Natural Deep Eutectic Solvents as Green Alternatives for Extracting Bioactive Compounds from Sideritis Taxa with Potential Cosmetic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals and Reagents
2.3. Preparation of NADESs
2.4. Ultrasound-Assisted Extraction
2.5. Pretreatment of Samples for HPLC-MS Analysis
2.6. HPLC-MS Analysis
2.7. Determination of Total Phenolics by Folin–Ciocalteu Method
2.8. Determination of Antioxidant Activity
2.8.1. Ferric Reducing Antioxidant Power (FRAP) Assay
2.8.2. DPPH Radical Scavenging Activity (DPPH) Assay
3. Results and Discussion
3.1. Evaluation of the Extractive Power of the Five Eutectic Solvents and the Antioxidant Properties of the Extracts
3.1.1. Total Phenolic Content
3.1.2. Ferric Ion Reducing Antioxidant Power
3.1.3. DPPH Radical Scavenging Activity (DPPH)
3.1.4. Selection of the Optimal NADES for Cosmetic Applications
3.2. Chemical Composition of BGG4 and EtOH Extracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dimopoulos, P.; Raus, T.; Strid, A. Flora of Greece Web: Vascular Plants of Greece—An Annotated Checklist. Available online: https://portal.cybertaxonomy.org/flora-greece/intro (accessed on 20 September 2024).
- Aneva, I.; Zhelev, P.; Kozuharova, E.; Danova, K.; Nabavi, S.F.; Behzad, S. Genus Sideritis, Section Empedoclia in Southeastern Europe and Turkey–Studies in Ethnopharmacology and Recent Progress of Biological Activities. DARU J. Pharm. Sci. 2019, 27, 407–421. [Google Scholar] [CrossRef] [PubMed]
- Charami, M.-T.; Lazari, D.; Karioti, A.; Skaltsa, H.; Hadjipavlou-Litina, D.; Souleles, C. Antioxidant and Antiinflammatory Activities of Sideritis perfoliata Subsp. perfoliata (Lamiaceae). Phytother. Res. 2008, 22, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Linardaki, Z.I.; Vasilopoulou, C.G.; Constantinou, C.; Iatrou, G.; Lamari, F.N.; Margarity, M. Differential Antioxidant Effects of Consuming Tea from Sideritis clandestina subsp. peloponnesiaca on Cerebral Regions of Adult Mice. J. Med. Food 2011, 14, 1060–1064. [Google Scholar] [CrossRef] [PubMed]
- Koleva, I.I.; Linssen, J.P.; van Beek, T.A.; Evstatieva, L.N.; Kortenska, V.; Handjieva, N. Antioxidant Activity Screening of Extracts from Sideritis Species (Labiatae) Grown in Bulgaria. J. Sci. Food Agric. 2003, 83, 809–819. [Google Scholar] [CrossRef]
- Çarıkçı, S.; Kılıç, T.; Gören, A.C.; Dirmenci, T.; Alim Toraman, G.Ö.; Topçu, G. Chemical Profile of the Anatolian Sideritis Species with Bioactivity Studies. Pharm. Biol. 2023, 61, 1484–1511. [Google Scholar] [CrossRef]
- Tomou, E.-M.; Papaemmanouil, C.D.; Diamantis, D.A.; Kostagianni, A.D.; Chatzopoulou, P.; Mavromoustakos, T.; Tzakos, A.G.; Skaltsa, H. Anti-Ageing Potential of S. euboea Heldr. Phenolics. Molecules 2021, 26, 3151. [Google Scholar] [CrossRef]
