Lactoferrin Modulates Radiation Response Under Hypoxic Conditions, Possibly Through the Regulation of ROS Production in a Cell Type-Specific Manner
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Cell Culture and Treatments
2.3. RNA Preparation and Quantitative RT-PCR Analysis
2.4. Immunoblot Analysis
2.5. DCFH-DA/H2DCFDA Cellular ROS Assay
2.6. Immunofluorescence Analysis
2.7. RNA-Seq Analysis
2.8. Statistical Analysis
3. Results
3.1. Cytotoxic Activities of Lactoferrin in Different Cell Lines
3.2. Effects of Lactoferrin on the Radiation Response of Cells Under Hypoxic Conditions
3.3. Effects of Lactoferrin on Radiation-Induced Cell Damage Under Hypoxic Conditions
3.4. Lactoferrin Regulates Multiple Signaling Pathways, Including Apoptosis and NRF2 Antioxidant Responses
3.5. Lactoferrin Regulates Gene Expressions of Apoptotic, NRF2 Signal Pathway, and DNA Damage Responses
3.6. Dual Role of Lactoferrin in Modulating Radiation Responses Under Hypoxic Conditions Through Extrinsic Apoptosis and NRF2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Tandon, P.; Dadhich, A.; Saluja, H.; Bawane, S.; Sachdeva, S. The Prevalence of Squamous Cell Carcinoma in Different Sites of Oral Cavity at Our Rural Health Care Centre in Loni, Maharashtra—A Retrospective 10-Year Study. Współczesna Onkol. 2017, 2, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Xue, L.; Cheng, W.; Tang, J.; Ran, J.; Li, Y. Comprehensive Survival Analysis of Oral Squamous Cell Carcinoma Patients Undergoing Initial Radical Surgery. BMC Oral Health 2024, 24, 919. [Google Scholar] [CrossRef] [PubMed]
- Lacas, B.; Carmel, A.; Landais, C.; Wong, S.J.; Licitra, L.; Tobias, J.S.; Burtness, B.; Ghi, M.G.; Cohen, E.E.W.; Grau, C.; et al. Meta-Analysis of Chemotherapy in Head and Neck Cancer (MACH-NC): An Update on 107 Randomized Trials and 19,805 Patients, on Behalf of MACH-NC Group. Radiother. Oncol. 2021, 156, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Vaupel, P.; Harrison, L. Tumor Hypoxia: Causative Factors, Compensatory Mechanisms, and Cellular Response. Oncologist 2004, 9, 4–9. [Google Scholar] [CrossRef]
- Brown, J.M.; Wilson, W.R. Exploiting Tumour Hypoxia in Cancer Treatment. Nat. Rev. Cancer 2004, 4, 437–447. [Google Scholar] [CrossRef]
- Semenza, G.L. HIF-1 and Mechanisms of Hypoxia Sensing. Curr. Opin. Cell Biol. 2001, 13, 167–171. [Google Scholar] [CrossRef]
- Semenza, G.L. Intratumoral Hypoxia, Radiation Resistance, and HIF-1. Cancer Cell 2004, 5, 405–406. [Google Scholar] [CrossRef]
- Hu, R.; Wang, Q.; Jia, Y.; Zhang, Y.; Wu, B.; Tian, S.; Wang, Y.; Wang, Y.; Ma, W. Hypoxia-Induced DEC1 Mediates Trophoblast Cell Proliferation and Migration via HIF1α Signaling Pathway. Tissue Cell 2021, 73, 101616. [Google Scholar] [CrossRef]
- Guzy, R.D.; Hoyos, B.; Robin, E.; Chen, H.; Liu, L.; Mansfield, K.D.; Simon, M.C.; Hammerling, U.; Schumacker, P.T. Mitochondrial Complex III Is Required for Hypoxia-Induced ROS Production and Cellular Oxygen Sensing. Cell Metab. 2005, 1, 401–408. [Google Scholar] [CrossRef]
