Improving the Extraction of Polyphenols from Cocoa Bean Shells by Ultrasound and Microwaves: A Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Samples
2.3. Proximate Analysis
2.4. Extraction Conditions
2.5. Spectrophotometric Assays
2.5.1. Specific Extinction Coefficient at 280, 320, and 420 nm
2.5.2. Determination of Total Phenolic Content
2.5.3. Radical-Scavenging Activity
2.6. RP-HPLC-DAD Analysis
2.7. Statistical Analysis
3. Results
3.1. Proximate Composition
3.2. Specific Extinction Coefficient at 280, 320, and 420 nm
3.3. Radical-Scavenging Activity
3.4. Total Phenolic Content
3.5. HPLC-DAD Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barišić, V.; Icyer, N.C.; Akyil, S.; Toker, O.S.; Flanjak, I.; Ačkar, Đ. Cocoa Based Beverages—Composition, Nutritional Value, Processing, Quality Problems and New Perspectives. Trends Food Sci. Technol. 2023, 132, 65–75. [Google Scholar] [CrossRef]
- Rojo-Poveda, O.; Barbosa-Pereira, L.; Zeppa, G.; Stévigny, C. Cocoa Bean Shell—A By-Product with Nutritional Properties and Biofunctional Potential. Nutrients 2020, 12, 1123. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 26 July 2023).
- Belwal, T.; Cravotto, C.; Ramola, S.; Thakur, M.; Chemat, F.; Cravotto, G. Bioactive Compounds from Cocoa Husk: Extraction, Analysis and Applications in Food Production Chain. Foods 2022, 11, 798. [Google Scholar] [CrossRef] [PubMed]
- Vásquez, Z.S.; de Carvalho Neto, D.P.; Pereira, G.V.M.; Vandenberghe, L.P.S.; de Oliveira, P.Z.; Tiburcio, P.B.; Rogez, H.L.G.; Góes Neto, A.; Soccol, C.R. Biotechnological Approaches for Cocoa Waste Management: A Review. Waste Manag. 2019, 90, 72–83. [Google Scholar] [CrossRef]
- Cinar, Z.Ö.; Atanassova, M.; Tumer, T.B.; Caruso, G.; Antika, G.; Sharma, S.; Sharifi-Rad, J.; Pezzani, R. Cocoa and Cocoa Bean Shells Role in Human Health: An Updated Review. J. Food Compos. Anal. 2021, 103, 104115. [Google Scholar] [CrossRef]
- Okiyama, D.C.G.; Navarro, S.L.B.; Rodrigues, C.E.C. Cocoa Shell and Its Compounds: Applications in the Food Industry. Trends Food Sci. Technol. 2017, 63, 103–112. [Google Scholar] [CrossRef]
- Younes, A.; Li, M.; Karboune, S. Cocoa Bean Shells: A Review into the Chemical Profile, the Bioactivity and the Biotransformation to Enhance Their Potential Applications in Foods. Crit. Rev. Food Sci. Nutr. 2023, 63, 9111–9135. [Google Scholar] [CrossRef]
- Borrello, M.; Caracciolo, F.; Lombardi, A.; Pascucci, S.; Cembalo, L. Consumers’ Perspective on Circular Economy Strategy for Reducing Food Waste. Sustainability 2017, 9, 141. [Google Scholar] [CrossRef]
