Decreased Systemic Monocyte Colony Protein-1 (MCP-1) Levels and Reduced sCD14 Levels in Curcumin-Treated Patients with Moderate Anxiety: A Pilot Study
Abstract
:1. Introduction
2. Aim
3. Methods
3.1. Study Design
3.2. Clinical Characterization of Patients
3.3. Inclusion Criteria
3.4. Exclusion Criteria
3.5. Hamilton Scale Type II: Evaluation of Anxiety
3.6. Thiobarbituric Acid Assay (TBARS): Malondialdehyde (MDA) Levels as an Index of Lipid Peroxidation
3.7. Quantification of Cortisol via ELISA in Saliva (ng/mL)
3.8. ELISA Method for Systemic MCP-1, TNF Alpha, and sCD14 Protein Levels (pg/mL)
3.9. Statistical Analysis
4. Methodology
4.1. Quantification of Anxiety Levels in Subjects: Hamilton Scale II Items
4.2. Cortisol Levels in Saliva (ng/mL)
4.3. Thiobarbituric Acid Assay (TBARS) for Malondialdehyde (MDA) Quantification as an Index of Lipoperoxidation
5. Results
5.1. ELISA for MCP-1, TNF Alpha, and sCD14 Protein Levels in Plasma (pg/mL)
5.2. Bifactorial ANOVA: Hamilton Scores in Scale II
5.3. Cortisol Levels (Saliva, ng/mL)
5.4. Thiobarbituric Acid Assay (TBARS): Assay for Malondialdehyde (MDA) Quantification as an Index of Lipoperoxidation in Plasma
5.5. TNF Alpha
5.6. Monocyte Colony Protein-1 (MCP-1)
5.7. sCD14 Levels (pg/mL)
5.8. Spearman Correlations among Study Groups
5.9. Correlation between Cortisol and Biochemical Markers
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vedhara, K.; Hyde, J.; Gilchrist, I.D.; Tytherleigh, M.; Plummmer, S. Acute stress, memory, attention and cortisol. Psychoneuroendocrinology 2000, 25, 535–549. [Google Scholar] [CrossRef]
- Miller, G.E.; Chen, E.; Zhou, E.S. If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychol. Bull. 2007, 133, 25–45. [Google Scholar] [CrossRef] [PubMed]
- Galaif, E.; Sussman, S.; Chou, C.; Wills, T. Longitudinal relations among depression, stress, and coping in high risk youth. J. Youth Adolesc. 2003, 32, 243–258. [Google Scholar] [CrossRef]
- Munck, A.; Guyre, P.M. Glucocorticoids and immune function. In Psychoneuroimmunology; Ader, R., Felten, D.L., Cohen, N., Eds.; Academic Press: San Diego, CA, USA, 1992; pp. 447–474. [Google Scholar]
- Franchimont, D. Overview of the actions of glucocorticoids on the immune response: A good model to characterize new pathways of immunosuppression for new treatment strategies. Ann. N. Y. Acad. Sci. 2024, 1024, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Raison, C.L.; Miller, A.H. When not enough is too much: The role of insufficient glucocorticoid signalling in the pathophysiology of stress-related disorders. Am. J. Psychiatry 2003, 160, 1554–1565. [Google Scholar] [CrossRef]
- La Torre, D.; Van Oudenhove, L.; Vanuytsel, T.; Verbeke, K. Psychosocial stress-induced intestinal permeability in healthy humans: What is the evidence? Neurobiol. Stress. 2023, 6, 100579. [Google Scholar] [CrossRef]
- Turnbull, A.V.; Rivier, C.L. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: Actions and mechanisms of action. Physiol. Rev. 1999, 79, 1–71. [Google Scholar] [CrossRef]
- Correa, S.G.; Maccioni, M.; Rivero, V.E.; Iribarren, P.; Sotomayor, C.E.; Riera, C.M. Cytokines and the immune-neuroendocrine network: What did we learn from infection and autoimmunity? Cytokine Growth Rev. 2007, 18, 125–134. [Google Scholar] [CrossRef]