- Giansanti, F.; Panella, G.; Leboffe, L.; Antonini, G. Lactoferrin from Milk: Nutraceutical and Pharmacological Properties. Pharmaceuticals 2016, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- Drago-Serrano, M.; Campos-Rodríguez, R.; Carrero, J.; De La Garza, M. Lactoferrin: Balancing Ups and Downs of Inflammation Due to Microbial Infections. Int. J. Mol. Sci. 2017, 18, 501. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, H.; Oda, H.; Yamauchi, K.; Abe, F. Lactoferrin for Prevention of Common Viral Infections. J. Infect. Chemother. 2014, 20, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Siqueiros-Cendón, T.; Arévalo-Gallegos, S.; Iglesias-Figueroa, B.F.; García-Montoya, I.A.; Salazar-Martínez, J.; Rascón-Cruz, Q. Immunomodulatory Effects of Lactoferrin. Acta Pharmacol. Sin. 2014, 35, 557–566. [Google Scholar] [CrossRef]
- Cutone, A.; Rosa, L.; Ianiro, G.; Lepanto, M.S.; Bonaccorsi Di Patti, M.C.; Valenti, P.; Musci, G. Lactoferrin’s Anti-Cancer Properties: Safety, Selectivity, and Wide Range of Action. Biomolecules 2020, 10, 456. [Google Scholar] [CrossRef]
- Ward, P.P.; Paz, E.; Conneely, O.M. Lactoferrin: Multifunctional Roles of Lactoferrin: A Critical Overview. Cell. Mol. Life Sci. 2005, 62, 2540–2548. [Google Scholar] [CrossRef]
- Kanwar, J.; Roy, K.; Patel, Y.; Zhou, S.-F.; Singh, M.; Singh, D.; Nasir, M.; Sehgal, R.; Sehgal, A.; Singh, R.; et al. Multifunctional Iron Bound Lactoferrin and Nanomedicinal Approaches to Enhance Its Bioactive Functions. Molecules 2015, 20, 9703–9731. [Google Scholar] [CrossRef]
- Superti, F. Lactoferrin from Bovine Milk: A Protective Companion for Life. Nutrients 2020, 12, 2562. [Google Scholar] [CrossRef]
- Tung, Y.-T.; Chen, H.-L.; Yen, C.-C.; Lee, P.-Y.; Tsai, H.-C.; Lin, M.-F.; Chen, C.-M. Bovine Lactoferrin Inhibits Lung Cancer Growth through Suppression of Both Inflammation and Expression of Vascular Endothelial Growth Factor. J. Dairy Sci. 2013, 96, 2095–2106. [Google Scholar] [CrossRef]
- Ramezani, R.; Mohammadian, M.; Hosseini, E.S.; Zare, M. The Effect of Bovine Milk Lactoferrin-Loaded Exosomes (exoLF) on Human MDA-MB-231 Breast Cancer Cell Line. BMC Complement. Med. Ther. 2023, 23, 228. [Google Scholar] [CrossRef]
- Rocha, V.P.; Campos, S.P.C.; Barros, C.A.; Trindade, P.; Souza, L.R.Q.; Silva, T.G.; Gimba, E.R.P.; Teodoro, A.J.; Gonçalves, R.B. Bovine Lactoferrin Induces Cell Death in Human Prostate Cancer Cells. Oxid. Med. Cell. Longev. 2022, 2022, 2187696. [Google Scholar] [CrossRef] [PubMed]
- Digumarti, R.; Wang, Y.; Raman, G.; Doval, D.C.; Advani, S.H.; Julka, P.K.; Parikh, P.M.; Patil, S.; Nag, S.; Madhavan, J.; et al. A Randomized, Double-Blind, Placebo-Controlled, Phase II Study of Oral Talactoferrin in Combination with Carboplatin and Paclitaxel in Previously Untreated Locally Advanced or Metastatic Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2011, 6, 1098–1103. [Google Scholar] [CrossRef] [PubMed]
- Jonasch, E.; Stadler, W.M.; Bukowski, R.M.; Hayes, T.G.; Varadhachary, A.; Malik, R.; Figlin, R.A.; Srinivas, S. Phase 2 Trial of Talactoferrin in Previously Treated Patients with Metastatic Renal Cell Carcinoma. Cancer 2008, 113, 72–77. [Google Scholar] [CrossRef]
