Atorvastatin Induces Bioenergetic Impairment and Oxidative Stress Through Reverse Electron Transport
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture and Treatment
2.2. Viability Assay
2.3. Oxygen Consumption Rate
2.4. Bioenergetic Status
2.5. Coenzyme Q10 Content
2.6. Mitochondrial Mass
2.7. Mitochondrial Chain Functionality in Permeabilized Cells
2.8. Mitochondrial Chain Functionality in Isolated Mitochondria
2.9. Specific Complex I Activity
2.10. Specific Complex II Activity
2.11. Measurement of Cytosolic ROS Production
2.12. Measurement of Mitochondrial ROS Production in Intact Cells
2.13. Measurement of Membranes Peroxidation
2.14. ROS Production in Isolated Mitochondria
2.15. Statistical Analysis
3. Results
3.1. Atorvastatin Reduces Cell Viability
3.2. Atorvastatin Induces Bioenergetic Impairments
3.2.1. Atorvastatin Impairs the Mitochondrial Electron Transport Chain in Permeabilized HDF
3.2.2. Atorvastatin Directly Impairs the Mitochondrial Electron Transport Chain Activity in Isolated Mitochondria
3.3. Effect of Atorvastatin on ROS Levels in HDF and Isolated Mitochondria
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADP | Adenosine Diphosphate |
ATP | Adenosine Triphosphate |
CM-H2DCFDA | Chloromethyl 2′-7′-dichlorodihydrofluorescein diacetate |
DB | Decyl-ubiquinone |
DCFDA | 2′-7′-dichlorodihydrofluorescein diacetate |
DCPIP | 2,6-Dichlorophenolindophenol sodium salt hydrate |
ETC | Electron transport chain |
FCCP | Carbonyl cyanide 4-(trifluoromethoxy) Phenylhydrazone |
[Fe(CN)6]3− | Ferricyanide |
HBSS | Hanks’ Balanced Salt Solution |
HDF | Human Dermal Fibroblasts |
HMG-CoA | 3-hydroxy-3-methyl-glutaryl-CoA |
LDL | Low density lipoprotein |
NADH | Reduced Nicotinamide adenine dinucleotide |
OCR | Oxygen consumption rate |
ROS | Reactive oxygen species |
UBQ | UBIQSOME® |
References
- Ward, N.C.; Watts, G.F.; Eckel, R.H. Statin Toxicity. Circ. Res. 2019, 124, 328–350. [Google Scholar] [CrossRef]
- McFarland, A.J.; Anoopkumar-Dukie, S.; Arora, D.S.; Grant, G.D.; McDermott, C.M.; Perkins, A.V.; Davey, A.K. Molecular Mechanisms Underlying the Effects of Statins in the Central Nervous System. Int. J. Mol. Sci. 2014, 15, 20607–20637. [Google Scholar] [CrossRef] [PubMed]
- Goedeke, L.; Fernández-Hernando, C. Regulation of cholesterol homeostasis. Cell Mol Life Sci. 2012, 69, 915–930. [Google Scholar] [CrossRef] [PubMed]
- Mhaimeed, O.; Burney, Z.A.; Schott, S.L.; Kohli, P.; Marvel, F.A.; Martin, S.S. The Importance of LDL-C Lowering in Atherosclerotic Cardiovascular Disease Prevention: Lower for Longer Is Better. Am. J. Prev. Cardiol. 2024, 18, 100649. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Deng, H.; Luo, Y.; Zhong, S.; Huang, M.; Tomlinson, B. Advances in Statin Adverse Reactions and the Potential Mechanisms: A Systematic Review. J. Adv. Res. 2024. [Google Scholar] [CrossRef] [PubMed]
- Laakso, M.; Fernandes Silva, L. Statins and Risk of Type 2 Diabetes: Mechanism and Clinical Implications. Front. Endocrinol. 2023, 14, 1239335. [Google Scholar] [CrossRef]
- Ezad, S.; Cheema, H.; Collins, N. Statin-Induced Rhabdomyolysis: A Complication of a Commonly Overlooked Drug Interaction. Oxf. Med. Case Rep. 2018, 2018, omx104. [Google Scholar] [CrossRef]
- Tricarico, P.M.; Crovella, S.; Celsi, F. Mevalonate Pathway Blockade, Mitochondrial Dysfunction and Autophagy: A Possible Link. Int. J. Mol. Sci. 2015, 16, 16067–16084. [Google Scholar] [CrossRef]
- Marcoff, L.; Thompson, P.D. The Role of Coenzyme Q10 in Statin-Associated Myopathy: A Systematic Review. J. Am. Coll. Cardiol. 2007, 49, 2231–2237. [Google Scholar] [CrossRef]
- Young, J.M.; Florkowski, C.M.; Molyneux, S.L.; McEwan, R.G.; Frampton, C.M.; George, P.M.; Scott, R.S. Effect of Coenzyme Q10 Supplementation on Simvastatin-Induced Myalgia. Am. J. Cardiol. 2007, 100, 1400–1403. [Google Scholar] [CrossRef]
