Evaluation of Gamma-Aminobutyric Acid (GABA) as a Functional Feed Ingredient on Growth Performance, Immune Enhancement, and Disease Resistance in Olive Flounder (Paralichthys olivaceus) under High Stocking Density
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Diets
2.2. Experimental Fish and Feeding Trial
2.3. Sample Collection and Analyses
2.3.1. Growth Performance
2.3.2. Proximate Analysis
2.3.3. Hematological Parameters
2.3.4. Non-Specific Immune Response
2.3.5. Challenge Test
2.4. Statistical Analysis
3. Results
3.1. Interactive Effects of GABA and Stocking Density on Growth Performance of Olive Flounder
3.2. Interactive Effects of GABA and Stocking Density on Proximate Composition of Olive Flounder
3.3. Interactive Effects of GABA and Stocking Density on Hematology of Olive Flounders
3.4. Interactive Effects of GABA and Stocking Density on Immune Response in Olive Flounder
3.5. Interactive Effects of GABA and Stocking Density on Challenge Test in Olive Flounder
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. FISHSTAT Plus, Universal Software for Fishery Statistical Time Series; Electronic Webpage; Food and Agriculture Organization United Nations: Rome, Italy, 2020. [Google Scholar]
- Gorbunova, A.V.; Kostin, V.E.; Pashkevich, I.L.; Rybanov, A.A.; Savchits, A.V.; Silaev, A.A.; Judaev, Y.V. Prospects and opportunities for the introduction of digital technologies into aquaculture governance system. IOP Conf. Ser. Earth Environ. Sci. 2020, 422, 012125. [Google Scholar] [CrossRef]
- Li, P.; Mai, K.; Trushenski, J.; Wu, G. New developments in fish amino acid nutrition: Towards functional and environmentally oriented aquafeeds. Amino Acids. 2009, 37, 43–53. [Google Scholar] [CrossRef]
- Noble, A.C.; Summerfelt, S.T. Diseases encountered in rainbow trout cultured in recirculating systems. Annu. Rev. Fish Dis. 1996, 6, 65–92. [Google Scholar] [CrossRef]
- Serrano, P.H. Responsible Use of Antibiotics in Aquaculture; FAO Fisheries Technical, Paper No. 469; FAO: Rome, Italy, 2005. [Google Scholar]
- Abe, T.; Takeya, K. Difference in gamma-aminobutyric acid content in vegetable soybean seeds. J. Jpn. Soc. Food Sci. Technol. 2005, 52, 545–549. [Google Scholar] [CrossRef]
- Arumugam, K.; Tung, P.; Chinnappa, C.C.; Reid, D.M. γ-Aminobutyric acid stimulates ethylene biosynthesis in sunflower. Plant Physiol. 1997, 115, 129–135. [Google Scholar]
- Bown, A.W.; Shelp, B.J. The metabolism and functions of [gamma]-aminobutyric acid. Plant Physiol. 1997, 115, 1. [Google Scholar] [CrossRef]
- Dhakal, R.; Bajpai, V.K.; Baek, K.H. Production of GABA (gamma—Aminobutyric acid) by microorganisms: A review. Braz. J. Microbiol. 2012, 43, 1230–1241. [Google Scholar] [CrossRef] [PubMed]
- Fenalti, G.; Law, R.H.; Buckle, A.M.; Langendorf, C.; Tuck, K.; Rosado, C.J.; Wilce, M. GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop. Nat. Struc. Mol. Biol. 2007, 14, 280. [Google Scholar] [CrossRef] [PubMed]
- Walls, A.B.; Waagepetersen, H.S.; Bak, L.K.; Schousboe, A.; Sonnewald, U. The glutamine–glutamate/GABA cycle: Function, regional differences in glutamate and GABA production and effects of interference with GABA metabolism. Neurochem. Res. 2015, 40, 402–409. [Google Scholar] [CrossRef]