- Slorach, P.C.; Jeswani, H.K.; Cuéllar-Franca, R.; Azapagic, A. Environmental and Economic Implications of Recovering Resources from Food Waste in a Circular Economy. Sci. Total Environ. 2019, 693, 133516. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Asioli, D.; Banovic, M.; Perito, M.A.; Peschel, A.O.; Stancu, V. Defining Upcycled Food: The Dual Role of Upcycling in Reducing Food Loss and Waste. Trends Food Sci. Technol. 2023, 132, 132–137. [Google Scholar] [CrossRef]
- Ververis, E.; Ackerl, R.; Azzollini, D.; Colombo, P.A.; de Sesmaisons, A.; Dumas, C.; Fernandez-Dumont, A.; Ferreira da Costa, L.; Germini, A.; Goumperis, T.; et al. Novel Foods in the European Union: Scientific Requirements and Challenges of the Risk Assessment Process by the European Food Safety Authority. Food Res. Int. 2020, 137, 109515. [Google Scholar] [CrossRef] [PubMed]
- Roselli, V.; Pugliese, G.; Leuci, R.; Brunetti, L.; Gambacorta, L.; Tufarelli, V.; Piemontese, L. Green Methods to Recover Bioactive Compounds from Food Industry Waste: A Sustainable Practice from the Perspective of the Circular Economy. Molecules 2024, 29, 2682. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.; Laca, A.; Laca, A.; Díaz, M. Cocoa Bean Shell: A By-Product with High Potential for Nutritional and Biotechnological Applications. Antioxidants 2023, 12, 1028. [Google Scholar] [CrossRef]
- Panja, P. Green Extraction Methods of Food Polyphenols from Vegetable Materials. Curr. Opin. Food Sci. 2018, 23, 173–182. [Google Scholar] [CrossRef]
- Picot-Allain, C.; Mahomoodally, M.F.; Ak, G.; Zengin, G. Conventional versus Green Extraction Techniques—A Comparative Perspective. Curr. Opin. Food Sci. 2021, 40, 144–156. [Google Scholar] [CrossRef]
- Gonçalves, M.L.M.B.B.; Maximo, G.J. Circular Economy in the Food Chain: Production, Processing and Waste Management. Circ.Econ.Sust. 2023, 3, 1405–1423. [Google Scholar] [CrossRef]
- Chemat, F.; Zill-e-Huma; Khan, M.K. Applications of Ultrasound in Food Technology: Processing, Preservation and Extraction. Ultrason. Sonochemistry 2011, 18, 813–835. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V. Microwave-Assisted Extraction of Flavonoids: A Review. Food Bioprocess Technol. 2012, 5, 409–424. [Google Scholar] [CrossRef]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and Opportunities for Ultrasound Assisted Extraction in the Food Industry—A Review. Innov. Food Sci. Emerg. Technol. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Chan, C.-H.; See, T.-Y.; Yusoff, R.; Ngoh, G.-C.; Kow, K.-W. Extraction of Bioactives from Orthosiphon Stamineus Using Microwave and Ultrasound-Assisted Techniques: Process Optimization and Scale Up. Food Chem. 2017, 221, 1382–1387. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; Ummat, V.; Tiwari, B.; Rajauria, G. Exploring Ultrasound, Microwave and Ultrasound–Microwave Assisted Extraction Technologies to Increase the Extraction of Bioactive Compounds and Antioxidants from Brown Macroalgae. Mar. Drugs 2020, 18, 172. [Google Scholar] [CrossRef] [PubMed]