- Hernández-Camacho, J.D.; Bernier, M.; López-Lluch, G.; Navas, P. Coenzyme Q10 Supplementation in Aging and Disease. Front. Physiol. 2018, 9, 44. [Google Scholar] [CrossRef]
- Ahmad, K.; Manongi, N.J.; Rajapandian, R.; Moti Wala, S.; Al Edani, E.M.; Samuel, E.A.; Arcia Franchini, A.P. Effectiveness of Coenzyme Q10 Supplementation in Statin-Induced Myopathy: A Systematic Review. Cureus 2024, 16, e68316. [Google Scholar] [CrossRef] [PubMed]
- Rizzardi, N.; Liparulo, I.; Antonelli, G.; Orsini, F.; Riva, A.; Bergamini, C.; Fato, R. Coenzyme Q10 Phytosome Formulation Improves CoQ10 Bioavailability and Mitochondrial Functionality in Cultured Cells. Antioxidants 2021, 10, 927. [Google Scholar] [CrossRef]
- Loi, M.; Valenti, F.; Medici, G.; Mottolese, N.; Candini, G.; Bove, A.M.; Trebbi, F.; Pincigher, L.; Fato, R.; Bergamini, C.; et al. Beneficial Antioxidant Effects of Coenzyme Q10 in In Vitro and In Vivo Models of CDKL5 Deficiency Disorder. Int. J. Mol. Sci. 2025, 26, 2204. [Google Scholar] [CrossRef]
- Jukema, J.W.; Cannon, C.P.; de Craen, A.J.M.; Westendorp, R.G.J.; Trompet, S. The Controversies of Statin Therapy: Weighing the Evidence. J. Am. Coll. Cardiol. 2012, 60, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Somers, T.; Siddiqi, S.; Morshuis, W.J.; Russel, F.G.M.; Schirris, T.J.J. Statins and Cardiomyocyte Metabolism, Friend or Foe? J. Cardiovasc. Dev. Dis. 2023, 10, 417. [Google Scholar] [CrossRef]
- Avelar-Freitas, B.A.; Almeida, V.G.; Pinto, M.C.X.; Mourao, F.A.G.; Massensini, A.R.; Martins-Filo, O.A.; Rocha-Vieira, E.; Brito-Melo, G.E.A. Trypan blue exclusion assay by flow cytometry. Braz. J. Med. Biol. Res. 2014, 47, 307–315. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell Sensitivity Assays: The MTT Assay. Methods Mol. Biol. Clifton NJ 2011, 731, 237–245. [Google Scholar] [CrossRef]
- Jones, D.P. Determination of Pyridine Dinucleotides in Cell Extracts by High-Performance Liquid Chromatography. J. Chromatogr. B. Biomed. Sci. App. 1981, 225, 446–449. [Google Scholar] [CrossRef]
- Takada, M.; Ikenoya, S.; Yuzuriha, T.; Katayama, K. [17] Simultaneous Determination of Reduced and Oxidized Ubiquinones. In Methods in Enzymology; Oxygen Radicals in Biological Systems; Academic Press: Cambridge, MA, USA, 1984; Volume 105, pp. 147–155. [Google Scholar]
- Larsen, S.; Nielsen, J.; Hansen, C.N.; Nielsen, L.B.; Wibrand, F.; Stride, N.; Schroder, H.D.; Boushel, R.; Helge, J.W.; Dela, F.; et al. Biomarkers of Mitochondrial Content in Skeletal Muscle of Healthy Young Human Subjects. J. Physiol. 2012, 590, 3349–3360. [Google Scholar] [CrossRef] [PubMed]
- Bergamini, C.; Fato, R.; Biagini, G.; Pugnaloni, A.; Giantomassi, F.; Foresti, E.; Lesci, G.I.; Roveri, N.; Lenaz, G. Mitochondrial Changes Induced by Natural and Synthetic Asbestos Fibers: Studies on Isolated Mitochondria. Cell. Mol. Biol. Noisy—Gd. Fr. 2007, 52, OL905–913. [Google Scholar]
- Spinazzi, M.; Casarin, A.; Pertegato, V.; Salviati, L.; Angelini, C. Assessment of Mitochondrial Respiratory Chain Enzymatic Activities on Tissues and Cultured Cells. Nat. Protoc. 2012, 7, 1235–1246. [Google Scholar] [CrossRef]
- Askerlund, P.; Larsson, C.; Widell, S. Localization of Donor and Acceptor Sites of NADH Dehydrogenase Activities Using inside-Out and Right-Side-Out Plasma Membrane Vesicles from Plants. FEBS Lett. 1988, 239, 23–28. [Google Scholar] [CrossRef]
- Pedrera, L.; Prieto Clemente, L.; Dahlhaus, A.; Lotfipour Nasudivar, S.; Tishina, S.; Olmo González, D.; Stroh, J.; Yapici, F.I.; Singh, R.P.; Grotehans, N.; et al. Ferroptosis Triggers Mitochondrial Fragmentation via Drp1 Activation. Cell Death Dis. 2025, 16, 40. [Google Scholar] [CrossRef]
