Supplementation with Combined Additive Improved the Production of Dairy Cows and Their Offspring with Maintenance of Antioxidative Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Animal Management
2.2. Diets, Milk Production and Composition
2.3. Blood Sampling and Analyses for Dairy Cows
2.4. Colostrum Sampling and Analyses
2.5. Calf Housing and Colostrum Management
2.6. Calf Growth Measurements, Feed Sampling, and Analysis
2.7. Calf Health Check and Treatment
2.8. Statistical Analysis
3. Results
3.1. Cow Performance and Milk Composition
3.2. Blood Parameters
3.3. Colostrum Compositions
3.4. Calf Growth Performance and Health
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drackley, J.K. Biology of Dairy Cows During the Transition Period: The Final Frontier? J. Dairy Sci. 1999, 82, 2259–2273. [Google Scholar] [CrossRef]
- Minuti, A.; Palladino, A.; Khan, M.J.; Alqarni, S.; Agrawal, A.; Piccioli-Capelli, F.; Hidalgo, F.; Cardoso, F.C.; Trevisi, E.; Loor, J.J. Abundance of ruminal bacteria, epithelial gene expression, and systemic biomarkers of metabolism and inflammation are altered during the peripartal period in dairy cows. J. Dairy Sci. 2015, 98, 8940–8951. [Google Scholar] [CrossRef]
- Trevisi, E.; Minuti, A. Assessment of the innate immune response in the periparturient cow. Res. Vet. Sci. 2018, 116, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Sordillo, L.M.; Mavangira, V. The nexus between nutrient metabolism, oxidative stress and inflammation in transition cows. Anim. Prod. Sci. 2014, 54, 1204–1214. [Google Scholar] [CrossRef]
- Ayemele, A.G.; Tilahun, M.; Lingling, S.; Elsaadawy, S.A.; Guo, Z.; Zhao, G.; Xu, J.; Bu, D. Oxidative Stress in Dairy Cows: Insights into the Mechanistic Mode of Actions and Mitigating Strategies. Antioxidants 2021, 10, 1918. [Google Scholar] [CrossRef]
- Sordillo, L.M.; Aitken, S.L. Impact of oxidative stress on the health and immune function of dairy cattle. Vet. Immunol. Immunopathol. 2009, 128, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Castillo, C.; Hernandez, J.; Bravo, A.; Lopez-Alonso, M.; Pereira, V.; Benedito, J.L. Oxidative status during late pregnancy and early lactation in dairy cows. Vet. J. 2005, 169, 286–292. [Google Scholar] [CrossRef]
- Abuelo, A.; Hernández, J.; Benedito, J.L.; Castillo, C. The importance of the oxidative status of dairy cattle in the periparturient period: Revisiting antioxidant supplementation. J. Anim. Physiol. Anim. Nutr. 2015, 99, 1003–1016. [Google Scholar] [CrossRef] [PubMed]
- Abuelo, A.; Hernández, J.; Benedito, J.L.; Castillo, C. Oxidative stress index (OSi) as a new tool to assess redox status in dairy cattle during the transition period. Animal 2013, 7, 1374–1378. [Google Scholar] [CrossRef]
- Gabai, G.; De Luca, E.; Miotto, G.; Zin, G.; Stefani, A.; Da Dalt, L.; Barberio, A.; Celi, P. Relationship between Protein Oxidation Biomarkers and Uterine Health in Dairy Cows during the Postpartum Period. Antioxidants 2019, 8, 21. [Google Scholar] [CrossRef]