- Shirsath, S.R.; Sonawane, S.H.; Gogate, P.R. Intensification of Extraction of Natural Products Using Ultrasonic Irradiations—A Review of Current Status. Chem. Eng. Process. Process Intensif. 2012, 53, 10–23. [Google Scholar] [CrossRef]
- Djali, M.; Santasa, K.; Indiarto, R.; Subroto, E.; Fetriyuna, F.; Lembong, E. Proximate Composition and Bioactive Compounds of Cocoa Bean Shells as a By-Product from Cocoa Industries in Indonesia. Foods 2023, 12, 3316. [Google Scholar] [CrossRef]
- Bekedam, E.K.; Schols, H.A.; van Boekel, M.A.J.S.; Smit, G. High Molecular Weight Melanoidins from Coffee Brew. J. Agric. Food Chem. 2006, 54, 7658–7666. [Google Scholar] [CrossRef]
- Feng, J.; Berton-Carabin, C.C.; Guyot, S.; Gacel, A.; Fogliano, V.; Schroën, K. Coffee Melanoidins as Emulsion Stabilizers. Food Hydrocoll. 2023, 139, 108522. [Google Scholar] [CrossRef]
- Arlorio, M.; Locatelli, M.; Travaglia, F.; Coïsson, J.-D.; Grosso, E.D.; Minassi, A.; Appendino, G.; Martelli, A. Roasting Impact on the Contents of Clovamide (N-Caffeoyl-L-DOPA) and the Antioxidant Activity of Cocoa Beans (Theobroma cacao L.). Food Chem. 2008, 106, 967–975. [Google Scholar] [CrossRef]
- Locatelli, M.; Gindro, R.; Travaglia, F.; Coïsson, J.-D.; Rinaldi, M.; Arlorio, M. Study of the DPPH-Scavenging Activity: Development of a Free Software for the Correct Interpretation of Data. Food Chem. 2009, 114, 889–897. [Google Scholar] [CrossRef]
- Bordiga, M.; Travaglia, F.; Locatelli, M.; Coïsson, J.D.; Arlorio, M. Characterisation of Polymeric Skin and Seed Proanthocyanidins during Ripening in Six Vitis vinifera L. Cv. Food Chem. 2011, 127, 180–187. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Disca, V.; Jaouhari, Y.; Carrà, F.; Martoccia, M.; Travaglia, F.; Locatelli, M.; Bordiga, M.; Arlorio, M. Effect of Carbohydrase Treatment on the Dietary Fibers and Bioactive Compounds of Cocoa Bean Shells (CBSs). Foods 2024, 13, 2545. [Google Scholar] [CrossRef]
- Mellinas, A.C.; Jiménez, A.; Garrigós, M.C. Optimization of Microwave-Assisted Extraction of Cocoa Bean Shell Waste and Evaluation of Its Antioxidant, Physicochemical and Functional Properties. LWT 2020, 127, 109361. [Google Scholar] [CrossRef]
- Amorati, R.; Valgimigli, L. Advantages and Limitations of Common Testing Methods for Antioxidants. Free Radic. Res. 2015, 49, 633–649. [Google Scholar] [CrossRef] [PubMed]