- Sklirou, A.D.; Angelopoulou, M.T.; Argyropoulou, A.; Chaita, E.; Boka, V.I.; Cheimonidi, C.; Niforou, K.; Mavrogonatou, E.; Pratsinis, H.; Kalpoutzakis, E.; et al. Phytochemical Study and In Vitro Screening Focusing on the Anti-Aging Features of Various Plants of the Greek Flora. Antioxidants 2021, 10, 1206. [Google Scholar] [CrossRef]
- Krgović, N.; Jovanović, M.; Aradski, A.A.; Janković, T.; Stević, T.; Zdunić, G.; Laušević, S.D.; Šavikin, K. Bioassay-Guided Skin-Beneficial Effects of Fractionated Sideritis raeseri subsp. raeseri Extract. Plants 2022, 11, 2677. [Google Scholar] [CrossRef]
- Ceylan, R.; Demirbas, A.; Ocsoy, I.; Aktumsek, A. Green Synthesis of Silver Nanoparticles Using Aqueous Extracts of Three Sideritis Species from Turkey and Evaluations Bioactivity Potentials. Sustain. Chem. Pharm. 2021, 21, 100426. [Google Scholar] [CrossRef]
- González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Sideritis Spp.: Uses, Chemical Composition and Pharmacological Activities—A Review. J. Ethnopharmacol. 2011, 135, 209–225. [Google Scholar] [CrossRef]
- Fraga, B.M. Phytochemistry and Chemotaxonomy of Sideritis Species from the Mediterranean Region. Phytochemistry 2012, 76, 7–24. [Google Scholar] [CrossRef] [PubMed]
- Dimaki, V.D.; Zeliou, K.; Nakka, F.; Stavreli, M.; Bakratsas, I.; Papaioannou, L.; Iatrou, G.; Lamari, F.N. Characterization of Sideritis clandestina Subsp. peloponnesiaca Polar Glycosides and Phytochemical Comparison to Other Mountain Tea Populations. Molecules 2022, 27, 7613. [Google Scholar] [CrossRef]
- Dai, Y.; Van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as New Potential Media for Green Technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Bakirtzi, C.; Triantafyllidou, K.; Makris, D.P. Novel Lactic Acid-Based Natural Deep Eutectic Solvents: Efficiency in the Ultrasound-Assisted Extraction of Antioxidant Polyphenols from Common Native Greek Medicinal Plants. J. Appl. Res. Med. Aromat. Plants 2016, 3, 120–127. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as a New Extraction Media for Phenolic Metabolites in Carthamus tinctorius L. Anal. Chem. 2013, 85, 6272–6278. [Google Scholar] [CrossRef]
- Jeong, K.M.; Lee, M.S.; Nam, M.W.; Zhao, J.; Jin, Y.; Lee, D.-K.; Kwon, S.W.; Jeong, J.H.; Lee, J. Tailoring and Recycling of Deep Eutectic Solvents as Sustainable and Efficient Extraction Media. J. Chromatogr. A 2015, 1424, 10–17. [Google Scholar] [CrossRef]
- Jeong, K.M.; Zhao, J.; Jin, Y.; Heo, S.R.; Han, S.Y.; Yoo, D.E.; Lee, J. Highly Efficient Extraction of Anthocyanins from Grape Skin Using Deep Eutectic Solvents as Green and Tunable Media. Arch. Pharm. Res. 2015, 38, 2143–2152. [Google Scholar] [CrossRef]
- Dai, Y.; Rozema, E.; Verpoorte, R.; Choi, Y.H. Application of Natural Deep Eutectic Solvents to the Extraction of Anthocyanins from Catharanthus roseus with High Extractability and Stability Replacing Conventional Organic Solvents. J. Chromatogr. A 2016, 1434, 50–56. [Google Scholar] [CrossRef]
- Li, J.; Han, Z.; Zou, Y.; Yu, B. Efficient Extraction of Major Catechins in Camellia sinensis Leaves Using Green Choline Chloride-Based Deep Eutectic Solvents. RSC Adv. 2015, 5, 93937–93944. [Google Scholar] [CrossRef]