- Osorio, J.S.; Trevisi, E.; Ballou, M.A.; Bertoni, G.; Drackley, J.K.; Loor, J.J. Effect of the level of maternal energy intake prepartum on immunometabolic markers, polymorphonuclear leukocyte function, and neutrophil gene network expression in neonatal Holstein heifer calves. J. Dairy Sci. 2013, 96, 3573–3587. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Monteiro, A.P.; Hayen, M.J.; Dahl, G.E. Short communication: Maternal heat stress during the dry period alters postnatal whole-body insulin response of calves. J. Dairy Sci. 2014, 97, 897–901. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Liu, Y.C.; Zhang, Z.H.; Zhang, C.Z.; Su, H.W.; Li, S.L. Effect of prepartum maternal energy density on the growth performance, immunity, and antioxidation capability of neonatal calves. J. Dairy Sci. 2012, 95, 4510–4518. [Google Scholar] [CrossRef]
- Fowden, A.L.; Giussani, D.A.; Forhead, A.J. Intrauterine programming of physiological systems: Causes and consequences. Physiology 2006, 21, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Abuelo, A.; Hernández, J.; Benedito, J.; Castillo, C. Redox Biology in Transition Periods of Dairy Cattle: Role in The Health of Periparturient and Neonatal Animals. Antioxidants 2019, 8, 20. [Google Scholar] [CrossRef] [PubMed]
- Meglia, G.E.; Holtenius, K.; Petersson, L.; Ohagen, P.; Waller, K.P. Prediction of Vitamin A, Vitamin E, Selenium and Zinc Status of Periparturient Dairy Cows Using Blood Sampling During the Mid Dry Period. Acta Vet. Scand. 2004, 45, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Spears, J.W.; Weiss, W.P. Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet. J. 2008, 176, 70–76. [Google Scholar] [CrossRef]
- Kegley, E.B.; Ball, J.J.; Beck, P. 121 Impact of mineral and vitamin status on beef cattle immune function and health. J. Anim. Sci. 2016, 94, 59. [Google Scholar] [CrossRef]
- Smith, A.D.; Panickar, K.S.; Urban, J.F., Jr.; Dawson, H.D. Impact of Micronutrients on the Immune Response of Animals. Annu. Rev. Anim. Biosci. 2018, 6, 227–254. [Google Scholar] [CrossRef]
- Dorgham, S.M.; Khairy, E.A.; Twfik, H.I. Effects of Dietary Antioxidants Supplementation on Cellular Immune Response and Evaluation of Their Antimicrobial Activity Against Some Enteric Pathogens in Goats. Int. J. Vet. Med. 2013, 11, 145–154. [Google Scholar]
- Khan, M.Z.; Zhang, Z.; Liu, L.; Wang, D.; Mi, S.; Liu, X.; Liu, G.; Guo, G.; Li, X.; Wang, Y.; et al. Folic acid supplementation regulates key immunity-associated genes and pathways during the periparturient period in dairy cows. Asian-Australas. J. Anim. Sci. 2020, 33, 1507–1519. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.A.; Bobe, G.; Vorachek, W.R.; Kasper, K.; Traber, M.G.; Mosher, W.D.; Pirelli, G.J.; Gamroth, M. Effect of supranutritional organic selenium supplementation on postpartum blood micronutrients, antioxidants, metabolites, and inflammation biomarkers in selenium-replete dairy cows. Biol. Trace Elem. Res. 2014, 161, 272–287. [Google Scholar] [CrossRef] [PubMed]
- Koujalagi, S.; Chhabra, S.; Randhawa, S.S.; Singh, R.; Gupta, D. Effect of herbal vitamin E and organic selenium complex supplementation on oxidative stress, milk quality and somatic cell count in transition dairy cows. J. Entomol. Zool. Stud. 2020, 8, 660–665. [Google Scholar]
- Zontini, A.M.; Zerbini, E.; Minuti, A.; Trevisi, E. Effects of supplementing Saccharomyces cerevisiae fermentation products to dairy cows from the day of dry-off through early lactation. J. Dairy Sci. 2021, 104, 11673–11685. [Google Scholar] [CrossRef] [PubMed]
- Van Emon, M.; Sanford, C.; Mccoski, S. Impacts of Bovine Trace Mineral Supplementation on Maternal and Offspring Production and Health. Animals 2020, 10, 2404. [Google Scholar] [CrossRef] [PubMed]
