinoma. Gut 2024, 74, 141–152. [Google Scholar] [CrossRef]
- Jenne, C.N.; Kubes, P. Immune Surveillance by the Liver. Nat. Immunol. 2013, 14, 996–1006. [Google Scholar] [CrossRef]
- Kahhaleh, F.G.; Barrientos, G.; Conrad, M.L. The Gut-Lung Axis and Asthma Susceptibility in Early Life. Acta Physiol. 2024, 240, e14092. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.-C.; Lin, T.-L.; Chen, T.-W.; Kuo, Y.-L.; Chang, C.-J.; Wu, T.-R.; Shu, C.-C.; Tsai, Y.-H.; Swift, S.; Lu, C.-C. Gut Microbiota Modulates COPD Pathogenesis: Role of Anti-Inflammatory Parabacteroides Goldsteinii Lipopolysaccharide. Gut 2022, 71, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Dai, Z.; Wang, Z.; Deng, Z.; Zhang, J.; Pu, J.; Cao, W.; Pan, T.; Zhou, Y.; Yang, Z.; et al. Gut Microbiota Dysbiosis Contributes to the Development of Chronic Obstructive Pulmonary Disease. Respir. Res. 2021, 22, 274. [Google Scholar] [CrossRef] [PubMed]
- Allais, L.; Kerckhof, F.-M.; Verschuere, S.; Bracke, K.R.; De Smet, R.; Laukens, D.; Van den Abbeele, P.; De Vos, M.; Boon, N.; Brusselle, G.G.; et al. Chronic Cigarette Smoke Exposure Induces Microbial and Inflammatory Shifts and Mucin Changes in the Murine Gut. Environ. Microbiol. 2016, 18, 1352–1363. [Google Scholar] [CrossRef]
- Saint-Criq, V.; Lugo-Villarino, G.; Thomas, M. Dysbiosis, Malnutrition and Enhanced Gut-Lung Axis Contribute to Age-Related Respiratory Diseases. Ageing Res. Rev. 2021, 66, 101235. [Google Scholar] [CrossRef]
- Ran, S.; Zhang, J.; Tian, F.; Qian, Z.M.; Wei, S.; Wang, Y.; Chen, G.; Zhang, J.; Arnold, L.D.; McMillin, S.E.; et al. Association of Metabolic Signatures of Air Pollution with MASLD: Observational and Mendelian Randomization Study. J. Hepatol. 2025, 82, 560–570. [Google Scholar] [CrossRef]
- Bo, Y.; Lin, C.; Guo, C.; Wong, M.; Huang, B.; Lau, A.; Huang, Y.; Lao, X.Q. Chronic Exposure to Ambient Air Pollution and the Risk of Non-Alcoholic Fatty Liver Disease: A Cross-Sectional Study in Taiwan and Hong Kong. Ecotoxicol. Environ. Saf. 2024, 275, 116245. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Gao, X.; Li, Q.; Li, X.; Wang, Y.; Yang, Y.; Yang, S.; Lau, P.W.C.; Zeng, Q.; Wang, H. Associations between Exposure to Ambient Particulate Matter and Advanced Liver Fibrosis in Chinese MAFLD Patients. J. Hazard. Mater. 2023, 460, 132501. [Google Scholar] [CrossRef] [PubMed]
- Li, F.-R.; Liao, J.; Zhu, B.; Li, X.; Cheng, Z.; Jin, C.; Mo, C.; Wu, X.; Li, Q.; Liang, F. Long-Term Exposure to Air Pollution and Incident Non-Alcoholic Fatty Liver Disease and Cirrhosis: A Cohort Study. Liver Int. 2023, 43, 299–307. [Google Scholar] [CrossRef]
- Herrero, R.; Sánchez, G.; Asensio, I.; López, E.; Ferruelo, A.; Vaquero, J.; Moreno, L.; de Lorenzo, A.; Bañares, R.; Lorente, J.A. Liver-Lung Interactions in Acute Respiratory Distress Syndrome. Intensive Care Med. Exp. 2020, 8, 48. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Xiong, Y.; Tan, C.; Li, C.; Cao, Y.; Xie, W.; Deng, Z. Long-Term Exposure to PM2.5 Leads to Mitochondrial Damage and Differential Expression of Associated circRNA in Rat Hepatocytes. Sci. Rep. 2024, 14, 11870. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, S.; Yang, F.; Wu, H.; Ba, Y.; Cui, L.; Chen, R.; Zhu, J. Alternation of Nasopharyngeal Microbiota in Healthy Youth Is Associated with Environmental Factors: Implication for Respiratory Diseases. Int. J. Environ. Health Res. 2022, 32, 952–962. [Google Scholar] [CrossRef]