- La Mantia, A.; Ianni, F.; Schoubben, A.; Cespi, M.; Lisjak, K.; Guarnaccia, D.; Sardella, R.; Blasi, P. Effect of Cocoa Roasting on Chocolate Polyphenols Evolution. Antioxidants 2023, 12, 469. [Google Scholar] [CrossRef] [PubMed]
- Botella-Martínez, C.; Lucas-Gonzalez, R.; Ballester-Costa, C.; Pérez-Álvarez, J.Á.; Fernández-López, J.; Delgado-Ospina, J.; Chaves-López, C.; Viuda-Martos, M. Ghanaian Cocoa (Theobroma cacao L.) Bean Shells Coproducts: Effect of Particle Size on Chemical Composition, Bioactive Compound Content and Antioxidant Activity. Agronomy 2021, 11, 401. [Google Scholar] [CrossRef]
- Disca, V.; Capuano, E.; Arlorio, M. Colonic Fermentation of Enzymatically Treated Cocoa Bean Shells (CBSs) and Short Chain Fatty Acids (SCFAs) Production. LWT 2024, 202, 116311. [Google Scholar] [CrossRef]
- Kolodziejczyk-Czepas, J. Clovamide and Its Derivatives—Bioactive Components of Theobroma cacao and Other Plants in the Context of Human Health. Foods 2024, 13, 1118. [Google Scholar] [CrossRef]
- Llerena, W.; Samaniego, I.; Vallejo, C.; Arreaga, A.; Zhunio, B.; Coronel, Z.; Quiroz, J.; Angós, I.; Carrillo, W. Profile of Bioactive Components of Cocoa (Theobroma cacao L.) By-Products from Ecuador and Evaluation of Their Antioxidant Activity. Foods 2023, 12, 2583. [Google Scholar] [CrossRef]
- Oracz, J.; Lewandowska, U.; Owczarek, K.; Caban, M.; Rosicka-Kaczmarek, J.; Żyżelewicz, D. Isolation, Structural Characterization and Biological Activity Evaluation of Melanoidins from Thermally Processed Cocoa Beans, Carob Kibbles and Acorns as Potential Cytotoxic Agents. Food Chem. 2024, 442, 138423. [Google Scholar] [CrossRef] [PubMed]
- Huynh, G.H.; Van Pham, H.; Hong Nguyen, H.V. Effects of Enzymatic and Ultrasonic-Assisted Extraction of Bioactive Compounds from Cocoa Bean Shells. Food Meas. 2023, 17, 4650–4660. [Google Scholar] [CrossRef]
- Ramos-Escudero, F.; Rojas-García, A.; de la Luz Cádiz-Gurrea, M.; Segura-Carretero, A. High Potential Extracts from Cocoa Byproducts through Sonotrode Optimal Extraction and a Comprehensive Characterization. Ultrason. Sonochemistry 2024, 106, 106887. [Google Scholar] [CrossRef]
- de la Luz Cádiz-Gurrea, M.; Fernández-Ochoa, Á.; Leyva-Jiménez, F.J.; Guerrero-Muñoz, N.; Villegas-Aguilar, M.d.C.; Pimentel-Moral, S.; Ramos-Escudero, F.; Segura-Carretero, A. LC-MS and Spectrophotometric Approaches for Evaluation of Bioactive Compounds from Peru Cocoa By-Products for Commercial Applications. Molecules 2020, 25, 3177. [Google Scholar] [CrossRef]