- Alhussien, M.N.; Tiwari, S.; Panda, B.S.K.; Pandey, Y.; Dang, A.K. Supplementation of antioxidant micronutrients reduces stress and improves immune function/response in periparturient dairy cows and their calves. J. Trace Elem. Med. Biol. 2021, 65, 126718. [Google Scholar] [CrossRef] [PubMed]
- Arshad, U.; Zenobi, M.G.; Staples, C.R.; Santos, J.E.P. Meta-analysis of the effects of supplemental rumen-protected choline during the transition period on performance and health of parous dairy cows. J. Dairy Sci. 2020, 103, 282–300. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yang, Z.; Dong, G. Niacin nutrition and rumen-protected niacin supplementation in dairy cows: An updated review. Br. J. Nutr. 2019, 122, 1103–1112. [Google Scholar] [CrossRef]
- Aragona, K.M.; Chapman, C.E.; Pereira, A.B.D.; Isenberg, B.J.; Standish, R.B.; Maugeri, C.J.; Cabral, R.G.; Erickson, P.S. Prepartum supplementation of nicotinic acid: Effects on health of the dam, colostrum quality, and acquisition of immunity in the calf. J. Dairy Sci. 2016, 99, 3529–3538. [Google Scholar] [CrossRef]
- Faccio-Demarco, C.; Mumbach, T.; Oliveira-de-Freitas, V.; Fraga, E.S.-R.R.; Medeiros-Gonçalves, F.; Nunes-Corrêa, M.; Burkert-Del Pino, F.A.; Mendonça-Nunes-Ribeiro Filho, H.; Cassal-Brauner, C. Effect of yeast products supplementation during transition period on metabolic profile and milk production in dairy cows. Trop. Anim. Health Prod. 2019, 51, 2193–2201. [Google Scholar] [CrossRef]
- Olagaray, K.E.; Sivinski, S.E.; Saylor, B.A.; Mamedova, L.K.; Sauls-Hiesterman, J.A.; Yoon, I.; Bradford, B.J. Effect of Saccharomyces cerevisiae fermentation product on feed intake parameters, lactation performance, and metabolism of transition dairy cattle. J. Dairy Sci. 2019, 102, 8092–8107. [Google Scholar] [CrossRef] [PubMed]
- Cunniff, P.A.; Cunniff, P.A.; Cunniff, P.; Cunniff, P.; Cunniff, P.A.; Cunniff, P.A.; Cunniff, P.A. Official Methods of Analysis of AOAC International. Aoac Off. Method 1995, 6, 382. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Beth, H.M. Determination of Dietary Starch in Animal Feeds and Pet Food by an Enzymatic-Colorimetric Method: Collaborative Study. J. Aoac Int. 2015, 98, 397–409. [Google Scholar]
- Larson, L.L.; Owen, F.G.; Albright, J.L.; Appleman, R.D.; Lamb, R.C.; Muller, L.D. Guidelines toward more uniformity in measuring and reporting calf experimental data. J. Dairy Sci. 1977, 60, 989–991. [Google Scholar] [CrossRef]
- Lopreiato, V.; Mezzetti, M.; Cattaneo, L.; Ferronato, G.; Minuti, A.; Trevisi, E. Role of nutraceuticals during the transition period of dairy cows: A review. J. Anim. Sci. Biotechnol. 2020, 11, 96. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Nan, X.; Yang, L.; Jiang, L.; Xiong, B. Thiamine status, metabolism and application in dairy cows: A review. Br. J. Nutr. 2018, 120, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.Z.; Khan, A.; Xiao, J.; Dou, J.; Liu, L.; Yu, Y. Overview of Folic Acid Supplementation Alone or in Combination with Vitamin B12 in Dairy Cattle during Periparturient Period. Metabolites 2020, 10, 263. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wang, C.; Wang, Y.M.; Liu, J.X. Effect of biotin on milk performance of dairy cattle: A meta-analysis. J. Dairy Sci. 2011, 94, 3537–3546. [Google Scholar] [CrossRef]