- Arca-Lafuente, S.; Nuñez-Corcuera, B.; Ramis, R.; Karakitsios, S.; Sarigiannis, D.; García Dos Santos, S.; Fernández-Rodríguez, A.; Briz, V. Effects of Urban Airborne Particulate Matter Exposure on the Human Upper Respiratory Tract Microbiome: A Systematic Review. Respir. Res. 2025, 26, 118. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liu, J.; Zhu, J.; Yang, F.; Wu, H.; Ba, Y.; Cui, L.; Chen, R.; Chen, S. Bacterial Composition and Community Structure of the Oropharynx of Adults with Asthma Are Associated with Environmental Factors. Microb. Pathog. 2020, 149, 104505. [Google Scholar] [CrossRef]
- Vignal, C.; Pichavant, M.; Alleman, L.Y.; Djouina, M.; Dingreville, F.; Perdrix, E.; Waxin, C.; Ouali Alami, A.; Gower-Rousseau, C.; Desreumaux, P.; et al. Effects of Urban Coarse Particles Inhalation on Oxidative and Inflammatory Parameters in the Mouse Lung and Colon. Part. Fibre Toxicol. 2017, 14, 46. [Google Scholar] [CrossRef]
- Mutlu, E.A.; Comba, I.Y.; Cho, T.; Engen, P.A.; Yazıcı, C.; Soberanes, S.; Hamanaka, R.B.; Niğdelioğlu, R.; Meliton, A.Y.; Ghio, A.J.; et al. Inhalational Exposure to Particulate Matter Air Pollution Alters the Composition of the Gut Microbiome. Environ. Pollut. 2018, 240, 817–830. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, J.; Chen, M.; Huang, X.; Xie, X.; Li, W.; Cao, Q.; Kan, H.; Xu, Y.; Ying, Z. Exposure to Concentrated Ambient PM2.5 Alters the Composition of Gut Microbiota in a Murine Model. Part. Fibre Toxicol. 2018, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Gupta, R.; Sedighian, F.; Louie, A.; Gonzalez, D.M.; Le, C.; Cho, J.M.; Park, S.-K.; Castellanos, J.; Ting, T.-W.; et al. Subchronic Inhalation Exposure to Ultrafine Particulate Matter Alters the Intestinal Microbiome in Various Mouse Models. Environ. Res. 2024, 248, 118242. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Song, C.; Lei, Y.; Zhao, L.; Han, Y.; Xu, Y.; Li, B.; Guo, J. Health Impacts of PM2.5 Emissions from Brake Pad Wear: A Comprehensive Study on Pulmonary, Metabolic, and Microbiota Alterations. Toxicology 2025, 511, 154055. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.L.; Hedges, M.; Keski-Rahkonen, P.; Chatziioannou, A.C.; Scalbert, A.; Chung, K.F.; Sinharay, R.; Green, D.C.; de Kok, T.M.C.M.; Vlaanderen, J.; et al. Multiomic Signatures of Traffic-Related Air Pollution in London Reveal Potential Short-Term Perturbations in Gut Microbiome-Related Pathways. Environ. Sci. Technol. 2024, 58, 8771–8782. [Google Scholar] [CrossRef]
- Zhang, K.; Paul, K.; Jacobs, J.P.; Cockburn, M.G.; Bronstein, J.M.; Del Rosario, I.; Ritz, B. Ambient Long-Term Exposure to Organophosphorus Pesticides and the Human Gut Microbiome: An Observational Study. Environ. Health 2024, 23, 41. [Google Scholar] [CrossRef]
- Dean, L.E.; Wang, H.; Bullert, A.J.; Wang, H.; Adamcakova-Dodd, A.; Mangalam, A.K.; Thorne, P.S.; Ankrum, J.A.; Klingelhutz, A.J.; Lehmler, H.-J. Inhalation of 2,2′,5,5′-Tetrachlorobiphenyl (PCB52) Causes Changes to the Gut Microbiome throughout the Gastrointestinal Tract. J. Hazard. Mater. 2024, 480, 135999. [Google Scholar] [CrossRef]