- Watanabe, M.; Maemura, K.; Kanbara, K.; Tamayama, T.; Hayasaki, H. GABA and GABA receptors in the central nervous system and other organs. Int. Rev. Cytol. 2002, 213, 1–47. [Google Scholar]
- Ong, J.; Kerr, D.I. GABA-receptors in peripheral tissues. Life Sci. 1990, 46, 1489–1501. [Google Scholar] [CrossRef] [PubMed]
- McCormick, D.A. GABA as an inhibitory neurotransmitter in human cerebral cortex. J. Neurophysiol. 1989, 62, 1018–1027. [Google Scholar] [CrossRef] [PubMed]
- Abdou, A.M.; Higashiguchi, S.; Horie, K.; Kim, M.; Hatta, H.; Yokogoshi, H. Relaxation and immunity enhancement effects of γ Aminobutyric acid (GABA) administration—In humans. Biofactors 2006, 26, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Bach, B.; Meudec, E.; Lepoutre, J.P.; Rossignol, T.; Blondin, B.; Dequin, S.; Camarasa, C. New insights into gamma-aminobutyric acid catabolism: Evidence for gamma-hydroxybutyric acid and polyhydroxybutyrate synthesis in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2009, 75, 4231–4239. [Google Scholar] [CrossRef] [PubMed]
- Bongianni, F.; Mutolo, D.; Nardone, F.; Pantaleo, T. GABAergic and glycinergic inhibitory mechanisms in the lamprey respiratory control. Brain Res. 2006, 1090, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Boonstra, E.; de Kleijn, R.; Colzato, L.S.; Alkemade, A.; Forstmann, B.U.; Nieuwenhuis, S. Neurotransmitters as food supplements: The effects of GABA on brain and behavior. Front. Psychol. 2015, 6, 1520. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.T.; Chang, Y.G.; Chern, Y. Insights into GABAergic system alteration in Huntington’s disease. R. Soc. Open Biol. 2018, 8, 180165. [Google Scholar]
- Al Wakeel, R.A.; Shukry, M.; Abdel Azeez, A.; Mahmoud, S.; Saad, M.F. Alleviation by gamma amino butyric acid supplementation of chronic heat stress-induced degenerative changes in jejunum in commercial broiler chickens. Stress 2017, 20, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Li, F.; Liu, M.; Yin, J.J.; Cheng, B.J.; Shi, B.M.; Shan, A.S. Effect of γ-aminobutyric acid on growth performance, behavior and plasma hormones in weaned pigs. Can. J. Anim. Sci. 2015, 95, 165–171. [Google Scholar] [CrossRef]
- Chand, N.; Muhammad, S.; Khan, R.U.; Alhidary, I.A.; Rehman, Z. Ameliorative effect of synthetic γ- aminobutyric acid (GABA) on performance traits, antioxidant status and immune response in broiler exposed to cyclic heat stress. Environ. Sci. Pollut. Res. 2016, 23, 23930–23935. [Google Scholar] [CrossRef]
- Kim, S.K.; Takeuchi, T.; Yokoyama, M.; Murata, Y. Effect of dietary supplementation with taurine, β-alanine and GABA on the growth of juvenile and fingerling Japanese flounder Paralichthys olivaceus. Fish. Sci. 2003, 69, 242–248. [Google Scholar] [CrossRef]
- Wu, F.; Liu, M.; Chen, C.; Chen, J.; Tan, Q. Effects of Dietary Gamma Aminobutyric Acid on Growth Performance, Antioxidant Status, and Feeding related Gene Expression of Juvenile—Grass Carp, Ctenopharyngodon idellus. J. World Aquac. Soc. 2016, 47, 820–829. [Google Scholar] [CrossRef]