- Hayes, T.G.; Falchook, G.F.; Varadhachary, G.R.; Smith, D.P.; Davis, L.D.; Dhingra, H.M.; Hayes, B.P.; Varadhachary, A. Phase I Trial of Oral Talactoferrin Alfa in Refractory Solid Tumors. Investig. New Drugs 2006, 24, 233–240. [Google Scholar] [CrossRef]
- Hayes, T.G.; Falchook, G.S.; Varadhachary, A. Phase IB Trial of Oral Talactoferrin in the Treatment of Patients with Metastatic Solid Tumors. Investig. New Drugs 2010, 28, 156–162. [Google Scholar] [CrossRef]
- Parikh, P.M.; Vaid, A.; Advani, S.H.; Digumarti, R.; Madhavan, J.; Nag, S.; Bapna, A.; Sekhon, J.S.; Patil, S.; Ismail, P.M.; et al. Randomized, Double-Blind, Placebo-Controlled Phase II Study of Single-Agent Oral Talactoferrin in Patients with Locally Advanced or Metastatic Non–Small-Cell Lung Cancer That Progressed After Chemotherapy. J. Clin. Oncol. 2011, 29, 4129–4136. [Google Scholar] [CrossRef]
- Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell 2017, 171, 273–285. [Google Scholar] [CrossRef]
- Kruzel, M.L.; Zimecki, M.; Actor, J.K. Lactoferrin in a Context of Inflammation-Induced Pathology. Front. Immunol. 2017, 8, 1438. [Google Scholar] [CrossRef]
- Kosim, M.Y.; Fukazawa, T.; Miyauchi, M.; Hirohashi, N.; Tanimoto, K. P53 Status Modifies Cytotoxic Activity of Lactoferrin under Hypoxic Conditions. Front. Pharmacol. 2022, 13, 988335. [Google Scholar] [CrossRef]
- Maehara, Y.; Kusumoto, T.; Kusumoto, H.; Anai, H.; Sugimachi, K. Sodium Succinate Enhances the Colorimetric Reaction of the in Vitro Chemosensitivity Test: MTT Assay. Oncology 2009, 45, 434–436. [Google Scholar] [CrossRef]
- Tanimoto, K.; Makino, Y.; Pereira, T.; Poellinger, L. Mechanism of Regulation of the Hypoxia-Inducible Factor-1a by the von Hippel-Lindau Tumor Suppressor Protein.
- Li, J.; Xu, C.; Lee, H.J.; Ren, S.; Zi, X.; Zhang, Z.; Wang, H.; Yu, Y.; Yang, C.; Gao, X.; et al. A Genomic and Epigenomic Atlas of Prostate Cancer in Asian Populations. Nature 2020, 580, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A Fast Spliced Aligner with Low Memory Requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Kanda, Y. Investigation of the Freely Available Easy-to-Use Software ‘EZR’ for Medical Statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef]
- Ma, Q. Role of Nrf2 in Oxidative Stress and Toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef]
- Hayes, J.D.; McMahon, M. NRF2 and KEAP1 Mutations: Permanent Activation of an Adaptive Response in Cancer. Trends Biochem. Sci. 2009, 34, 176–188. [Google Scholar] [CrossRef]
- Hamad, S.H.; Sellers, R.S.; Wamsley, N.; Zolkind, P.; Schrank, T.P.; Major, M.B.; Weissman, B.E. NRF2 Activation in Trp53;P16-Deficient Mice Drives Oral Squamous Cell Carcinoma. Cancer Res. Commun. 2024, 4, 487–495. [Google Scholar] [CrossRef]
- Tang, L.; Cui, T.; Wu, J.J.; Liu-Mares, W.; Huang, N.; Li, J. A Rice-Derived Recombinant Human Lactoferrin Stimulates Fibroblast Proliferation, Migration, and Sustains Cell Survival. Wound Repair Regen. 2010, 18, 123–131. [Google Scholar] [CrossRef]