- Beishuizen, A.; Thijs, L.G. Endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. J. Endotoxin Res. 2003, 9, 3–24. [Google Scholar]
- Diotaiuti, P.; Falese, L.; Mancone, S.; Purromuto, F. A Structural Model of Self-Efficacy in Handball Referees. Front. Psychol. 2017, 8, 811. [Google Scholar] [CrossRef]
- Ramirez, K.; Fornaguera-Trías, J.; Sheridan, J.F. Stress-Induced Microglia Activation and Monocyte Trafficking to the Brain Underlie the Development of Anxiety and Depression. Curr. Top. Behav. Neurosci. 2017, 31, 155–172. [Google Scholar] [PubMed]
- Taylor, P.R.; Gordon, S. Monocyte heterogeneity and innate immunity. Immunity 2003, 19, 2–4. [Google Scholar] [CrossRef] [PubMed]
- Zisman, D.A.; Kunkel, S.L.; Strieter, R.M.; Tsai, W.C.; Bucknell, K.; Wilkowski, J.; Standiford, T.J. MCP-1 protects mice in lethal endotoxemia. J. Clin. Investig. 1997, 99, 2832–2836. [Google Scholar] [CrossRef]
- Labban, L. Medicinal and pharmacological properties of Turmeric (Curcuma longa): A review. Int J. Pharm. Biomed. Sci. 2014, 5, 17–23. [Google Scholar]
- Karimian, M.; Pirro, S.; Majeed, M.; Sahebkar, A. Curcumin as a natural regulator of monocyte chemoattractant protein-1. Cytokine Growth Factor Rev. 2017, 33, 55–63. [Google Scholar] [CrossRef]
- Hosseini, H.; Ghavidel, F.; Rajabian, A.; Homayouni-Tabrizi, M.; Majeed, M.; Sahebkar, A. The Effects of Curcumin Plus Piperine Co-administration on Inflammation and Oxidative Stress: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Curr. Med. Chem. 2024, 29. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- El-Saadony, M.T.; Yang, T.; Korma, S.A.; Sitohy, M.; Abd El-Mageed, T.A.; Selim, S.; Al Jaouni, S.K.; Salem, H.M.; Mahmmod, Y.; Soliman, S.M.; et al. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. Front. Nutr. 2023, 10, 1040259. [Google Scholar]
- Godse, S.; Zhou, L.; Sinha, N.; Kodidela, S.; Kumar, A.; Singh, U.P.; Kumar, S. Curcumin enhances elvitegravir concentration and alleviates oxidative stress and inflammatory response. Sci. Rep. 2023, 13, 19864. [Google Scholar] [CrossRef]
- Marczylo, T.H.; Verschoyle, R.D.; Cooke, D.N.; Morazzoni, P.; Steward, W.P.; Gescher, A.J. Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemother. Pharmacol. 2007, 60, 171–177. [Google Scholar] [CrossRef]
- Kidd, P.M. Bioavailability and activity of phytosome complexes from botanical polyphenols: The silymarin, curcumin, green tea, and grape seed extracts. Altern. Med. Rev. 2009, 14, 226–246. [Google Scholar]
- Rask, E.; Olsson, T.; Söderberg, S.; Andrew, R.; Livingstone, D.E.; Johnson, O.; Walker, B.R. Tissue-specific dysregulation of cortisol metabolism in human obesity. J. Clin. Endocrinol. Metab. 2001, 86, 1418–1421. [Google Scholar] [CrossRef]
- Hamilton, M. Hamilton Anxiety Rating Scale (HAM-A): The assessment of anxiety states by rating. Br. J. Med. Psychol. 1959, 32, 50–55. [Google Scholar] [CrossRef]
- Twari, V.; Chopra, K. Resveratrol prevents alcohol-induced cognitive deficits and brain damage by blocking inflammatory signalling and cell death cascade in neonatal brain. J. Neurochem. 2001, 1174, 678–690. [Google Scholar]