- Jeong, K.M.; Ko, J.; Zhao, J.; Jin, Y.; Yoo, D.E.; Han, S.Y.; Lee, J. Multi-Functioning Deep Eutectic Solvents as Extraction and Storage Media for Bioactive Natural Products That Are Readily Applicable to Cosmetic Products. J. Clean. Prod. 2017, 151, 87–95. [Google Scholar] [CrossRef]
- Villa, C.; Caviglia, D.; Robustelli Della Cuna, F.S.; Zuccari, G.; Russo, E. NaDES Application in Cosmetic and Pharmaceutical Fields: An Overview. Gels 2024, 10, 107. [Google Scholar] [CrossRef] [PubMed]
- Grozdanova, T.; Trusheva, B.; Alipieva, K.; Popova, M.; Dimitrova, L.; Najdenski, H.; Zaharieva, M.M.; Ilieva, Y.; Vasileva, B.; Miloshev, G.; et al. Extracts of Medicinal Plants with Natural Deep Eutectic Solvents: Enhanced Antimicrobial Activity and Low Genotoxicity. BMC Chem. 2020, 14, 73. [Google Scholar] [CrossRef] [PubMed]
- Vasileva, B.; Staneva, D.; Grozdanova, T.; Petkov, H.; Trusheva, B.; Alipieva, K.; Popova, M.; Miloshev, G.; Bankova, V.; Georgieva, M. Natural Deep Eutectic Extracts of Propolis, Sideritis scardica, and Plantago major Reveal Potential Antiageing Activity during Yeast Chronological Lifespan. Oxid. Med. Cell. Longev. 2022, 2022, 8368717. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Joseph, A. Rossi Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Zheleva-Dimitrova, D.; Voynikov, Y.; Gevrenova, R.; Balabanova, V. A Comprehensive Phytochemical Analysis of Sideritis scardica Infusion Using Orbitrap UHPLC-HRMS. Molecules 2023, 29, 204. [Google Scholar] [CrossRef]
- Petreska, J.; Stefova, M.; Ferreres, F.; Moreno, D.A.; Tomás-Barberán, F.A.; Stefkov, G.; Kulevanova, S.; Gil-Izquierdo, A. Potential Bioactive Phenolics of Macedonian Sideritis Species Used for Medicinal “Mountain Tea”. Food Chem. 2011, 125, 13–20. [Google Scholar] [CrossRef]
- Stanoeva, J.P.; Bagashovska, D.; Stefova, M. Characterization of Urinary Bioactive Phenolic Metabolites Excreted After Consumption of a Cup of Mountain Tea (Sideritis scardica) Using Liquid Chromatography—Tandem Mass Spectrometry. Maced. J. Chem. Chem. Eng. 2012, 31, 229–243. [Google Scholar] [CrossRef]
- Pljevljakušić, D.; Šavikin, K.; Janković, T.; Zdunić, G.; Ristić, M.; Godjevac, D.; Konić-Ristić, A. Chemical Properties of the Cultivated Sideritis raeseri Boiss. & Heldr. subsp. raeseri. Food Chem. 2011, 124, 226–233. [Google Scholar] [CrossRef]
- Stanoeva, J.P.; Stefova, M.; Stefkov, G.; Kulevanova, S.; Alipieva, K.; Bankova, V.; Aneva, I.; Evstatieva, L.N. Chemotaxonomic Contribution to the Sideritis Species Dilemma on the Balkans. Biochem. Syst. Ecol. 2015, 61, 477–487. [Google Scholar] [CrossRef]
- Petreska, J.; Stefova, M.; Ferreres, F.; Moreno, D.A.; Tomás-Barberán, F.A.; Stefkov, G.; Kulevanova, S.; Gil-Izquierdo, A. Dietary Burden of Phenolics per Serving of “Mountain Tea” (Sideritis) from Macedonia and Correlation to Antioxidant Activity. Nat. Prod. Commun. 2011, 6, 1934578X1100600924. [Google Scholar] [CrossRef]