- Nagashima, D.; Ishibashi, Y.; Kawaguchi, S.; Furukawa, M.; Toho, M.; Ohno, M.; Nitto, T.; Izumo, N. Human Recombinant Lactoferrin Promotes Differentiation and Calcification on MC3T3-E1 Cells. Pharmaceutics 2022, 15, 60. [Google Scholar] [CrossRef]
- Shu, X.; Su, J.; Zhao, Y.; Liu, C.; Chen, Y.; Ma, X.; Wang, Z.; Bai, J.; Zhang, H.; Ma, Z. Regulation of HeLa Cell Proliferation and Apoptosis by Bovine Lactoferrin. Cell Biochem. Funct. 2023, 41, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Legrand, D.; Elass, E.; Carpentier, M.; Mazurier, J. Lactoferrin: Lactoferrin: A Modulator of Immune and Inflammatory Responses. Cell. Mol. Life Sci. 2005, 62, 2549. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Lönnerdal, B. Apo- and Holo-Lactoferrin Stimulate Proliferation of Mouse Crypt Cells but through Different Cellular Signaling Pathways. Int. J. Biochem. Cell Biol. 2012, 44, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Kon, N.; Li, T.; Wang, S.-J.; Su, T.; Hibshoosh, H.; Baer, R.; Gu, W. Ferroptosis as a P53-Mediated Activity during Tumour Suppression. Nature 2015, 520, 57–62. [Google Scholar] [CrossRef]
- Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, Biology and Role in Disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 266–282. [Google Scholar] [CrossRef]
- Li, X.; Chen, J.; Yuan, S.; Zhuang, X.; Qiao, T. Activation of the P62-Keap1-NRF2 Pathway Protects against Ferroptosis in Radiation-Induced Lung Injury. Oxid. Med. Cell. Longev. 2022, 2022, 8973509. [Google Scholar] [CrossRef]
- Ibuki, M.; Shoda, C.; Miwa, Y.; Ishida, A.; Tsubota, K.; Kurihara, T. Lactoferrin Has a Therapeutic Effect via HIF Inhibition in a Murine Model of Choroidal Neovascularization. Front. Pharmacol. 2020, 11, 174. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murakami, D.; Fukazawa, T.; Kyo, M.; Miyauchi, M.; Ono, S.; Aikawa, T.; Hirohashi, N.; Tanimoto, K. Lactoferrin Modulates Radiation Response Under Hypoxic Conditions, Possibly Through the Regulation of ROS Production in a Cell Type-Specific Manner. Antioxidants 2025, 14, 1. https://doi.org/10.3390/antiox14010001
Murakami D, Fukazawa T, Kyo M, Miyauchi M, Ono S, Aikawa T, Hirohashi N, Tanimoto K. Lactoferrin Modulates Radiation Response Under Hypoxic Conditions, Possibly Through the Regulation of ROS Production in a Cell Type-Specific Manner. Antioxidants. 2025; 14(1):1. https://doi.org/10.3390/antiox14010001
Chicago/Turabian StyleMurakami, Daitoku, Takahiro Fukazawa, Michihito Kyo, Mutsumi Miyauchi, Shigehiro Ono, Tomonao Aikawa, Nobuyuki Hirohashi, and Keiji Tanimoto. 2025. "Lactoferrin Modulates Radiation Response Under Hypoxic Conditions, Possibly Through the Regulation of ROS Production in a Cell Type-Specific Manner" Antioxidants 14, no. 1: 1. https://doi.org/10.3390/antiox14010001
APA StyleMurakami, D., Fukazawa, T., Kyo, M., Miyauchi, M., Ono, S., Aikawa, T., Hirohashi, N., & Tanimoto, K. (2025). Lactoferrin Modulates Radiation Response Under Hypoxic Conditions, Possibly Through the Regulation of ROS Production in a Cell Type-Specific Manner. Antioxidants, 14(1), 1. https://doi.org/10.3390/antiox14010001