- Evans, E.; Mair, D.T. Effects of a rumen protected B vitamin blend substituted for biotin upon milk production and component yield in lactating dairy cows. Open J. Anim. Sci. 2013, 3, 93–98. [Google Scholar] [CrossRef]
- Duplessis, M.; Lapierre, H.; Sauerwein, H.; Girard, C.L. Combined biotin, folic acid, and vitamin B12 supplementation given during the transition period to dairy cows: Part I. Effects on lactation performance, energy and protein metabolism, and hormones. J. Dairy Sci. 2022, 105, 7079–7096. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Xiao, M. Effect of Organic Selenium Supplementation on Selenium Status, Oxidative Stress, and Antioxidant Status in Selenium-Adequate Dairy Cows During the Periparturient Period. Biol. Trace Elem. Res. 2018, 186, 430–440. [Google Scholar] [CrossRef]
- Cattaneo, L.; Lopreiato, V.; Piccioli-Cappelli, F.; Trevisi, E.; Minuti, A. Effect of supplementing live Saccharomyces cerevisiae yeast on performance, rumen function, and metabolism during the transition period in Holstein dairy cows. J. Dairy Sci. 2023, 106, 4353–4365. [Google Scholar] [CrossRef] [PubMed]
- Moghimi-Kandelousi, M.H.; Alamouti, A.A.; Imani, M.; Zebeli, Q. A meta-analysis and meta-regression of the effects of vitamin E supplementation on serum enrichment, udder health, milk yield, and reproductive performance of transition cows. J. Dairy Sci. 2020, 103, 6157–6166. [Google Scholar] [CrossRef] [PubMed]
- Bass, I.B.; Thompson, R. Effects of Vitamin E Supplementation in Late Gestation Cattle and Evaluation of Vitamin E, Cholesterol, and Phospholipid Relationships in Bovine Serum and Serum Lipoproteins. Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 1999. [Google Scholar]
- Duplessis, M.; Girard, C.L.; Santschi, D.E.; Laforest, J.P.; Durocher, J.; Pellerin, D. Effects of folic acid and vitamin B12 supplementation on culling rate, diseases, and reproduction in commercial dairy herds. J. Dairy Sci. 2014, 97, 2346–2354. [Google Scholar] [CrossRef] [PubMed]
- Morrison, E.I.; Reinhardt, H.; Leclerc, H.; DeVries, T.J.; LeBlanc, S.J. Effect of rumen-protected B vitamins and choline supplementation on health, production, and reproduction in transition dairy cows. J. Dairy Sci. 2018, 101, 9016–9027. [Google Scholar] [CrossRef] [PubMed]
- Davidson, S.; Hopkins, B.A.; Odle, J.; Brownie, C.; Fellner, V.; Whitlow, L.W. Supplementing limited methionine diets with rumen-protected methionine, betaine, and choline in early lactation Holstein cows. J. Dairy Sci. 2008, 91, 1552–1559. [Google Scholar] [CrossRef] [PubMed]
- Zom, R.L.; van Baal, J.; Goselink, R.M.; Bakker, J.A.; de Veth, M.J.; van Vuuren, A.M. Effect of rumen-protected choline on performance, blood metabolites, and hepatic triacylglycerols of periparturient dairy cattle. J. Dairy Sci. 2011, 94, 4016–4027. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Shaver, R.D.; Bertics, S.J.; Espineira, M.; Grummer, R.R. Effect of rumen-protected niacin on lipid metabolism, oxidative stress, and performance of transition dairy cows. J. Dairy Sci. 2012, 95, 2673–2679. [Google Scholar] [CrossRef]
- Collier, C.T.; Carroll, J.A.; Ballou, M.A.; Starkey, J.D.; Sparks, J.C. Oral administration of Saccharomyces cerevisiae boulardii reduces mortality associated with immune and cortisol responses to Escherichia coli endotoxin in pigs. J. Anim. Sci. 2011, 89, 52–58. [Google Scholar] [CrossRef]