- Rodrigues, R.; Oliveira, M.B.P.P.; Alves, R.C. Chlorogenic Acids and Caffeine from Coffee By-Products: A Review on Skincare Applications. Cosmetics 2023, 10, 12. [Google Scholar] [CrossRef]
- Vertuani, S.; Beghelli, E.; Scalambra, E.; Malisardi, G.; Copetti, S.; Toso, R.D.; Baldisserotto, A.; Manfredini, S. Activity and Stability Studies of Verbascoside, a Novel Antioxidant, in Dermo-Cosmetic and Pharmaceutical Topical Formulations. Molecules 2011, 16, 7068–7080. [Google Scholar] [CrossRef] [PubMed]
- Saha, R.; Majie, A.; Baidya, R.; Sarkar, B. Verbascoside: Comprehensive Review of a Phenylethanoid Macromolecule and Its Journey from Nature to Bench. Inflammopharmacology 2024, 32, 2729–2751. [Google Scholar] [CrossRef]
- Sato, F.; Wong, C.P.; Furuya, K.; Kuzu, C.; Kimura, R.; Udo, T.; Honda, H.; Yang, J. Anti-Skin Aging Activities of Sideritis scardica and 3 Flavonoids with an Uncommon 8-Hydroxyl Moiety. Nat. Prod. Commun. 2022, 17, 1934578X221094910. [Google Scholar] [CrossRef]
NADESs | Ingredients (Molar Ratio) |
---|---|
BGG1 | Betaine–glycerol–glucose (4:5:1) |
BGG4 | Betaine–glycerol–glycose (4:20:1) |
UG | Urea–glycerol (1:1) |
CS | Citric acid–sucrose (1:1) |
CGG | Citric acid–glycerol–glucose (1:2:1) |
DPPH (IC50 mg Initial Dry Plant/mL) | ||
---|---|---|
Extract | Sideritis clandestina ssp. peloponnesiaca | Sideritis raeseri ssp. raeseri |
BGG1 | 4.163 ± 0.771 | 5.425 ± 0.293 |
BGG4 | 3.811 ± 0.135 * | 5.962 ± 0.784 * |
CS | 5.555 ± 0.890 * | 7.685 ± 0.868 c,d,* |
UG | 4.859 ± 0.330 | 4.174 ± 0.487 c |
CGG | 4.543 ± 0.351 * | 7.357 ± 0.797 c,* |
EtOH | 4.218 ± 0.420 | 5.584 ± 0.548 |
H2O | 4.330 ± 0.280 | 5.399 ± 0.762 |
tR (min) | Tentative Identification | Molecular Ion [M−H]− (m/z) | Other Ions from Both Negative and Positive Ionization (m/z) | Occurrence | Reference | |
---|---|---|---|---|---|---|
1 | 3.39 | Μelittoside derivative | 523 | 583 (M+Hac−H)−/1047 (2M−H)− | all | [4] |
2 | 6.49 | Melittoside * | 523 | 583 (M+Hac−H)−/1047 (2M−H)− | all | [13] |
3 | 17.83 | 3-Caffeoylquinic acid (chlorogenic acid) * | 353 | 707 (2Μ−H)−/377 (M+Na)+/731 (2M+Na)+ | all | |
4 | 20.14 | Unknown | 669 | 1339 (2M−H)−/355 (M+H+K)2+/693 (M+Na)+/1363 (2M+Na)+ | all | |
5 | 23.90 | 7-O-Acetyl-8-epiloganic acid | 417 | 441 (M+Na)+ | SC-EtOH, SC-BGG4 | [13] |
6 | 24.82 | Ajugoside * | 389 | 449 (M+Hac−H)−/413 (M+Na)+ | SC-EtOH, SC-BGG4 | [13] |
7 | 26.83 | Unknown | 785 | 392 (M−2H)−/809 (M+Na)+/413 (M+H+K)2+ | all | |
8 | 27.20 | Forsythoside B or Lavandulofolioside | 755 | 377 (M−2H)2−/779 (M+Na)+/398 (M+H+K)2+ | all | [28] |
9 | 28.10 | Verbascoside * | 623 | 1247 (2M−H)−/647 (M+Na)+/1271 (2M+Na)+ | all | [13] |
10 | 29.08 | All-Glc-HYP | 625 | 1251 (2M−H)−/649 (M+Na)+ | all | [30] |
11 | 33.04 | Forsythoside A | 623 | 647 (M+Na)+ | SC-BGG4, SR-BGG4 | [30] |
12 | 33.67 | Isoverbascoside * | 623 | 645 (M+Na−2H)−/311 (M−2H)−/647 (M+Na)+ | all | [13] |