- VanBruggen, M.D.; Hackney, A.C.; McMurray, R.G.; Ondrak, K.S. The relationship between serum and salivary cortisol levels in response to different intensities of exercise. Int. J. Sports Physiol. Perform. 2011, 6, 396–407. [Google Scholar] [CrossRef]
- Iqbal, T.; Elahi, A.; Wijns, W.; Shahzad, A. Cortisol detection methods for stress monitoring in connected health. Health Sci. Rev. 2003, 6, 100079. [Google Scholar]
- Wüst, S.; Wolf, J.; Hellhammer, D.H.; Federenko, I.; Schommer, N.; Kirschbaum, C. The cortisol awakening response-normal values and cofounds. Noise Health 2000, 7, 77–85. [Google Scholar]
- Perogamvros, I.; Keevil, B.G.; Ray, D.W.; Trainer, P.J. Salivary cortisone is a potential biomarker for serum free cortisol. J. Clin. Endocrinol. Metab. 2010, 95, 4951–4958. [Google Scholar] [CrossRef]
- Merino, J.J.; Muñetón-Gomez, V.; Muñetón-Gómez, C.; Pérez-Izquierdo, M.Á.; Loscertales, M.; Toledano Gasca, A. Hippocampal CCR5/RANTES Elevations in a Rodent Model of Post-Traumatic Stress Disorder: Maraviroc (a CCR5 Antagonist) Increases Corticosterone Levels and Enhances Fear Memory Consolidation. Biomolecules 2020, 1, 212. [Google Scholar] [CrossRef]
- Targum, S.D. Cortisol response during different anxiogenic challenges in panic disorder patients. Psychoneuroendocrinology 1992, 17, 453–458. [Google Scholar] [CrossRef]
- Soltani, M.; Hosseinzadeh-Attar, M.J.; Rezaei, M.; Alipoor, E.; Vasheghani-Farahani, A.; Yaseri, M.; Rezayat, S.M. Effect of nano-curcumin supplementation on cardiometabolic risk factors, physical and psychological quality of life, and depression in patients with coronary slow flow phenomenon: A randomized double-blind clinical trial. Trials 2024, 31, 515. [Google Scholar] [CrossRef]
- Fusar-Poli, L.; Vozza, L.; Gabbiadini, A.; Vanella, A.; Concas, I.; Tinacci, S.; Petralia, A.; Signorelli, M.S.; Aguglia, E. Curcumin for depression: A meta-analysis. Crit. Rev. Food Sci. Nutr. 2020, 60, 2643–2653. [Google Scholar] [CrossRef] [PubMed]
- Braun, M.; Boström, G.; Ingelsson, M.; Kilander, L.; Löwenmark, M.; Nyholm, D.; Burman, J.; Niemelä, V.; Freyhult, E.; Kultima, K.; et al. Levels of inflammatory cytokines MCP-1, CCL4, and PD-L1 in CSF differentiate idiopathic normal pressure hydrocephalus from neurodegenerative diseases. Fluids Barriers CNS 2003, 13, 72. [Google Scholar] [CrossRef] [PubMed]
- Lopresti, A.L. Potential Role of Curcumin for the Treatment of Major Depressive Disorder. CNS Drugs 2022, 36, 123–141. [Google Scholar] [CrossRef]
- Lopresti, A.L.; Drummond, P.D. Efficacy of curcumin, and a saffron/curcumin combination for the treatment of major depression: A randomised, double-blind, placebo-controlled study. J. Affect. Disord. 2017, 207, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Sadeghian, M.; Rahmani, S.; Jamialahmadi, T.; Johnston, T.P.; Sahebkar, A. The effect of oral curcumin supplementation on health-related quality of life: A systematic review and meta-analysis of randomized controlled trials. J. Affect. Disord. 2021, 278, 627–636. [Google Scholar] [CrossRef]
- Hu, S.; Belcaro, G.; Dugall, M.; Peterzan, P.; Hosoi, M.; Ledda, A.; Riva, A.; Giacomelli, L.; Togni, S.; Eggenhoffner, R.; et al. Interaction study between antiplatelet agents, anticoagulants, thyroid replacement therapy and a bioavailable formulation of curcumin (Meriva®). Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 5042–5046. [Google Scholar]