- Dahan, S.; Dalmasso, G.; Imbert, V.; Peyron, J.F.; Rampal, P.; Czerucka, D. Saccharomyces boulardii interferes with enterohemorrhagic Escherichia coli-induced signaling pathways in T84 cells. Infect. Immun. 2003, 71, 766–773. [Google Scholar] [CrossRef]
- Martins, F.S.; Dalmasso, G.; Arantes, R.M.; Doye, A.; Lemichez, E.; Lagadec, P.; Imbert, V.; Peyron, J.F.; Rampal, P.; Nicoli, J.R.; et al. Interaction of Saccharomyces boulardii with Salmonella enterica serovar Typhimurium protects mice and modifies T84 cell response to the infection. PLoS ONE 2010, 5, e8925. [Google Scholar] [CrossRef]
- Busato, A.; Faissle, D.; Küpfer, U.; Blum, J.W. Body condition scores in dairy cows: Associations with metabolic and endocrine changes in healthy dairy cows. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2002, 49, 455–460. [Google Scholar] [CrossRef]
- Zaworski, E.M.; Shriver-Munsch, C.M.; Fadden, N.A.; Sanchez, W.K.; Yoon, I.; Bobe, G. Effects of feeding various dosages of Saccharomyces cerevisiae fermentation product in transition dairy cows. J. Dairy Sci. 2014, 97, 3081–3098. [Google Scholar] [CrossRef]
- Hiltz, R.L.; Steelreath, M.R.; Degenshein-Woods, M.N.; Hung, H.C.; Aguilar, A.; Nielsen, H.; Rezamand, P.; Laarman, A.H. Effects of Saccharomyces cerevisiae boulardii (CNCM I-1079) on feed intake, blood parameters, and production during early lactation. J. Dairy Sci. 2023, 106, 187–201. [Google Scholar] [CrossRef]
- Costa, A.; Goi, A.; Penasa, M.; Nardino, G.; Posenato, L.; De Marchi, M. Variation of immunoglobulins G, A, and M and bovine serum albumin concentration in Holstein cow colostrum. Animal 2021, 15, 100299. [Google Scholar] [CrossRef]
- Saugstad, O.D. Oxygen toxicity in the neonatal period. Acta Paediatr. Scand. 1990, 79, 881–892. [Google Scholar] [CrossRef]
- Gopinathan, V.; Miller, N.J.; Milner, A.D.; Rice-Evans, C.A. Bilirubin and ascorbate antioxidant activity in neonatal plasma. FEBS Lett. 1994, 349, 197–200. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, X.J.; Ma, J.W.; Zheng, R.L. DNA damage in healthy term neonate. Early Hum. Dev. 2004, 77, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Aragona, K.M.; Rice, E.M.; Engstrom, M.; Erickson, P.S. Supplementation of nicotinic acid to prepartum Holstein cows increases colostral immunoglobulin G, excretion of urinary purine derivatives, and feed efficiency in calves. J. Dairy Sci. 2020, 103, 2287–2302. [Google Scholar] [CrossRef] [PubMed]
- Enjalbert, F.; Lebreton, P.; Salat, O. Effects of copper, zinc and selenium status on performance and health in commercial dairy and beef herds: Retrospective study. J. Anim. Physiol. Anim. Nutr. 2006, 90, 459–466. [Google Scholar] [CrossRef]
Variable | Treatment 1 | SEM | p-Value | ||
---|---|---|---|---|---|
CON | INC30 | INC60 | |||
n | 15 | 15 | 15 | — | |
Parity | 1.93 | 1.87 | 1.93 | 0.80 | 0.65 |
BCS | 3.43 | 3.43 | 3.53 | 0.15 | 0.59 |
305-d milk yield, kg | 11,188 | 11,208 | 11,275 | 176 | 0.75 |
Days of INC feeding | 45.6 | 44.9 | 44.9 | 1.47 | 0.43 |
Item | Prepartum | Postpartum |
---|---|---|
Ingredients of basal TMR, % of DM | — | — |
Corn silage | 61.9 | 55.7 |
Steam flaked corn | — | 8.40 |
Cottonseed | — | 1.70 |
DDGS 1 | 2.90 | 1.40 |
Soybean hull | — | 2.20 |
Fat powder 2 | — | 1.40 |
Chopped alfalfa hay | — | 6.40 |
Chopped oat hay | 20.1 | 3.20 |
Mineral and vitamin premix 3 | 1.70 | 3.50 |
Sprayed corn hull | 7.20 | — |
Ground corn | — | 5.90 |
Wheat bran | 2.40 | 2.60 |