- Bouchez, A.; Vauchel, P.; Périno, S.; Dimitrov, K. Multi-Criteria Optimization Including Environmental Impacts of a Microwave-Assisted Extraction of Polyphenols and Comparison with an Ultrasound-Assisted Extraction Process. Foods 2023, 12, 1750. [Google Scholar] [CrossRef] [PubMed]
- Mariatti, F.; Gunjević, V.; Boffa, L.; Cravotto, G. Process Intensification Technologies for the Recovery of Valuable Compounds from Cocoa By-Products. Innov. Food Sci. Emerg. Technol. 2021, 68, 102601. [Google Scholar] [CrossRef]
- Sánchez, M.; Ferreira-Santos, P.; Gomes-Dias, J.S.; Botelho, C.; Laca, A.; Rocha, C.M.R. Ohmic Heating-Based Extraction of Biocompounds from Cocoa Bean Shell. Food Biosci. 2023, 54, 102886. [Google Scholar] [CrossRef]
- Soria, A.C.; Villamiel, M. Effect of Ultrasound on the Technological Properties and Bioactivity of Food: A Review. Trends Food Sci. Technol. 2010, 21, 323–331. [Google Scholar] [CrossRef]
Components | Value (%) |
---|---|
Moisture | 9.37 ± 0.11 |
Protein | 16.33 ± 0.07 |
Ashes | 9.34 ± 0.09 |
Lipids | 3.34 ± 0.33 |
EC50 ÷ (CI 95%) | ||
---|---|---|
Raw | Defatted | |
MS | 548.74 (491.70 ÷ 612.07) bc | 562.28 (497.33 ÷ 635.77) c |
SOX | 143.97 (127.83 ÷ 162.08) a | 158.20 (146.82 ÷ 170.42) a |
US | 538.57 (511.58 ÷ 567.04) bc | 622.65 (549.49 ÷ 705.69) c |
MW | 481.07 (423.79 ÷ 545.89) bB | 196.29 (175.82 ÷ 219.13) aA |
US/MW 50 | 614.17 (587.90 ÷ 641.64) cB | 363.69 (326.92 ÷ 404.42) bA |
US/MW 90 | 163.23 (151.01 ÷ 176.40) a | 170.22 (156.65 ÷ 184.91) a |
TPC (mg CE/g Extract) | TPC (mg/CE g CBSs) | |||
---|---|---|---|---|
Raw | Defatted | Raw | Defatted | |
MS | 41.5 ± 4.1 b | 35.3 ± 3.2 b | 4.53 ± 0.45 c | 3.66 ± 0.34 b |
SOX | 31.7 ± 1.0 cB | 36.6 ± 1.2 bA | 3.54 ± 0.11 d | 3.12 ± 0.10 b |
US | 41.2 ± 0.3 bA | 34.5 ± 2.2 bB | 15.0 ± 0.1 aA | 6.37 ± 0.41 aB |
MW | 50.1 ± 4.3 a | 53.2 ± 4.1 a | 7.16 ± 0.62 bA | 5.81 ± 0.45 aB |
US/MW 50 | 37.0 ± 1.9 bc | 37.1 ± 2.4 b | 3.53 ± 0.18 dA | 2.89 ± 0.19 bB |
US/MW 90 | 38.8 ± 0.3 bcA | 38.0 ± 0.3 bB | 4.01 ± 0.03 cdA | 3.16 ± 0.02 bB |
MS | SOX | US | MW | US/MW 50 | US/MW 90 | ||
---|---|---|---|---|---|---|---|
Protocatechuic acid (µg/g) | Raw | 647 ± 4 bB | 1413 ± 38 aB | 617 ± 10 bB | 678 ± 24 bB | 623 ± 21 bB | 1459 ± 49 aA |
Defatted | 869 ± 37 dA | 1846 ± 10 aA | 1001 ± 10 cA | 1453 ± 23 bA | 974 ± 12 cA | 1008 ± 9 cB | |
Caffeic acid (µg/g) | Raw | 91.0 ± 3.0 cB | 155 ± 2 bB | 72.6 ± 1.2 dB | 58.8 ± 0.4 eB | 53.0 ± 0.2 eB | 197 ± 7 aA |
Defatted | 106 ± 4 eA | 211 ± 4 aA | 155 ± 3 cdA | 186 ± 1 bA | 142 ± 2 dA | 162 ± 10 cB | |
p-OH benzoic acid (µg/g) | Raw | 54.5 ± 2.9 dB | 91.8 ± 1.3 bB | 68.6 ± 2.6 cB | 69.7 ± 7.8 cB | 69.1 ± 4.0 c | 240 ± 5 aA |