- Thompson, W.L.; Karpus, W.J.; Van Eldik, L.J. MCP-1-deficient mice show reduced neuroinflammatory responses and increased peripheral inflammatory responses to peripheral endotoxin insult. J. Neuroinflamm. 2008, 15, 35. [Google Scholar] [CrossRef]
- Daly, C.; Rollins, B.J. Monocyte chemoattractant protein-1 (CCL2) in inflammatory disease and adaptive immunity: Therapeutic opportunities and controversies. Microcirculation 2003, 10, 247–257. [Google Scholar] [CrossRef]
- Kennedy, K.J.; Strieter, R.M.; Kunkel, S.L.; Lukacs, N.W.; Karpus, W.J. Acute and relapsing experimental autoimmune encephalomyelitis are regulated by differential expression of the CC chemokines macrophage inflammatory protein-1alpha and monocyte chemotactic protein-1. J. Neuroimmunol. 1998, 92, 98–108. [Google Scholar] [CrossRef]
- Hughes, P.M.; Allegrini, P.R.; Rudin, M.; Perry, V.H.; Mir, A.K.; Wiessner, C. Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. J. Cereb. Blood Flow. Metab. 2002, 22, 308–317. [Google Scholar] [CrossRef]
- Ramnath, R.D.; Ng, S.W.; Guglielmotti, A.; Bhatia, M. Role of MCP-1 in endotoxemia and sepsis. Int. Immunopharmacol. 2008, 8, 810–818. [Google Scholar] [CrossRef]
- Speyer, C.L.; Gao, H.; Rancilio, N.J.; Neff, T.A.; Huffnagle, G.B.; Sarma, J.V.; Ward, P.A. Novel chemokine responsiveness and mobilization of neutrophils during sepsis. Am. J. Pathol. 2004, 165, 2187–2196. [Google Scholar] [CrossRef]
- Wohleb, E.S.; McKim, D.B.; Sheridan, J.F.; Godbout, I.P. Monocyte trafficking to the brain with stress and inflammation: A novel axis of immune-to-brain communication that influences mood and behavior. Front. Neurosci. 2015, 21, 447. [Google Scholar] [CrossRef]
- Thibeault, I.; Laflamme, N.; Rivest, S. Regulation of the gene encoding the monocyte chemoattractant protein 1 (MCP-1) in the mouse and rat brain in response to circulating LPS and proinflammatory cytokines. J. Comp. Neurol. 2001, 434, 461–477. [Google Scholar] [CrossRef]
- Serbina, N.V.; Pamer, E.G. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 2006, 7, 311–317. [Google Scholar] [CrossRef]
- Saederup, N.; Cardona, A.E.; Croft, K.; Mizutani, M.; Cotleur, A.C.; Tsou, C.L.; Ransohoff, R.M.; Charo, I.F. Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS ONE 2010, 5, e13693. [Google Scholar] [CrossRef]
- Boivin, N.; Menasria, R.; Gosselin, D.; Rivest, S.; Boivin, G. Impact of deficiency in CCR2 and CX3CR1 receptors on monocytes trafficking in herpes simplex virus encephalitis. J. Gen. Virol. 2012, 93, 1294–1304. [Google Scholar] [CrossRef]
- Final del Formulario Tarr, A.J.; Powell, N.D.; Reader, B.F.; Bhave, N.S.; Roloson, A.L.; Carson, W.E.; Sheridan, J.F. beta-adrenergic receptor mediated increases in activation and function of natural killer cells following repeated social disruption. Brain Behav. Immun. 2012, 26, 1226–1238. [Google Scholar]
- Wohleb, E.S.; Hanke, M.L.; Corona, A.W.; Powell, N.D.; Stiner, L.M.; Bailey, M.T.; Nelson, R.J.; Godbout, J.P.; Sheridan, J.F. β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. J. Neurosci. 2011, 31, 6277–6288. [Google Scholar] [CrossRef]