- Kish, L.; Hotte, N.; Kaplan, G.G.; Vincent, R.; Tso, R.; Gänzle, M.; Rioux, K.P.; Thiesen, A.; Barkema, H.W.; Wine, E.; et al. Environmental Particulate Matter Induces Murine Intestinal Inflammatory Responses and Alters the Gut Microbiome. PLoS ONE 2013, 8, e62220. [Google Scholar] [CrossRef]
- Dai, S.; Wang, Z.; Cai, M.; Guo, T.; Mao, S.; Yang, Y. A Multi-Omics Investigation of the Lung Injury Induced by PM2.5 at Environmental Levels via the Lung-Gut Axis. Sci. Total Environ. 2024, 926, 172027. [Google Scholar] [CrossRef]
- Li, R.; Navab, K.; Hough, G.; Daher, N.; Zhang, M.; Mittelstein, D.; Lee, K.; Pakbin, P.; Saffari, A.; Bhetraratana, M.; et al. Effect of Exposure to Atmospheric Ultrafine Particles on Production of Free Fatty Acids and Lipid Metabolites in the Mouse Small Intestine. Environ. Health Perspect. 2015, 123, 34–41. [Google Scholar] [CrossRef]
- Li, R.; Yang, J.; Saffari, A.; Jacobs, J.; Baek, K.I.; Hough, G.; Larauche, M.H.; Ma, J.; Jen, N.; Moussaoui, N.; et al. Ambient Ultrafine Particle Ingestion Alters Gut Microbiota in Association with Increased Atherogenic Lipid Metabolites. Sci. Rep. 2017, 7, 42906. [Google Scholar] [CrossRef]
- Shao, W.; Pan, B.; Li, Z.; Peng, R.; Yang, W.; Xie, Y.; Han, D.; Fang, X.; Li, J.; Zhu, Y.; et al. Gut Microbiota Mediates Ambient PM2.5 Exposure-Induced Abnormal Glucose Metabolism via Short-Chain Fatty Acids. J. Hazard. Mater. 2024, 476, 135096. [Google Scholar] [CrossRef]
- Lu, Y.; Qiu, W.; Liao, R.; Cao, W.; Huang, F.; Wang, X.; Li, M.; Li, Y. Subacute PM2.5 Exposure Induces Hepatic Insulin Resistance Through Inflammation and Oxidative Stress. Int. J. Mol. Sci. 2025, 26, 812. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ngan, H.L.; Song, Y.; Qi, Z.; Zhao, L.; Dong, C.; Li, R.; Li, Y.; Yang, Z.; Cai, Z. Chronic Real-Ambient PM2.5 Exposure Exacerbates Cardiovascular Risk via Amplifying Liver Injury in Mice Fed with a High-Fat and High-Cholesterol Diet. Environ. Health 2024, 2, 221–232. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, Y.; Qin, Y.; Yu, L.; Li, R.; Chen, Y.; Xu, Y. Quercetin Intervention Alleviates Offspring’s Oxidative Stress, Inflammation, and Tight Junction Damage in the Colon Induced by Maternal Fine Particulate Matter (PM2.5) Exposure through the Reduction of Bacteroides. Nutrients 2020, 12, 3095. [Google Scholar] [CrossRef] [PubMed]
- Bailey, M.J.; Holzhausen, E.A.; Morgan, Z.E.M.; Naik, N.; Shaffer, J.P.; Liang, D.; Chang, H.H.; Sarnat, J.; Sun, S.; Berger, P.K.; et al. Postnatal Exposure to Ambient Air Pollutants Is Associated with the Composition of the Infant Gut Microbiota at 6-Months of Age. Gut Microbes 2022, 14, 2105096. [Google Scholar] [CrossRef]
- Cruells, A.; Cabrera-Rubio, R.; Bustamante, M.; Pelegrí, D.; Cirach, M.; Jimenez-Arenas, P.; Samarra, A.; Martínez-Costa, C.; Collado, M.C.; Gascon, M. The Influence of Pre- and Postnatal Exposure to Air Pollution and Green Spaces on Infant’s Gut Microbiota: Results from the MAMI Birth Cohort Study. Environ. Res. 2024, 257, 119283. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, M.H.H.; Hussain, S. Air-Pollution-Mediated Microbial Dysbiosis in Health and Disease: Lung-Gut Axis and Beyond. J. Xenobiot. 2024, 14, 1595–1612. [Google Scholar] [CrossRef]