Defatted | 77.4 ± 8.9 cA | 160 ± 6 bA | 86.1 ± 6.5 cA | 214 ± 8 aA | 79.3 ± 7.3 c | 73.8 ± 2.2 cB | |
Gallic acid (µg/g) | Raw | 306 ± 4 cA | 462 ± 26 bB | 177 ± 1 dA | 159 ± 2 dB | 150 ± 2 dA | 1050 ± 20 aA |
Defatted | 298 ± 1 cB | 609 ± 15 aA | 25,2 ± 2 dB | 192 ± 18 eA | 24,2 ± 1 eB | 360 ± 12 bB | |
Epicatechin (µg/g) | Raw | 627 ± 6 c | 1250 ± 10 bB | 84.1 ± 3 d | 104 ± 13 dB | 84.4 ± 6 dB | 1500 ± 20 a |
Defatted | 637 ± 39 d | 1640 ± 20 aA | 95.7 ± 8 f | 1240 ± 20 cA | 414± 23 eA | 1520 ± 30 b | |
Catechin (µg/g) | Raw | 29.3 ± 1.9 bB | 94.2 ± 4.2 aB | 7.16 ± 1.3 c | 3.38 ± 0.05 cB | 2.36 ± 0.13 cB | 93.9 ± 12.9 a |
Defatted | 40.1 ± 0.8 dA | 139 ± 6 aA | 9.35 ± 0.26 e | 63.0 ± 7.4 cA | 15.8 ± 0.78 eA | 79.3 ± 1.1 b | |
Clovamide (µg/g) | Raw | 34.2 ± 4.2 cB | 116 ± 13 a | 45.9 ± 2.5 bc | 56.1 ± 8.6 bcB | 57.9 ± 5.5 b | 139 ± 4 a |
Defatted | 72.5 ± 11.4 bcA | 134 ± 9 a | 47.1 ± 2.7 c | 114 ± 7 aA | 75.4 ± 5.1 b | 140 ± 13 a | |
Kaempferol (µg/g) | Raw | 4.86 ± 0.15 cB | 18.9 ± 1.2 aA | 3.46 ± 0.25 cB | 9.44 ± 1.21 b | 8.68 ± 0.18 bA | 7.42 ± 0.12 bA |
Defatted | 12.0 ± 1.1 aA | 10.9 ± 0.7 abB | 4.89 ± 0.08 cA | 9.51 ± 0.54 b | 5.04 ± 0.37 cB | 6.15 ± 0.06 cB | |
Quercetin (µg/g) | Raw | 7.46 ± 0.91 cB | 22.4 ± 1.8 b | 5.11 ± 0.36 c | 24.0 ± 0.09 bB | 10.7 ± 1.1 cA | 38.9 ± 7.3 a |
Defatted | 11.5 ± 0.2 dA | 19.1 ± 3.4 c | 6.83 ± 1.51 de | 68.9 ± 2.1 aA | 4.75 ± 0.02 eB | 53.8 ± 3.8 b | |
Proanthocyanidins (mg/g) | Raw | 19.2 ± 0.6 e | 13.6 ± 0.5 fB | 22.5 ± 0.3 c | 28.7 ± 0.7 aA | 20.6 ± 0.2 dB | 24.8 ± 0.1 bB |
Defatted | 20.0 ± 0.4 d | 19.1 ± 0.2 dA | 23.9 ± 0.9 b | 27.3 ± 0.2 aB | 21.5 ± 0.2 cA | 27.9 ± 0.8 aA |
MS | SOX | US | MW | US/MW 50 | US/MW 90 | ||
---|---|---|---|---|---|---|---|
Protocatechuic acid (µg/g) | Raw | 70.6 ± 0.4 dB | 158 ± 4 b | 225 ± 4 aA | 96.9 ± 3.5 cB | 59.4 ± 2.0 eB | 151 ± 5 bA |
Defatted | 95.7 ± 4.1 cA | 162 ± 0.8 b | 196 ± 2 aB | 168 ± 3 bA | 80.6 ± 1.0 dA | 86.5 ± 0.8 dB | |
Caffeic acid (µg/g) | Raw | 9.92 ± 0.33 dB | 17.3 ± 0.2 cB | 26.5 ± 0.4 aB | 8.41 ± 0.06 eB | 5.05 ± 0.02 fB | 20.3 ± 0.7 bA |
Defatted | 11.6 ± 0.4 eA | 18.5 ± 0.3 cA | 30.3 ± 0.6 aA | 21.5 ± 0.1 bA | 11.8 ± 0.2 eA | 13.9 ± 0.9 dB | |
p-OH benzoic acid (µg/g) | Raw | 5.95 ± 0.32 cB | 10.2 ± 0.2 b | 25.0 ± 0.9 aA | 10.0 ± 1.1 bB | 6.59 ± 0.38 c | 24.9 ± 0.53 aA |
Defatted | 8.52 ± 0.98 dA | 14.0 ± 0.5 c | 16.9 ± 1.3 bB | 24.8 ± 1.0 aA | 6.56 ± 0.60 d | 6.34 ± 0.19 dB | |
Gallic acid (µg/g) | Raw | 33.4 ± 0.4 d | 51.6 ± 2.9 c | 64.6 ± 0.3 bA | 22.7 ± 0.2 e | 14.3 ± 0.2 fA | 108 ± 2 aA |
Defatted | 32.7 ± 0.2 b | 53.5 ± 1.3 a | 4.93 ± 0.46 dB | 22.2 ± 2.1 c | 2.00 ± 0.06 dB | 30.9 ± 1.0 bB | |