- Temu, V.; Kim, H.; Hamidoghli, A.; Park, M.; Won, S.; Oh, M.; Han, J.K.; Bai, S.C. Effects of dietary gamma aminobutyric acid in juvenile Nile tilapia, Orechromis niloticus. Aquaculture 2019, 507, 475–480. [Google Scholar] [CrossRef]
- Xie, S.W.; Li, Y.T.; Zhou, W.W.; Tian, L.X.; Li, Y.M.; Zeng, S.L.; Liu, Y.J. Effect of γ-aminobutyric acid supplementation on growth performance, endocrine hormone and stress tolerance of juvenile Pacific white shrimp, Litopenaeus vannamei, fed low fishmeal diet. Aquac. Nutr. 2017, 23, 54–62. [Google Scholar] [CrossRef]
- Farris, N.W.; Hamidoghli, A.; Bae, J.; Won, S.; Choi, W.; Biró, J.; Lee, S.; Bai, S.C. Dietary supplementation with γ-aminobutyric acid improves growth, digestive enzyme activity, non-specific immunity and disease resistance against Streptococcus iniae in juvenile olive flounder, Paralichthys olivaceus. Animals 2022, 12, 248. [Google Scholar] [CrossRef]
- Lee, S.; Moniruzzaman, M.; Farris, N.; Min, T.; Bai, S.C. Interactive effect of dietary gamma-aminobutyric acid (GABA) and water temperature on growth performance, blood plasma indices, heat shock proteins and GABAergic gene expression in juvenile olive flounder Paralichthys olivaceus. Metabolites 2023, 13, 619. [Google Scholar] [CrossRef]
- Bae, J.; Hamidoghli, A.; Farris, N.W.; Olowe, O.S.; Choi, W.; Lee, S.; Won, S.; Ohh, M.; Lee, S.H.; Bai, S.C. Dietary γ-aminobutyric acid (GABA) promotes growth and resistance to Vibrio alginolyticus in whiteleg shrimp Litopenaeus vannamei. Aquac. Nutr. 2022, 2022, 9105068. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Fish and Shrimp; National Academy Press: Washington, DC, USA, 2011. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 12th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Jeong, S.B.; Kim, Y.B.; Lee, J.W.; Kim, D.H.; Moon, B.H.; Chang, H.H.; Choi, Y.H.; Lee, K.W. Role of dietary gamma-aminobutyric acid in broiler chickens raised under high stocking density. Anim. Nutr. 2020, 6, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Kinnersley, A.M.; Turano, F.J. Gamma aminobutyric acid (GABA) and plant responses to stress. CRC Crit. Rev. Plant Sci. 2000, 19, 479–509. [Google Scholar] [CrossRef]
- Kuffler, S.W.; Edwards, C. Mechanism of gamma aminobutyric acid (GABA) action and its relation to synaptic inhibition. J. Neurophysiol. 1958, 21, 589–610. [Google Scholar] [CrossRef]
- Soltani, N.; Qiu, H.; Aleksic, M.; Glinka, Y.; Zhao, F.; Liu, R.; Li, Y.; Zhang, N.; Chakrabarti, R.; Ng, T.; et al. GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proc. Nat. Acad. Sci. USA 2011, 108, 11692–11697. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.B.; de Graaf, R.A.; Mason, G.F.; Rothman, D.L.; Shulman, R.G.; Behar, K.L. The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc. Nat. Acad. Sci. USA 2005, 102, 5588–5593. [Google Scholar] [CrossRef] [PubMed]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. Q. Publ. Hell. Soc. Gastroenterol. 2015, 28, 203. [Google Scholar]
- Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018, 1693, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Strandwitz, P.; Kim, K.H.; Terekhova, D.; Liu, J.K.; Sharma, A.; Levering, J.; Mroue, N. GABA modulating bacteria of the human gut microbiota. Nat. Microbiol. 2019, 4, 396. [Google Scholar] [CrossRef] [PubMed]