- Xiao, Y.; Hu, J.; Chen, R.; Xu, Y.; Pan, B.; Gao, Y.; Deng, Y.; Li, W.; Kan, H.; Chen, S. Impact of Fine Particulate Matter on Liver Injury: Evidence from Human, Mice and Cells. J. Hazard. Mater. 2024, 469, 133958. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, Q.; Wang, J.; Qiu, Y.; Thepsuwan, P.; Yi, Z.; Heng, H.H.; Sun, Q.; Chen, X.; Li, L.; et al. Inhalation Exposure to Airborne PM2.5 Attenuates Hepatic Metabolic Pathways through S-Nitrosylation of the Primary ER Stress Sensor. Am. J. Physiol. Cell Physiol. 2025, 328, C212–C226. [Google Scholar] [CrossRef]
- Aimuzi, R.; Xie, Z.; Qu, Y.; Luo, K.; Jiang, Y. Proteomic Signatures of Ambient Air Pollution and Risk of Non-Alcoholic Fatty Liver Disease: A Prospective Cohort Study in the UK Biobank. Sci. Total Environ. 2024, 957, 177529. [Google Scholar] [CrossRef]
- Xu, M.-X.; Ge, C.-X.; Qin, Y.-T.; Gu, T.-T.; Lou, D.-S.; Li, Q.; Hu, L.-F.; Feng, J.; Huang, P.; Tan, J. Prolonged PM2.5 Exposure Elevates Risk of Oxidative Stress-Driven Nonalcoholic Fatty Liver Disease by Triggering Increase of Dyslipidemia. Free Radic. Biol. Med. 2019, 130, 542–556. [Google Scholar] [CrossRef]
- Liu, Y.; Dou, S.; Li, X.; Wen, S.; Pan, K.; Wu, B.; Zhao, J.; Xu, J.; Lyu, P. Effects of PM2.5 sub-chronic exposure on liver metabolomics in mice. J. Environ. Occup. Med. 2024, 41, 207–213. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Sun, L.; Li, D.; Du, J.; Yang, H.; Yu, D.; Li, C. Fine Particulate Matter Disrupts Bile Acid Homeostasis in Hepatocytes via Binding to and Activating Farnesoid X Receptor. Toxicology 2024, 506, 153850. [Google Scholar] [CrossRef]
- Yan, R.; Ji, S.; Ku, T.; Sang, N. Cross-Omics Analyses Reveal the Effects of Ambient PM2.5 Exposure on Hepatic Metabolism in Female Mice. Toxics 2024, 12, 587. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Tovar, E.; Muriel, P. Molecular Mechanisms That Link Oxidative Stress, Inflammation, and Fibrosis in the Liver. Antioxidants 2020, 9, 1279. [Google Scholar] [CrossRef]
- Gan, L.; Wang, W.; Jiang, J.; Tian, K.; Liu, W.; Cao, Z. Dual Role of Nrf2 Signaling in Hepatocellular Carcinoma: Promoting Development, Immune Evasion, and Therapeutic Challenges. Front. Immunol. 2024, 15, 1429836. [Google Scholar] [CrossRef]
- Gavito-Covarrubias, D.; Ramírez-Díaz, I.; Guzmán-Linares, J.; Limón, I.D.; Manuel-Sánchez, D.M.; Molina-Herrera, A.; Coral-García, M.Á.; Anastasio, E.; Anaya-Hernández, A.; López-Salazar, P.; et al. Epigenetic Mechanisms of Particulate Matter Exposure: Air Pollution and Hazards on Human Health. Front. Genet. 2024, 14, 1306600. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A Multisociety Delphi Consensus Statement on New Fatty Liver Disease Nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef]
- Berson, A.; De Beco, V.; Lettéron, P.; Robin, M.A.; Moreau, C.; El Kahwaji, J.; Verthier, N.; Feldmann, G.; Fromenty, B.; Pessayre, D. Steatohepatitis-Inducing Drugs Cause Mitochondrial Dysfunction and Lipid Peroxidation in Rat Hepatocytes. Gastroenterology 1998, 114, 764–774. [Google Scholar] [CrossRef] [PubMed]