13 | 34.03 | Leucosceptoside isomer//AcO-All-Glc-ISC or AcO-All-Glc-LUT | 667 (M1)// 651 (M2) | 1335 (2M1−H)−/691 (M1+Na)+// 653 (M2+H)+/675 (M2+Na)+ | M1: in SC-EtOH, SC-BGG4, M2: all | [31,32] |
14 | 34.67 | AcO-All-Glc-HYP// AcO-All-Glc-ISC or AcO-All-Glc-LUT | 667 (M1)// 651 (M2) | 1335 (2M1−H)−/691 (M1+Na)+// 653 (M2+H)+/675 (M2+Na)+ | M1: all, M2: SC-BGG4, SR-EtOH | [32] |
15 | 35.71 | All-Glc-HYP-Me | 639 | 1279 (2M−H)−/663 (M+Na)+/1303 (2M+Na)+ | SC-EtOH, SC-BGG4 | [32] |
16 | 36.35 | AcO-All-Glc-HYP | 667 | 1335 (2M−H)−/691 (M+Na)+ | all | [32] |
17 | 40.70 | AcO-All-Glc-ISC-Me or AcO-All-Glc-LUT-Me or AcO-All-Glc-Chrys// AcO-All-Glc-HYP-Me isomer | 665 (Μ1)// 681 (Μ2) | 683 (M2+H)+ | SC-EtOH, SC-BGG4 | [29,30] |
18 | 42.58 | AcO-All-Glc-ISC or AcO-All-Glc-LUT | 651 | 1303 (2M−H)−/675 (M+Na)+/1327 (2M+Na)+ | all | [29,30] |
19 | 43.31 | AcO-All-Glc-HYP-Me isomer | 681 | 1363 (2M−H)− | SC-EtOH, SC-BGG4 | [30] |
20 | 43.98 | (AcO)2-All-Glc-HYP | 709 | all | [29,30] | |
21 | 44.66 | AcO-All-Glc-HYP | 667 | 669 (Μ+H)+ | all | [29,30] |
22 | 46.40 | (AcO)2-All-Glc-HYP-Me// (AcO)2-All-Glc-ISC or (AcO)2-All-Glc-LUT | 723 (Μ1)// 693 (Μ2) | 747 (M1+Na)+//695 (Μ2+H)+ | M1: in SC-EtOH, SC-BGG4 M2: all | [29,30] |
23 | 47.79 | (AcO)2-All-Glc-HYP | 709 | 1419 (2M−H)−/733 (M+Na)+/1443 (2M+Na)+ | all | [29] |
24 | 49.31 | Apigenin coumaroylrutinoside//(AcO)2-All-Glc-ISC or (AcO)2-All-Glc-LUT | 723 (Μ1)// 693 (Μ2) | 725 (Μ1+H)+/747 (M1+Na)+//695 (Μ2+H)+ | M1: in SC-EtOH M2: all | [29,33] |
Peak Number | Compound | Category | SC-EtOH | SC-BGG4 | SR-EtOH | SR-BGG4 |
---|---|---|---|---|---|---|
1 | Melittoside derivative | Iridoid | 387.35 ± 10.64 * | 387.79 ± 46.25 | 261.57 ± 12.30 * | 463.81 ± 64.08 c |
2 | Melittoside | Iridoid | 433.31 ± 16.34 * | 665.11 ± 74.68 a,* | 244.15 ± 1.71 * | 197.29 ± 20.99 c,* |
3 | 3-caffeoylquinic acid (chlorogenic acid) | Hydroxycinnamic acid derivative | 1535.73 ± 61.37 | 1779.73 ± 102.13 a,* | 1490.67 ± 59.24 | 1068.76 ± 19.09 c,* |
4 | Unknown | 842.11 ± 46.14 * | 394.93 ± 26.97 a,* | 384.85 ± 52.10 * | 333.45 ± 36.05 * | |
7 | Unknown | 555.46 ± 82.08 | 444.74 ± 1.82 | 373.51 ± 50.48 | n.q. | |
8 | Forsythoside B or Lavandulofolioside | Phenylethanoid glycoside | 611.09 ± 20.76 * | 555.15 ± 48.18 | 215.12 ± 21.22 * | n.q. |
9 | Verbascoside | Phenylethanoid glycoside | 1482.82 ± 19.94 * | 1545.71 ± 45.55 a,* | 1109.75 ± 94.96 * | 1363.12 ± 9.81 c,* |
10 | All-Glc-HYP | Non-acetylated allosyl flavone | 345.73 ± 35.33 * | 420.61 ± 6.86 a,* | 554.44 ± 45.45 * | 783.57 ± 21.53 c,* |
11 | Forsythoside A | Phenylethanoid glycoside | - | 341.13 ± 23.49 | - | n.q. |
12 | Isoverbascoside | Phenylethanoid glycoside | n.q. | 245.78 ± 1.47 * | 360.71 ± 27.86 | 498.41 ± 61.85 c,* |
13 | Leucosceptoside isomer// AcO-All-Glc-ISC or AcO-All-Glc-LUT | Phenylethanoid glycoside// Acetylated allosyl flavone glucoside | 781.93 ± 44.17 | 532.40 ± 46.32 a,* | 763.80 ± 67.28 | 945.71 ± 11.46 c,* |