- Magnadóttir, B. Innate immunity of fish (overview). Fish Shellfish Immunol. 2006, 20, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Bucher, F.; Hofer, R. Effects of domestic wastewater on serum enzyme activities of brown trout (Salmo trutta). Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol. 1990, 97, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Vaglio, A.; Landriscina, C. Changes in liver enzyme activity in the Teleost Sparus auratain response to cadmium intoxication. Ecotoxicol. Environ. Saf. 1999, 43, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Fugelli, K.; Storm-Mathisen, J.; Fonnum, F. Synthesis of γ-aminobutyric acid in fish erythrocytes. Nature 1970, 228, 1001. [Google Scholar] [CrossRef]
- Kumar, M.; Gupta, G.; Varghese, T. Effect of dietary gamma-aminobutyric acid on growth performance, haemato-immunological responses, antioxidant enzymes activity, ghrelin and IGF-I expression of Labeo rohita (Hamilton, 1822) fingerlings. Comp. Clin. Pathol. 2023, 32, 53–65. [Google Scholar] [CrossRef]
- Zhang, M.; Zou, X.; Li, H.; Dong, X.; Zhao, W. Effect of dietary γ-aminobutyric acid on laying performance, egg quality, immune activity and endocrine hormone in heat-stressed Roman hens. Anim. Sci. J. 2012, 83, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Chen, Z. The protective effect of γ-aminobutyric acid on the development of immune function in chickens under heat stress. J. Anim. Physiol. Anim. Nutr. 2016, 100, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.M.; Wang, C.; Liu, H.Y.; Liu, J.X.; Ferguson, J.D. Effects of rumen-protected γ-aminobutyric acid on feed intake, lactation performance, and antioxidative status in early lactating dairy cows. J. Dairy Sci. 2013, 96, 3222–3227. [Google Scholar] [CrossRef] [PubMed]
- Peter, M.S. The role of thyroid hormones in stress response of fish. Gen. Comp. Endocrinol. 2011, 172, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 2011, 35, 1366–1375. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.K.; Lichtman, A.H.; Pillai, S. Cellular and Molecular Immunology E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Delves, P.J.; Martin, S.J.; Burton, D.R.; Roitt, I.M. Roitt’s Essential Immunology; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Wang, Z.; Zhou, Q.; Tu, J.; Wang, Y.; Song, R.; Chu, Z.; Li, S.; Li, J.; Zhang, H.; Zhang, M.; et al. Ameliorative effect of gamma-aminobutyric acid on the antioxidant status and ammonia stress resistance of Micropterus salmoides. Aquacult. Rep. 2023, 32, 101734. [Google Scholar] [CrossRef]
- Li, C.; Tian, Y.; Ma, Q.; Zhang, B. Dietary gamma-aminobutyric acid ameliorates growth impairment and intestinal dysfunction in turbot (Scophthalmus maximus L.) fed a high soybean meal diet. Food Funct. 2022, 13, 290–303. [Google Scholar] [CrossRef] [PubMed]
- Ruenkoed, S.; Nontasan, S.; Phudkliang, J.; Phudinsai, P.; Pongtanalert, P.; Panprommin, D.; Mongkolwit, K.; Wangkahart, E. Effect of dietary gamma aminobutyric acid (GABA) modulated the growth performance, immune and antioxidant capacity, digestive enzymes, intestinal histology and gene expression of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2023, 141, 109056. [Google Scholar] [CrossRef]