- Rolo, A.P.; Teodoro, J.S.; Palmeira, C.M. Role of Oxidative Stress in the Pathogenesis of Nonalcoholic Steatohepatitis. Free Radic. Biol. Med. 2012, 52, 59–69. [Google Scholar] [CrossRef]
- Ruiz-Lara, K.; García-Medina, S.; Galar-Martínez, M.; Parra-Ortega, I.; Morales-Balcázar, I.; Hernández-Rosas, N.A.; Moreno-Vázquez, S.E.; Hernández-Díaz, M.; Cano-Viveros, S.; Olvera-Roldán, E.O.; et al. The Evaluation of Liver Dysfunction and Oxidative Stress Due to Urban Environmental Pollution in Mexican Population Related to Madin Dam, State of Mexico: A Pilot Study. Environ. Sci. Pollut. Res. Int. 2023, 30, 6950–6964. [Google Scholar] [CrossRef]
- Sepehri, B.; Darbani, R.; Mesgari-Abbasi, M.; Kheirouri, S.; Shanehbandi, D.; Khordadmehr, M.; Alizadeh, M. The Effects of Short-Time Air Pollution, SO2, and Ozone on Biochemical, Histo-Pathological, Oxidative Stress, and Carcinogenesis Related Genes Expressions in the Liver of the Rats. Hum. Exp. Toxicol. 2024, 43, 9603271241263569. [Google Scholar] [CrossRef]
- Cheng, W.-C.; Wong, P.-Y.; Wu, C.-D.; Cheng, P.-N.; Lee, P.-C.; Li, C.-Y. Non-Linear Association between Long-Term Air Pollution Exposure and Risk of Metabolic Dysfunction-Associated Steatotic Liver Disease. Environ. Health Prev. Med. 2024, 29, 7. [Google Scholar] [CrossRef]
- Guo, B.; Guo, Y.; Nima, Q.; Feng, Y.; Wang, Z.; Lu, R.; Baimayangji; Ma, Y.; Zhou, J.; Xu, H.; et al. Exposure to Air Pollution Is Associated with an Increased Risk of Metabolic Dysfunction-Associated Fatty Liver Disease. J. Hepatol. 2022, 76, 518–525. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Pan, S.-C.; Chin, W.-S.; Wu, C.-D.; Guo, Y.L. Long-Term Exposure to Ambient Air Pollution and the Incidence of Nonalcoholic Fatty Liver Disease: A Cohort Study. Int. J. Epidemiol. 2025, 54, dyaf101. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Huang, R.; Geng, R.; Wu, J.; Li, J.; Wu, Y.; Zhao, Y.; You, D.; Yu, H.; Du, M.; et al. Associations of Ambient Air Pollution and Lifestyle with the Risk of NAFLD: A Population-Based Cohort Study. BMC Public Health 2024, 24, 2354. [Google Scholar] [CrossRef]
- Amin, N.; Anwar, J.; Sulaiman, A.; Naumova, N.N.; Anwar, N. Hepatocellular Carcinoma: A Comprehensive Review. Diseases 2025, 13, 207. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Gao, M.; Luo, M.; Wang, T.; Zhong, T.; Qin, J. Association between Air Pollution and Primary Liver Cancer in European and East Asian Populations: A Mendelian Randomization Study. Front. Public Health 2023, 11, 1212301. [Google Scholar] [CrossRef]
- Gan, T.; Bambrick, H.; Tong, S.; Hu, W. Air Pollution and Liver Cancer: A Systematic Review. J. Environ. Sci. 2023, 126, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Paredes-Marin, A.; Napoli, J.; Sivakumar, V.; Near, C.; Adams, H.; Harty, A.; Agarwal, R.; Dieterich, D.; Bucuvalas, J.; Kushner, T.; et al. Identifying Environmental Factors Associated with Significant Fibrosis in Metabolic Dysfunction-Associated Steatotic Liver Disease/Steatohepatitis. Dig. Dis. Sci. 2025. [Google Scholar] [CrossRef]