Soybean meal | 2.10 | 6.40 |
Beet pulp | 1.70 | 1.20 |
Nutrient composition, % of DM | — | — |
CP | 15.1 | 18.0 |
ADF | 28.3 | 19.3 |
NDF | 45.5 | 29.8 |
NFC | 30.2 | 40.4 |
Starch | 16.1 | 23.6 |
Crude fat | 3.0 | 4.70 |
Ash | 6.80 | 8.0 |
Ca | 0.40 | 1.03 |
P | 0.40 | 0.40 |
NEL, Mcal/kg for DM | 1.50 | 1.70 |
Item 1 | Milk | Starter 2 |
---|---|---|
DM | 14.3 | 89.1 |
CP | 3.81 | 20.3 |
ADF | — | 6.77 |
NDF | — | 19.9 |
Starch | — | 30.5 |
Crude fat | 4.77 | 2.96 |
Lactose | 4.80 | — |
Ash | — | 7.52 |
Item | Treatment 2 | SEM | p-Value 3 | ||||
---|---|---|---|---|---|---|---|
CON | INC30 | INC60 | L | Q | Trt × Time | ||
Milk yield, kg/d | 46.8 | 48.4 | 49.4 | 0.95 | <0.01 | 0.61 | 0.50 |
Milk composition | |||||||
Fat, % | 5.46 | 5.50 | 5.68 | 0.20 | 0.44 | 0.78 | 0.65 |
CP, % | 3.35 | 3.32 | 3.38 | 0.05 | 0.73 | 0.63 | 0.46 |
Lactose, % | 5.14 | 5.28 | 5.29 | 0.04 | <0.01 | 0.14 | 0.94 |
SCC, ×1000 cells/mL | 246 | 169 | 166 | 27.6 | 0.04 | 0.28 | 0.56 |
MUN, mg/dL | 14.9 | 15.4 | 16.5 | 0.56 | 0.05 | 0.66 | 0.98 |
Yield, kg/d | |||||||
Fat | 2.14 | 2.51 | 2.65 | 0.11 | <0.01 | 0.43 | 0.70 |
CP | 1.34 | 1.50 | 1.56 | 0.04 | <0.01 | 0.16 | 0.03 |
Lactose | 1.61 | 1.75 | 1.80 | 0.04 | 0.40 | 0.81 | 0.31 |
ECM | 49.4 | 57.5 | 59.9 | 1.80 | <0.01 | 0.22 | 0.43 |
Peak milk yield, kg | 52.3 | 53.2 | 54.2 | 1.35 | 0.34 | 0.99 | — |
DIM at peak milk yield 1 | 46.3 | 45.9 | 48.4 | 6.12 | 0.81 | 0.85 | — |
Item | Treatment 1 | SEM | p-Value 2 | ||||
---|---|---|---|---|---|---|---|
CON | INC30 | INC60 | L | Q | Trt × Time | ||
BHB, mmol/L | |||||||
Whole period | 0.43 | 0.42 | 0.41 | 0.01 | 0.02 | 0.78 | 0.09 |
Prepartum | 0.45 | 0.43 | 0.41 | 0.02 | 0.02 | 0.90 | — |
Postpartum | 0.42 | 0.42 | 0.42 | 0.01 | 0.64 | 0.66 | — |
NEFA, μmol/L | |||||||
Whole period | 42.5 | 43.4 | 43.2 | 0.54 | 0.50 | 0.54 | 0.51 |
Prepartum | 41.6 | 43.8 | 43.4 | 1.25 | 0.17 | 0.24 | — |
Postpartum | 43.1 | 43.1 | 43.1 | 0.62 | 0.98 | 0.98 | — |
TG, mmol/L | |||||||
Whole period | 0.21 | 0.22 | 0.21 | 0.01 | 0.32 | 0.68 | 0.36 |
Prepartum | 0.24 | 0.23 | 0.22 | 0.02 | 0.47 | 0.95 | — |
Postpartum | 0.20 | 0.21 | 0.20 | 0.01 | 0.52 | 0.57 | — |
GLU, mmol/L | |||||||
Whole period | 4.18 | 4.47 | 4.52 | 0.17 | 0.26 | 0.67 | 0.62 |
Prepartum | 3.86 | 4.28 | 4.02 | 0.25 | 0.53 | 0.13 | — |
Postpartum | 4.39 | 4.59 | 4.86 | 0.23 | 0.33 | 0.94 | — |
INS, mIU/L | |||||||
Whole period | 23.4 | 24.7 | 25.7 | 0.71 | 0.01 | 0.88 | 0.13 |
Prepartum | 28.1 | 28.3 | 27.2 | 1.04 | 0.55 | 0.57 | — |
Postpartum | 20.2 | 22.2 | 24.7 | 0.94 | <0.01 | 0.85 | — |
IGF-1, ng/mL | |||||||
Whole period | 120 | 119 | 119 | 1.58 | 0.80 | 0.97 | 0.92 |
Prepartum | 119 | 119 | 116 | 3.26 | 0.40 | 0.40 | — |
Postpartum | 120 | 119 | 121 | 2.05 | 0.78 | 0.52 | — |
Item | Treatment 1 | SEM | p-Value 2 | ||||
---|---|---|---|---|---|---|---|
CON | INC30 | INC60 | L | Q | Trt × Time | ||
IL-1β, ng/L | |||||||
Whole period | 52.7 | 52.1 | 52.1 | 0.68 | 0.60 | 0.77 | 0.30 |
Prepartum | 49.6 | 49.7 | 50.6 | 1.56 | 0.51 | 0.76 | — |
Postpartum | 54.7 | 53.7 | 53.0 | 0.78 | 0.25 | 0.86 | — |
IL-6, ng/L | |||||||
whole period | 409 | 406 | 399 | 4.78 | 0.17 | 0.82 | 0.50 |
Prepartum | 422 | 416 | 401 | 11.5 | 0.07 | 0.64 | — |
Postpartum | 400 | 398 | 398 | 5.96 | 0.80 | 0.93 | — |
SAA, μg/mL | |||||||
Whole period | 25.3 | 25.0 | 24.6 | 0.26 | 0.16 | 0.85 | 0.40 |