14 | AcO-All-Glc-HYP//AcO-All-Glc-ISC or AcO-All-Glc-LUT | Acetylated allosyl flavone glucoside | 305.57 ± 18.92 | 239.04 ± 13.70 | 233.17 ± 43.43 | -//n.q. |
15 | All-Glc-HYP-Me | Allosyl flavone glucoside | 117.96 ± 3.48 | 247.56 ± 35.35 a | - | - |
16 | AcO-All-Glc-HYP | Acetylated allosyl flavone glucoside | 651.43 ± 55.64 * | 764.20 ± 58.54 a,* | 931.50 ± 108.68 * | 980.92 ± 31.42 * |
17 | AcO-All-Glc-ISC-Me or AcO-All-Glc-LUT-Me or AcO-All-Glc-Chrys//AcO-All-Glc-HYP-Me isomer | Acetylated allosyl flavone glucoside | 536.62 ± 45.19 | 423.64 ± 51.21 | - | - |
18 | AcO-All-Glc-ISC or AcO-All-Glc-LUT | Acetylated allosyl flavone glucoside | 971.94 ± 3.00 * | 956.60 ± 111.21 | 150.72 ± 33.87 * | 747.30 ± 26.04 c, * |
19 | AcO-All-Glc-HYP-Me isomer | Acetylated allosyl flavone glucoside | 597.30 ± 25.51 | 619.09 ± 10.25 | - | - |
20 | (AcO)2-All-Glc-HYP | Acetylated allosyl flavone glucoside | n.q. | n.q. | 853.93 ± 93.95 | 228.07 ± 22.19 c |
21 | AcO-All-Glc-HYP | Acetylated allosyl flavone glucoside | n.q. | n.q. | 183.79 ± 66.40 | 309.96 ± 8.21 c |
22 | [(AcO)2-All-Glc-ISC] or [(AcO)2-All-Glc-LUT] | Acetylated allosyl flavone glucoside | n.q. | n.q. | 315.18 ± 4.40 | 339.99 ± 19.12 |
23 | (AcO)2-All-Glc-HYP | Acetylated allosyl flavone glucoside | 295.65 ± 42.56 * | 295.23 ± 5.54 * | 500.21 ± 69.20 * | 491.29 ± 69.24 * |
24 | Apigenin coumaroylrutinoside//(AcO)2-All-Glc-ISC or (AcO)2-All-Glc-LUT | Other flavones//Acetylated allosyl flavone glucoside | 210.14 ± 6.28 | 234.76 ± 5.13 a | 215.17 ± 32.32 | 213.33 ± 20.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zissi, L.; Dimaki, V.D.; Birba, V.S.; Galani, V.C.; Magafa, V.; Hatziantoniou, S.; Lamari, F.N. Natural Deep Eutectic Solvents as Green Alternatives for Extracting Bioactive Compounds from Sideritis Taxa with Potential Cosmetic Applications. Antioxidants 2025, 14, 68. https://doi.org/10.3390/antiox14010068
Zissi L, Dimaki VD, Birba VS, Galani VC, Magafa V, Hatziantoniou S, Lamari FN. Natural Deep Eutectic Solvents as Green Alternatives for Extracting Bioactive Compounds from Sideritis Taxa with Potential Cosmetic Applications. Antioxidants. 2025; 14(1):68. https://doi.org/10.3390/antiox14010068
Chicago/Turabian StyleZissi, Lamprini, Virginia D. Dimaki, Vassiliki S. Birba, Vassiliki C. Galani, Vassiliki Magafa, Sophia Hatziantoniou, and Fotini N. Lamari. 2025. "Natural Deep Eutectic Solvents as Green Alternatives for Extracting Bioactive Compounds from Sideritis Taxa with Potential Cosmetic Applications" Antioxidants 14, no. 1: 68. https://doi.org/10.3390/antiox14010068
APA StyleZissi, L., Dimaki, V. D., Birba, V. S., Galani, V. C., Magafa, V., Hatziantoniou, S., & Lamari, F. N. (2025). Natural Deep Eutectic Solvents as Green Alternatives for Extracting Bioactive Compounds from Sideritis Taxa with Potential Cosmetic Applications. Antioxidants, 14(1), 68. https://doi.org/10.3390/antiox14010068