- Schenker, R.B.; Machle, C.J.; Allayee, H.; Lurmann, F.; Patterson, W.B.; Kohli, R.; Goran, M.I.; Alderete, T.L. Ambient Air Pollution Exposure Is Associated with Liver Fat and Stiffness in Latino Youth with a More Pronounced Effect in Those with PNPLA3 Genotype and More Advanced Liver Disease. Ecotoxicol. Environ. Saf. 2024, 286, 117234. [Google Scholar] [CrossRef]
- Lan, Y.; Zhang, H.; Wu, A.; Huang, J.; Guo, Z.; Chen, Y. Long-Term Exposure to Air Pollution and Liver Fibrosis in the Elderly with MASLD. Sci. Rep. 2025, 15, 29969. [Google Scholar] [CrossRef]
- Luo, S.-M.; Chen, M.-J. Lactobacillus Acidophilus TW01 Mitigates PM2.5-Induced Lung Injury and Improves Gut Health in Mice. Nutrients 2025, 17, 831. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Pei, C.; Wang, X.; Wang, Y.; Huang, D.; Shi, S.; Kou, S.; Shen, Z.; Li, S.; He, Y.; et al. Probiotics Improve Lung Function and QOL in Participants with Exposure to Fine Particulate Matter Air Pollution: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Food Funct. 2025, 16, 3627–3642. [Google Scholar] [CrossRef] [PubMed]
- Darma, A.; Dewi, D.K.; Chandra, D.N.; Basrowi, R.W.; Khoe, L.C.; Pratiwi, D.; Sundjaya, T. The Role of Prebiotic, Probiotic, and Synbiotic in Gut Microbiota and Gut Permeability in Children Affected by Air Pollution. Curr. Nutr. Food Sci. 2024, 20, 1272–1281. [Google Scholar] [CrossRef]
- Yao, H.; Fan, C.; Lu, Y.; Fan, X.; Xia, L.; Li, P.; Wang, R.; Tang, T.; Wang, Y.; Qi, K. Alteration of Gut Microbiota Affects Expression of Adiponectin and Resistin through Modifying DNA Methylation in High-Fat Diet-Induced Obese Mice. Genes. Nutr. 2020, 15, 12. [Google Scholar] [CrossRef]
- Xue, L.; Deng, Z.; Luo, W.; He, X.; Chen, Y. Effect of Fecal Microbiota Transplantation on Non-Alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Front. Cell. Infect. Microbiol. 2022, 12, 759306. [Google Scholar] [CrossRef]
- Vallianou, N.G.; Kounatidis, D.; Psallida, S.; Vythoulkas-Biotis, N.; Adamou, A.; Zachariadou, T.; Kargioti, S.; Karampela, I.; Dalamaga, M. NAFLD/MASLD and the Gut-Liver Axis: From Pathogenesis to Treatment Options. Metabolites 2024, 14, 366. [Google Scholar] [CrossRef] [PubMed]
Scheme | Mechanism of Hepatotoxicity | Animal Model | Key Findings |
---|---|---|---|
Fu et al., 2025 [3] | Gut–Liver axis impairment | C57BL/6 mice | Dysbiosis, ↑LPS, NLRP3 activation |
Xiao et al., 2024 [49] | Gut–Liver axis impairment | C57BL/6 mice + cells | Gut-derived inflammation, HSC activation |
Yang. et al., 2025 [50] | Oxidative Stress & altered lipid metabolism | BALB/c mice | IRE1α S-nitrosylation, ER dysfunction |
Xu et al., 2019 [52] | Oxidative stress & altered lipid metabolism | ICR mice | ↑ROS, ↓SOD/CAT, lipid dysregulation |
Liu Y. et al., 2024 [53] | Oxidative stress & altered lipid metabolism | C57BL/6 mice | ↓GSH/NADPH, disrupted TCA cycle |
Liu Y. et al., 2024 [26] | Mitochondrial disfunction | Sprague–Dawley rats | Mitochondrial damage, circRNA changes |
Zhang D. et al., 2024 [54] | Bile Acid Metabolism | Mice hepatocytes | FXR activation, ↓CYP7A1, ↑ABCB11/ABCC2 |
Yan et al., 2024 [55] | Bile Acid Metabolism | C57BL/6 female mice | ↑Bile acids, ↑Cyp7a1, Shp, Fgfr4 |
Gan et al., 2024 [57] | Carcinogenesis (Nrf2 overactivation) | Human HCC samples, in vitro | ↑Immune evasion, ↑chemoresistance via NQO1/HO-1 |