Prepartum | 26.1 | 25.7 | 24.9 | 0.70 | 0.11 | 0.70 | — |
Postpartum | 24.7 | 24.5 | 24.4 | 0.28 | 0.63 | 0.92 | — |
HP, ng/mL | |||||||
Whole transition period | 49.6 | 49.1 | 48.5 | 0.56 | 0.24 | 0.95 | 0.87 |
Prepartum | 50.8 | 50.5 | 48.6 | 1.46 | 0.15 | 0.51 | — |
Postpartum | 48.7 | 48.4 | 48.1 | 0.63 | 0.74 | 0.55 | — |
TNF-α, ng/L | |||||||
Whole period | 223 | 212 | 215 | 2.96 | 0.09 | 0.10 | 0.57 |
Prepartum | 236 | 221 | 219 | 3.93 | 0.07 | 0.37 | — |
Postpartum | 215 | 207 | 212 | 3.42 | 0.57 | 0.18 | — |
IgG, mg/mL | |||||||
Whole period | 20.8 | 20.9 | 20.5 | 0.35 | 0.68 | 0.63 | 0.92 |
Prepartum | 20.8 | 21.1 | 20.2 | 0.78 | 0.54 | 0.38 | — |
Postpartum | 20.8 | 20.8 | 20.7 | 0.45 | 0.92 | 0.96 | — |
Item | Treatment 1 | SEM | p-Value 2 | ||||
---|---|---|---|---|---|---|---|
CON | INC30 | INC60 | L | Q | Trt × Time | ||
SOD, U/mL | |||||||
Whole period | 50.8 | 50.4 | 51.5 | 0.53 | 0.30 | 0.19 | 0.91 |
Prepartum | 50.3 | 50.4 | 51.8 | 0.57 | 0.18 | 0.48 | — |
Postpartum | 51.1 | 50.4 | 51.2 | 0.60 | 0.86 | 0.28 | — |
GSH-Px, μmol/L | |||||||
Whole period | 11.1 | 11.1 | 10.9 | 0.23 | 0.63 | 0.72 | 0.33 |
Prepartum | 11.5 | 11.3 | 11.2 | 0.43 | 0.46 | 0.47 | — |
Postpartum | 10.7 | 10.9 | 10.7 | 0.31 | 0.90 | 0.65 | — |
MDA, nmol/mL | |||||||
Whole period | 1.52 | 1.55 | 1.50 | 0.02 | 0.42 | 0.12 | 0.62 |
Prepartum | 1.54 | 1.54 | 1.51 | 0.04 | 0.54 | 0.66 | — |
Postpartum | 1.51 | 1.55 | 1.49 | 0.02 | 0.58 | 0.10 | — |
T-AOC, U/mL | |||||||
Whole period | 8.57 | 8.66 | 8.59 | 0.11 | 0.33 | 0.59 | 0.59 |
Prepartum | 8.64 | 8.79 | 8.59 | 0.21 | 0.80 | 0.35 | — |
Postpartum | 8.52 | 8.57 | 8.59 | 0.14 | 0.73 | 0.93 | — |
Item | Treatment 1 | SEM | p-Value 2 | ||||
---|---|---|---|---|---|---|---|
CON | INC30 | INC60 | L | Q | Trt × Time | ||
ALT, U/L | |||||||
Whole period | 26.6 | 26.9 | 24.7 | 0.86 | 0.13 | 0.16 | 0.62 |
Prepartum | 28.3 | 28.8 | 26.7 | 1.62 | 0.31 | 0.37 | — |
Postpartum | 25.5 | 25.5 | 23.4 | 0.79 | 0.11 | 0.27 | — |
AST, U/L | |||||||
Whole period | 95.1 | 95.5 | 94.0 | 4.19 | 0.83 | 0.82 | 0.63 |
Prepartum | 82.4 | 81.1 | 80.8 | 5.45 | 0.77 | 0.91 | — |
Postpartum | 103 | 105 | 102 | 4.34 | 0.91 | 0.74 | — |
TBIL, μmol/L | |||||||
Whole period | 2.15 | 2.18 | 2.16 | 0.10 | 0.90 | 0.85 | 0.94 |
Prepartum | 1.86 | 1.79 | 1.92 | 0.17 | 0.72 | 0.52 | — |
Postpartum | 2.34 | 2.43 | 2.32 | 0.13 | 0.96 | 0.55 | — |
ALP, g/L | |||||||
Whole period | 41.9 | 40.1 | 37.6 | 1.46 | 0.03 | 0.73 | 0.93 |
Prepartum | 40.5 | 39.8 | 38.5 | 3.59 | 0.57 | 0.90 | — |
Postpartum | 42.3 | 40.3 | 37.1 | 1.46 | 0.03 | 0.78 | — |
Item | Treatment 1 | SEM | p-Value 2 | |||
---|---|---|---|---|---|---|
CON | INC30 | INC60 | L | Q | ||
Colostrum yield, L | 3.67 | 3.94 | 3.93 | 0.48 | 0.27 | 0.69 |
Fat, g/kg | 52.1 | 50.6 | 53.3 | 2.14 | 0.70 | 0.45 |
Fat yield, g | 191 | 200 | 209 | 14.2 | 0.43 | 0.56 |
Lactose, mg/mL | 0.52 | 0.54 | 0.51 | 0.77 | 0.75 | 0.52 |
Lactose yield, mg | 1.98 | 2.12 | 2.04 | 0.21 | 0.56 | 0.77 |
Protein, mg/mL | 0.77 | 0.81 | 0.76 | 0.04 | 0.86 | 0.17 |
Protein yield, kg | 2.83 | 3.19 | 2.99 | 0.28 | 0.77 | 0.07 |
IgG, mg/mL | 39.4 | 39.0 | 38.0 | 0.49 | 0.52 | 0.88 |
IgG yield, g | 144 | 154 | 149 | 11.2 | 0.43 | 0.75 |
IgA, mg/mL | 3.09 | 3.17 | 3.13 | 0.06 | 0.70 | 0.30 |
IgA yield, g | 11.3 | 12.5 | 12.3 | 1.01 | 0.24 | 0.31 |
IgM, mg/mL | 2.10 | 2.27 | 2.15 | 0.08 | 0.45 | 0.05 |
IgM yield, g | 7.71 | 8.94 | 8.45 | 0.61 | 0.29 | 0.03 |