- Patel, A.A.; Zhang, Y.; Fullerton, J.N.; Boelen, L.; Rongvaux, A.; Maini, A.A.; Bigley, V.; Flavell, R.A.; Gilroy, D.W.; Asquith, B.; et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med. 2017, 214, 1913–1923. [Google Scholar] [CrossRef]
- Gómez-Rial, J.; Currás-Tuala, M.J.; Rivero-Calle, I.; Gómez-Carballa, A.; Cebey-López, M.; Rodríguez-Tenreiro, C.; Dacosta-Urbieta, A.; Rivero-Velasco, C.; Rodríguez-Núñez, N.; Trastoy-Pena, R.; et al. Increased Serum Levels of sCD14 and sCD163 Indicate a Preponderant Role for Monocytes in COVID-19 Immunopathology. Front. Immunol. 2020, 23, 560381. [Google Scholar] [CrossRef] [PubMed]
- Diotaiuti, P.; Valente, G.; Mancone, S.; Grambone, A.; Chirico, A. Metric Goodness and Measurement Invariance of the Italian Brief Version of Interpersonal Reactivity Index: A Study with Young Adults. Front. Psychol. 2021, 12, 773363. [Google Scholar] [CrossRef]
Characteristics | Control (n = 22) | Cur (n = 15) | Anx (n = 22) | Anx + Cur (After) (n = 22) |
---|---|---|---|---|
BMI (Mean ± SEM) | 21.5 ± 7 | 21 ± 2.73 | 23 ± 1.5 | 22.8 ± 3.1 |
Sex | ||||
Female | 16 | 11 | 14 | 17 |
Male | 6 | 4 | 8 | 5 |
Age (years) Mean ± SEM | 43 ± 7.9 | 45 ± 9 | 48 ± 8 | 46 ± 7.9 |
Sociocultural status | Medium/high | Medium/high | Medium/high | Medium/high |
Marker (mean ± SEM) | Cont | Cur | Anx | Anx + Cur |
---|---|---|---|---|
Hamilton scores | 15.59 ± 0.39 | 16 ± 0.44 | 27 ± 0.92 * | 22 ± 0.5 * # |
Cortisol (ng/mL) | 3.2 ± 0.21 | 3.4 ± 0.18 | 6.45 ± 0.19 * | 5.21 ± 0.15 * # |
Malonaldehyde (MDA: % vs. control) | 100 ± 9 | 101 ± 11 | 145 ± 14 * | 104 ± 12 # |
TNF Alpha | 47 ± 1.6 | 50.3 ± 2.41 | 60 ± 1.6 | 52.3 ± 2.74 # |
sCD14 (pg/mL) | 843 ± 60 | 834.46 ± 41 | 1142 ± 22 * | 883.9 ± 43 * # |
MCP-1 (pg/mL) | 104.9 ± 4.13 | 95 ± 3.94 | 173 ± 23 * | 149.9 ± 13 * # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merino, J.J.; Parmigiani-Cabaña, J.M.; Parmigiani-Izquierdo, J.M.; Fernández-García, R.; Cabaña-Muñoz, M.E. Decreased Systemic Monocyte Colony Protein-1 (MCP-1) Levels and Reduced sCD14 Levels in Curcumin-Treated Patients with Moderate Anxiety: A Pilot Study. Antioxidants 2024, 13, 1052. https://doi.org/10.3390/antiox13091052
Merino JJ, Parmigiani-Cabaña JM, Parmigiani-Izquierdo JM, Fernández-García R, Cabaña-Muñoz ME. Decreased Systemic Monocyte Colony Protein-1 (MCP-1) Levels and Reduced sCD14 Levels in Curcumin-Treated Patients with Moderate Anxiety: A Pilot Study. Antioxidants. 2024; 13(9):1052. https://doi.org/10.3390/antiox13091052
Chicago/Turabian StyleMerino, José Joaquín, José María Parmigiani-Cabaña, José María Parmigiani-Izquierdo, Rubén Fernández-García, and María Eugenia Cabaña-Muñoz. 2024. "Decreased Systemic Monocyte Colony Protein-1 (MCP-1) Levels and Reduced sCD14 Levels in Curcumin-Treated Patients with Moderate Anxiety: A Pilot Study" Antioxidants 13, no. 9: 1052. https://doi.org/10.3390/antiox13091052
APA StyleMerino, J. J., Parmigiani-Cabaña, J. M., Parmigiani-Izquierdo, J. M., Fernández-García, R., & Cabaña-Muñoz, M. E. (2024). Decreased Systemic Monocyte Colony Protein-1 (MCP-1) Levels and Reduced sCD14 Levels in Curcumin-Treated Patients with Moderate Anxiety: A Pilot Study. Antioxidants, 13(9), 1052. https://doi.org/10.3390/antiox13091052