Reference | Study Design | Subjects (n) | Aim | Results |
---|---|---|---|---|
Cheng et al., 2024 [64] | Cross-sectional | 131,592 | To investigate the non-linear relationship between ambient air pollution and MASLD prevalence | Non-linear associations were observed between MASLD and 6 air pollutants |
Guo et al., 2022 [65] | Cross-sectional | 90.086 | To investigate the association between long-term air pollution exposure and MASLD | Increased exposure levels to all 4 air pollutants (PM1, PM2.5, PM10, and NO2) were significantly associated with MASLD. |
Chen et al., 2025 [66] | Cohort study | 62.660 | To investigate the association between long-term air pollution exposure and NAFLD | Increased risk of NAFLD in subjects exposed to PM2.5, NO2 and carbon monoxide |
Kong et al., 2024 [67] | Cohort study | 417.025 | To assess the joint associations of air pollution and lifestyle with NAFLD | Lifestyle primary risk factor for NAFLD; significant additive interaction between air pollution and lifestyle |
Paredes-Marin et al., 2025 [71] | Cross-sectional | 463 | To investigate the association between environmental factors and liver fibrosis | Air pollution exposure + obesity nearly double the odds of significant fibrosis |
Ran et al., 2024 [21] | Observational and Mendelian randomization study | 244.842 | To identify metabolic signatures associated with air pollution exposure and to explore their associations with the risk of MASLD | PM2.5, PM10, NO2 and NOx-related metabolic signatures appear to be associated with MASLD. |
Sun et al., 2023 [69] | Mendelian randomization study | 471 | To assess the causal relationship between air pollution and HCC | No statistical association between PM2.5, PM10, PM2.5–10, NO2 and HCC in European and East Asian populations, but causal relationship between NOx hepatocellular differentiation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iaccarino, J.; Mignini, I.; Maresca, R.; Giansanti, G.; Esposto, G.; Borriello, R.; Galasso, L.; Ainora, M.E.; Gasbarrini, A.; Zocco, M.A. The Impact of Air Pollution on the Lung–Gut–Liver Axis: Oxidative Stress and Its Role in Liver Disease. Antioxidants 2025, 14, 1148. https://doi.org/10.3390/antiox14101148
Iaccarino J, Mignini I, Maresca R, Giansanti G, Esposto G, Borriello R, Galasso L, Ainora ME, Gasbarrini A, Zocco MA. The Impact of Air Pollution on the Lung–Gut–Liver Axis: Oxidative Stress and Its Role in Liver Disease. Antioxidants. 2025; 14(10):1148. https://doi.org/10.3390/antiox14101148
Chicago/Turabian StyleIaccarino, Jacopo, Irene Mignini, Rossella Maresca, Gabriele Giansanti, Giorgio Esposto, Raffaele Borriello, Linda Galasso, Maria Elena Ainora, Antonio Gasbarrini, and Maria Assunta Zocco. 2025. "The Impact of Air Pollution on the Lung–Gut–Liver Axis: Oxidative Stress and Its Role in Liver Disease" Antioxidants 14, no. 10: 1148. https://doi.org/10.3390/antiox14101148
APA StyleIaccarino, J., Mignini, I., Maresca, R., Giansanti, G., Esposto, G., Borriello, R., Galasso, L., Ainora, M. E., Gasbarrini, A., & Zocco, M. A. (2025). The Impact of Air Pollution on the Lung–Gut–Liver Axis: Oxidative Stress and Its Role in Liver Disease. Antioxidants, 14(10), 1148. https://doi.org/10.3390/antiox14101148