T-AOC, μmol/mL | 2.57 | 2.59 | 2.66 | 0.18 | 0.73 | 0.84 |
SOD, U/mL | 41.1 | 42.5 | 43.2 | 0.59 | 0.02 | 0.75 |
POD, pg/mL | 128 | 131 | 132 | 7.31 | <0.01 | 0.96 |
GSH-Px, IU/L | 421 | 421 | 427 | 16.6 | 0.87 | 0.86 |
MDA, nmol/mL | 23.19 | 22.6 | 22.75 | 0.61 | 0.63 | 0.61 |
CAT, U/mL | 24.96 | 24.7 | 25.42 | 0.80 | 0.70 | 0.58 |
Item | Treatment 1 | SEM | p-Value 2 | ||||
---|---|---|---|---|---|---|---|
CON | INC30 | INC60 | L | Q | Trt × Time | ||
Calves, n | 13 | 13 | 13 | — | — | — | — |
Initial BW, kg | 40.1 | 41.9 | 40.1 | 0.93 | 0.38 | 0.07 | — |
Starter intake, g/d | |||||||
Preweaning | 189 | 210 | 222 | 19.2 | 0.27 | 0.37 | — |
Postweaning | 1785 | 1770 | 1985 | 115 | 0.36 | 0.55 | — |
Overall | 619 | 625 | 685 | 41.5 | 0.74 | 0.75 | 0.07 |
BW, kg | |||||||
Preweaning | 64.7 | 66.13 | 64.3 | 0.74 | 0.67 | 0.07 | — |
Postweaning | 102 | 102 | 100 | 1.03 | 0.45 | 0.68 | — |
Overall | 70.6 | 72.1 | 70.9 | 0.71 | 0.76 | 0.11 | 0.09 |
ADG, g/d | |||||||
Preweaning | 998 | 970 | 955 | 30.90 | 0.35 | 0.89 | — |
Postweaning | 910 | 880 | 1061 | 44.40 | 0.12 | 0.22 | — |
Overall | 984 | 954 | 972 | 28.30 | 0.79 | 0.53 | 0.58 |
FE, % | |||||||
Preweaning | 0.89 | 0.88 | 0.84 | 0.03 | 0.22 | 0.76 | — |
Postweaning | 0.52 | 0.52 | 0.51 | 0.03 | 0.74 | 0.89 | — |
Overall | 0.81 | 0.80 | 0.77 | 0.03 | 0.23 | 0.81 | 0.96 |
Withers height, cm | |||||||
Preweaning | 84.4 | 85.7 | 84.2 | 0.24 | 0.13 | <0.01 | — |
Postweaning | 94.9 | 95.8 | 94.9 | 0.32 | 0.24 | 0.04 | — |
Overall | 85.9 | 87.2 | 85.2 | 0.26 | 0.24 | <0.01 | 0.06 |
Chest girth, cm | |||||||
Preweaning | 85.2 | 87.2 | 85.9 | 0.26 | 0.14 | 0.02 | — |
Postweaning | 105 | 106 | 105 | 0.44 | 0.96 | 0.15 | — |
Overall | 88.8 | 90.5 | 89.2 | 0.21 | 0.17 | 0.02 | 0.25 |
Body length, cm | |||||||
Preweaning | 79.7 | 81.2 | 79.9 | 0.34 | 0.51 | 0.06 | — |
Postweaning | 93.8 | 93.8 | 94.0 | 0.83 | 0.47 | 0.70 | — |
Overall | 81.9 | 83.1 | 82.2 | 0.31 | 0.63 | 0.10 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Nuermaimaiti, Y.; Hao, K.; Qi, Y.; Xu, Y.; Zhuang, Y.; Wang, F.; Hou, G.; Chen, T.; Xiao, J.; et al. Supplementation with Combined Additive Improved the Production of Dairy Cows and Their Offspring with Maintenance of Antioxidative Stability. Antioxidants 2024, 13, 650. https://doi.org/10.3390/antiox13060650
Zhang H, Nuermaimaiti Y, Hao K, Qi Y, Xu Y, Zhuang Y, Wang F, Hou G, Chen T, Xiao J, et al. Supplementation with Combined Additive Improved the Production of Dairy Cows and Their Offspring with Maintenance of Antioxidative Stability. Antioxidants. 2024; 13(6):650. https://doi.org/10.3390/antiox13060650
Chicago/Turabian StyleZhang, Hongxing, Yiliyaer Nuermaimaiti, Kebi Hao, Yan Qi, Yiming Xu, Yimin Zhuang, Fei Wang, Guobin Hou, Tianyu Chen, Jianxin Xiao, and et al. 2024. "Supplementation with Combined Additive Improved the Production of Dairy Cows and Their Offspring with Maintenance of Antioxidative Stability" Antioxidants 13, no. 6: 650. https://doi.org/10.3390/antiox13060650
APA StyleZhang, H., Nuermaimaiti, Y., Hao, K., Qi, Y., Xu, Y., Zhuang, Y., Wang, F., Hou, G., Chen, T., Xiao, J., Guo, G., Wang, Y., Li, S., Cao, Z., & Liu, S. (2024). Supplementation with Combined Additive Improved the Production of Dairy Cows and Their Offspring with Maintenance of Antioxidative Stability. Antioxidants, 13(6), 650. https://doi.org/10.3390/antiox13060650