- Keshav, S.; Chung, P.; Milon, G.; Gordon, S. Lysozyme is an inducible marker of macrophage activation in murine tissues as demonstrated by in situ hybridization. J. Exp. Med. 1991, 174, 1049–1058. [Google Scholar] [CrossRef]
- Kim, J.K.; Kim, Y.S.; Lee, H.M.; Jin, H.S.; Neupane, C.; Kim, S.; Choe, S.K. GABAergic signaling linked to autophagy enhances host protection against intracellular bacterial infections. Nat. Comm. 2018, 9, 4184. [Google Scholar] [CrossRef]
- Sasai, M.; Sakaguchi, N.; Ma, J.S.; Nakamura, S.; Kawabata, T.; Bando, H.; Standley, D.M. Essential role for GABARAP autophagy proteins in interferon-inducible GTPase-mediated host defense. Nat. Immunol. 2017, 18, 899. [Google Scholar] [CrossRef] [PubMed]
- Auteri, M.; Zizzo, M.G.; Serio, R. GABA and GABAreceptors in the gastrointestinal tract: From motility to inflammation. Pharmacol. Res. 2015, 93, 11–21. [Google Scholar] [CrossRef] [PubMed]
Diets % | ||||
---|---|---|---|---|
Ingredients | CON | GABA150 | GABA200 | GABA250 |
Anchovy FM 1 | 50.00 | 50.00 | 50.00 | 50.00 |
Soybean meal 1 | 15.00 | 15.00 | 15.00 | 15.00 |
Wheat flour 2 | 13.70 | 13.83 | 13.70 | 13.58 |
Squid Liver Powder 1 | 4.00 | 4.00 | 4.00 | 4.00 |
Meat & Bone meal 1 | 4.00 | 4.00 | 4.00 | 4.00 |
Poultry by-product 1 | 4.00 | 4.00 | 4.00 | 4.00 |
Fish oil 1 | 4.00 | 4.00 | 4.00 | 4.00 |
Lecithin 1 | 0.50 | 0.50 | 0.50 | 0.50 |
Betaine 1 | 1.00 | 1.00 | 1.00 | 1.00 |
Taurine 1 | 0.50 | 0.50 | 0.50 | 0.50 |
Mono calcium phosphate 3 | 0.50 | 0.50 | 0.50 | 0.50 |
Mineral mix 4 | 1.00 | 1.00 | 1.00 | 1.00 |
Vitamin mix 5 | 1.00 | 1.00 | 1.00 | 1.00 |
Choline 3 | 0.30 | 0.30 | 0.30 | 0.30 |
Cellulose 1 | 0.50 | |||
Cellulose (included 40,000 ppm of GABA) 6 | 0.000 | 0.375 | 0.500 | 0.625 |
Total | 100.00 | 100.00 | 100.00 | 100.00 |
Diets (%) | CON | GABA150 | GABA200 | GABA250 |
---|---|---|---|---|
Moisture | 7.65 | 7.16 | 7.90 | 7.95 |
Protein | 52.90 | 52.10 | 52.30 | 52.00 |
Lipid | 10.19 | 10.20 | 10.13 | 10.09 |
Ash | 12.48 | 12.60 | 12.42 | 12.42 |
Diet | CON | GABA150 | GABA200 | GABA250 |
---|---|---|---|---|
GABA (%) | 0.006392 | 0.02313 | 0.029159 | 0.03239 |
GABA (mg/kg) | 63.92 | 231.30 | 291.59 | 323.90 |
Density | ND | HD | Two-Way ANOVA, p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Diet | CON | GABA150 | GABA200 | GABA250 | CON | GABA150 | GABA200 | GABA250 | Density | GABA | D × G |
WG 2 | 145.21 a | 149.03 a | 135.66 a | 139.48 a | 129.07 b | 120.93 b | 122.97 b | 123.26 b | <0.001 | 0.292 | 0.325 |
SGR 3 | 1.87 a | 1.90 a | 1.78 a | 1.82 a | 1.73 b | 1.65 b | 1.67 b | 1.67 b | <0.001 | 0.302 | 0.348 |
FE 4 | 84.10 | 82.27 | 73.40 a | 81.80 a | 77.40 a | 73.30 a | 70.70 a | 77.13 a | 0.070 | 0.213 | 0.891 |
PER 5 | 1.59 | 1.58 | 1.42 | 1.57 a | 1.46 a | 1.41 a | 1.37 a | 1.48 a | 0.067 | 0.324 | 0.896 |
Density | ND | HD | Two-Way ANOVA, p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Diet | CON | GABA150 | GABA200 | GABA250 | CON | GABA150 | GABA200 | GABA250 | Density | GABA | D × G |