Epicatechin (µg/g) | Raw | 68.4 ± 0.6 c | 140 ± 1 bB | 30.7 ± 1.1 dA | 14.8 ± 1.8 eB | 8.05 ± 0.54 fB | 155 ± 2 aA |
Defatted | 70.1 ± 4.2 c | 144 ± 2 aA | 18.7 ± 1.6 eB | 143 ± 3 aA | 34.2 ± 2.0 dA | 130 ± 3 bB | |
Catechin (µg/g) | Raw | 3.20 ± 0.21 bB | 10.5 ± 0.47 aB | 2.61 ± 0.47 b | 0.484 ± 0.007 cB | 0.225 ± 0.013 cB | 9.71 ± 1.33 aA |
Defatted | 4.41 ± 0.09 cA | 12.2 ± 0.55 aA | 1.83 ± 0.05 d | 7.29 ± 0.86 bA | 1.31 ± 0.06 dA | 6.81 ± 0.09 bB | |
Clovamide (µg/g) | Raw | 3.73 ± 0.46 dB | 13.0 ± 1.4 b | 16.8 ± 0.9 a | 8.02 ± 1.23 cB | 5.52 ± 0.52 cd | 14.4 ± 0.47 abA |
Defatted | 7.97 ± 1.25 cdA | 11.7 ± 0.8 ab | 9.22 ± 0.53 bc | 13.1 ± 0.76 aA | 6.24 ± 0.42 d | 12.0 ± 1.1 aB | |
Kaempferol (µg/g) | Raw | 0.530 ± 0.016 cB | 2.11 ± 0.14 aA | 1.26 ± 0.09 bA | 1.35 ± 0.17 b | 0.827 ± 0.017 cA | 0.767 ± 0.012 cA |
Defatted | 1.32 ± 0.12 aA | 0.955 ± 0.059 bB | 0.957 ± 0.015 bB | 1.10 ± 0.06 b | 0.417 ± 0.031 cB | 0.528 ± 0.005 cB | |
Quercetin (µg/g) | Raw | 0.814 ± 0.099 dB | 2.50 ± 0.20 bcA | 1.87 ± 0.13 cd | 3.43 ± 0.01 abB | 1.02 ± 0.10 dA | 4.02 ± 0.76 a |
Defatted | 1.27 ± 0.02 cA | 1.68 ± 0.29 cB | 1.34 ± 0.30 c | 7.98 ± 0.24 aA | 0.393 ± 0.002 dB | 4.62 ± 0.27 b | |
Proanthocyanidins (mg/g) | Raw | 2.10 ± 0.07 d | 1.51 ± 0.05 eB | 8.21 ± 0.11 aA | 4.11 ± 0.10 bA | 1.96 ± 0.01 dA | 2.57 ± 0.01 cA |
Defatted | 2.20 ± 0.04 c | 1.68± 0.02 dA | 4.68 ± 0.17 aB | 3.17 ± 0.02 bB | 1.78 ± 0.01 dB | 2.39 ± 0.07 cB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Disca, V.; Travaglia, F.; Carini, C.; Coïsson, J.D.; Cravotto, G.; Arlorio, M.; Locatelli, M. Improving the Extraction of Polyphenols from Cocoa Bean Shells by Ultrasound and Microwaves: A Comparative Study. Antioxidants 2024, 13, 1097. https://doi.org/10.3390/antiox13091097
Disca V, Travaglia F, Carini C, Coïsson JD, Cravotto G, Arlorio M, Locatelli M. Improving the Extraction of Polyphenols from Cocoa Bean Shells by Ultrasound and Microwaves: A Comparative Study. Antioxidants. 2024; 13(9):1097. https://doi.org/10.3390/antiox13091097
Chicago/Turabian StyleDisca, Vincenzo, Fabiano Travaglia, Chiara Carini, Jean Daniel Coïsson, Giancarlo Cravotto, Marco Arlorio, and Monica Locatelli. 2024. "Improving the Extraction of Polyphenols from Cocoa Bean Shells by Ultrasound and Microwaves: A Comparative Study" Antioxidants 13, no. 9: 1097. https://doi.org/10.3390/antiox13091097
APA StyleDisca, V., Travaglia, F., Carini, C., Coïsson, J. D., Cravotto, G., Arlorio, M., & Locatelli, M. (2024). Improving the Extraction of Polyphenols from Cocoa Bean Shells by Ultrasound and Microwaves: A Comparative Study. Antioxidants, 13(9), 1097. https://doi.org/10.3390/antiox13091097