- Fato, R.; Bergamini, C.; Bortolus, M.; Maniero, A.L.; Leoni, S.; Ohnishi, T.; Lenaz, G. Differential Effects of Mitochondrial Complex I Inhibitors on Production of Reactive Oxygen Species. Biochim. Biophys. Acta BBA—Bioenerg. 2009, 1787, 384–392. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk: The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Shi, Z.; Han, S. Personalized Statin Therapy: Targeting Metabolic Processes to Modulate the Therapeutic and Adverse Effects of Statins. Heliyon 2025, 11, e41629. [Google Scholar] [CrossRef]
- Gbelcová, H.; Rimpelová, S.; Jariabková, A.; Macášek, P.; Priščáková, P.; Ruml, T.; Šáchová, J.; Kubovčiak, J.; Kolář, M.; Vítek, L. Highly Variable Biological Effects of Statins on Cancer, Non-Cancer, and Stem Cells in Vitro. Sci. Rep. 2024, 14, 11830. [Google Scholar] [CrossRef]
- Ahmadi, Y.; Fard, J.K.; Ghafoor, D.; Eid, A.H.; Sahebkar, A. Paradoxical Effects of Statins on Endothelial and Cancer Cells: The Impact of Concentrations. Cancer Cell Int. 2023, 23, 43. [Google Scholar] [CrossRef] [PubMed]
- Khatiwada, N.; Hong, Z. Potential Benefits and Risks Associated with the Use of Statins. Pharmaceutics 2024, 16, 214. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, T.; Dekovic, D.K.; Burschel, S. Assembly of the Escherichia coli NADH:Ubiquinone Oxidoreductase (Respiratory Complex I). Biochim. Biophys. Acta BBA—Bioenerg. 2016, 1857, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Brandt, U. Energy Converting NADH:Quinone Oxidoreductase (Complex I). Annu. Rev. Biochem. 2006, 75, 69–92. [Google Scholar] [CrossRef]
- Schirris, T.J.J.; Renkema, G.H.; Ritschel, T.; Voermans, N.C.; Bilos, A.; van Engelen, B.G.M.; Brandt, U.; Koopman, W.J.H.; Beyrath, J.D.; Rodenburg, R.J.; et al. Statin-Induced Myopathy Is Associated with Mitochondrial Complex III Inhibition. Cell Metab. 2015, 22, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Wojcicki, K.; Budzinska, A.; Jarmuszkiewicz, W. Effects of Atorvastatin and Simvastatin on the Bioenergetic Function of Isolated Rat Brain Mitochondria. Int. J. Mol. Sci. 2024, 25, 8494. [Google Scholar] [CrossRef]
- Goncalves, R.L.S.; Wang, Z.B.; Riveros, J.K.; Parlakgül, G.; Inouye, K.E.; Lee, G.Y.; Fu, X.; Saksi, J.; Rosique, C.; Hui, S.T.; et al. CoQ Imbalance Drives Reverse Electron Transport to Disrupt Liver Metabolism. Nature 2025, 63, 1057–1065. [Google Scholar] [CrossRef]
- Cilla, D.D., Jr.; Whitfield, L.R.; Gibson, D.M.; Sedman, A.J.; Posvar, E.L. Multiple-Dose Pharmacokinetics, Pharmacodynamics, and Safety of Atorvastatin, an Inhibitor of HMG-CoA Reductase, in Healthy Subjects. Clin. Pharmacol. Ther. 1996, 60, 687–695. [Google Scholar] [CrossRef]
- Björkhem-Bergman, L.; Lindh, J.D.; Bergman, P. What Is a Relevant Statin Concentration in Cell Experiments Claiming Pleiotropic Effects? Br. J. Clin. Pharmacol. 2011, 72, 164–165. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenti, F.; Pincigher, L.; Rizzardi, N.; Orsini, F.; Bergamini, C.; Fato, R. Atorvastatin Induces Bioenergetic Impairment and Oxidative Stress Through Reverse Electron Transport. Antioxidants 2025, 14, 1147. https://doi.org/10.3390/antiox14101147
Valenti F, Pincigher L, Rizzardi N, Orsini F, Bergamini C, Fato R. Atorvastatin Induces Bioenergetic Impairment and Oxidative Stress Through Reverse Electron Transport. Antioxidants. 2025; 14(10):1147. https://doi.org/10.3390/antiox14101147
Chicago/Turabian StyleValenti, Francesca, Luca Pincigher, Nicola Rizzardi, Francesca Orsini, Christian Bergamini, and Romana Fato. 2025. "Atorvastatin Induces Bioenergetic Impairment and Oxidative Stress Through Reverse Electron Transport" Antioxidants 14, no. 10: 1147. https://doi.org/10.3390/antiox14101147
APA StyleValenti, F., Pincigher, L., Rizzardi, N., Orsini, F., Bergamini, C., & Fato, R. (2025). Atorvastatin Induces Bioenergetic Impairment and Oxidative Stress Through Reverse Electron Transport. Antioxidants, 14(10), 1147. https://doi.org/10.3390/antiox14101147