Moisture | 79.6 | 80.3 | 79.7 | 79.0 | 79.3 | 79.1 | 79.4 | 79.7 | 0.154 | 0.623 | 0.620 |
Protein | 15.2 | 14.6 | 15.2 | 15.4 | 15.2 | 15.6 | 15.3 | 14.9 | 0.064 | 0.406 | 0.898 |
Lipid | 1.17 | 1.18 | 1.00 | 1.06 | 1.16 | 1.16 | 1.19 | 1.13 | 0.370 | 0.729 | 0.177 |
Ash | 3.54 | 3.84 | 3.87 | 3.81 | 4.04 | 3.71 | 3.89 | 3.89 | 0.109 | 0.643 | 0.623 |
Density | ND | HD | Two-Way ANOVA, p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Diet | CON | GABA150 | GABA200 | GABA250 | CON | GABA150 | GABA200 | GABA250 | Density | GABA | D × G |
GOT 2 | 17.7 | 18.3 | 19.0 | 18.7 | 16.7 a | 16.0 | 16.7 a | 16.0 | 0.053 | 0.959 | 0.936 |
GPT 3 | 16.7 | 17.0 | 16.0 | 6.3 | 16.7 | 15.0 | 16.3 a | 16.0 | 0.188 | 0.605 | 0.149 |
GLU 4 | 12.7 | 13.0 | 11.7 | 13.3 | 12.0 | 14.3 | 16.0 a | 11.7 | 0.379 | 0.560 | 0.145 |
Cortisol 5 | 2.6 b | 1.7 b | 1.8 b | 1.7 b | 4.2 a | 5.9 a | 5.8 a | 5.0 a | 0.002 | 0.980 | 0.739 |
GABA 6 | 166 a | 220 b | 239 c | 302 d | 175 a | 214 b | 247 c | 293 d | 0.790 | <0.001 | 0.059 |
Density | ND | HD | Two-Way ANOVA, p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Diet | CON | GABA150 | GABA200 | GABA250 | CON | GABA150 | GABA200 | GABA250 | Density | GABA | D × G |
SOD 2 | 16.24 b | 23.15 a | 18.78 ab | 21.79 a | 12.66 b | 21.09 a | 18.22 ab | 22.05 a | 0.462 | 0.046 | 0.906 |
MPO 3 | 1.45 b | 1.20 b | 1.87 a | 1.44 a | 1.23 b | 1.44 b | 1.40 a | 1.81 a | 0.818 | 0.015 | 0.006 |
Lysozyme 4 | 0.15 b | 0.39 a | 0.10 b | 0.25 b | 0.17 b | 0.39 a | 0.26 b | 0.14 b | 0.542 | <0.001 | 0.520 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, J.; Moniruzzaman, M.; Je, H.-W.; Lee, S.; Choi, W.; Min, T.; Kim, K.-W.; Bai, S.C. Evaluation of Gamma-Aminobutyric Acid (GABA) as a Functional Feed Ingredient on Growth Performance, Immune Enhancement, and Disease Resistance in Olive Flounder (Paralichthys olivaceus) under High Stocking Density. Antioxidants 2024, 13, 647. https://doi.org/10.3390/antiox13060647
Bae J, Moniruzzaman M, Je H-W, Lee S, Choi W, Min T, Kim K-W, Bai SC. Evaluation of Gamma-Aminobutyric Acid (GABA) as a Functional Feed Ingredient on Growth Performance, Immune Enhancement, and Disease Resistance in Olive Flounder (Paralichthys olivaceus) under High Stocking Density. Antioxidants. 2024; 13(6):647. https://doi.org/10.3390/antiox13060647
Chicago/Turabian StyleBae, Jinho, Mohammad Moniruzzaman, Hyeong-Woo Je, Seunghan Lee, Wonsuk Choi, Taesun Min, Kang-Woong Kim, and Sungchul C. Bai. 2024. "Evaluation of Gamma-Aminobutyric Acid (GABA) as a Functional Feed Ingredient on Growth Performance, Immune Enhancement, and Disease Resistance in Olive Flounder (Paralichthys olivaceus) under High Stocking Density" Antioxidants 13, no. 6: 647. https://doi.org/10.3390/antiox13060647
APA StyleBae, J., Moniruzzaman, M., Je, H.-W., Lee, S., Choi, W., Min, T., Kim, K.-W., & Bai, S. C. (2024). Evaluation of Gamma-Aminobutyric Acid (GABA) as a Functional Feed Ingredient on Growth Performance, Immune Enhancement, and Disease Resistance in Olive Flounder (Paralichthys olivaceus) under High Stocking Density. Antioxidants, 13(6), 647. https://doi.org/10.3390/antiox13060647