Hydration and Fortification of Common Bean (Phaseolus vulgaris L.) with Grape Skin Phenolics—Effects of Ultrasound Application and Heating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Extraction of Water-Soluble Grape Skin Phenolics
2.3. Moisture Content
2.4. Hydration and Heat Treatment of Beans
2.5. Mathematical Modeling
2.6. Phenolic Extraction
2.7. Phenolic Analysis by HPLC
2.8. Ferric Ion Reducing Antioxidant Power (FRAP) Assay
2.9. Statistical Analysis of Data
3. Results and Discussion
3.1. Kinetics of Hydration
3.2. Antioxidant Content
3.2.1. Flavonols
3.2.2. Flavanols
3.2.3. Anthocyanins
3.2.4. Phenolic Acids
3.3. FRAP Values
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Høgh-Jensen, H.; Myaka, F.M.; Kamalongo, D.; Ngwira, A. The Bean—Naturally bridging agriculture and human wellbeing. In Food Industry; Muzzalupo, I., Ed.; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Newton, A.; Majumder, K. Germination and simulated gastrointestinal digestion of chickpea (Cicer arietinum L.) in exhibiting in vitro antioxidant activity in gastrointestinal epithelial cells. Antioxidants 2023, 12, 1114. [Google Scholar] [CrossRef] [PubMed]
- Carbas, B.; Machado, N.; Oppolzer, D.; Ferreira, L.; Queiroz, M.; Brites, C.; Rosa, E.A.; Barros, A.I. Nutrients, antinutrients, phenolic composition, and antioxidant activity of common bean cultivars and their potential for food applications. Antioxidants 2020, 9, 186. [Google Scholar] [CrossRef] [PubMed]
- Myrtsi, E.D.; Evergetis, E.; Koulocheri, S.D.; Haroutounian, S.A. Bioactivity of wild and cultivated legumes: Phytochemical content and antioxidant properties. Antioxidants 2023, 12, 852. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Available online: https://www.fao.org/faostat (accessed on 28 March 2024).
- Mecha, E.; Leitão, S.T.; Carbas, B.; Serra, A.T.; Moreira, P.M.; Veloso, M.M.; Gomes, R.; Figueira, M.E.; Brites, C.; Patto, M.C.V.; et al. Characterization of soaking process’ impact in common beans phenolic composition: Contribute from the unexplored Portuguese germplasm. Foods 2019, 8, 296. [Google Scholar] [CrossRef] [PubMed]
- Ibarz, A.; Augusto, P.E.D. Describing the food sigmoidal behavior during hydration based on a second-order autocatalytic kinetic. Dry. Technol. 2015, 33, 315–321. [Google Scholar] [CrossRef]
- Devkota, L.; He, L.; Bittencourt, C.; Midgley, J.; Haritos, V.S. Thermal and pulsed electric field (PEF) assisted hydration of common beans. LWT Food Sci. Technol. 2022, 158, 113163. [Google Scholar] [CrossRef]
- Miano, A.C.; Pereira, J.d.C.; Castanha, N.; Júnior, M.D.d.M.; Augusto, P.E.D. Enhancing mung bean hydration using the ultrasound technology: Description of mechanisms and impact on its germination and main components. Sci. Rep. 2016, 6, 38996. [Google Scholar] [CrossRef] [PubMed]
- Chiu, K.-Y. Changes in microstructure, germination, sprout growth, phytochemical and microbial quality of ultrasonication treated Adzuki Bean seeds. Agronomy 2021, 11, 1093. [Google Scholar] [CrossRef]
- Vásquez, U.; Siche, R.; Miano, A.C. Ultrasound-assisted hydration with sodium bicarbonate solution enhances hydration-cooking of pigeon pea. LWT Food Sci. Technol. 2021, 144, 111191. [Google Scholar] [CrossRef]
- Ghafoor, M.; Misra, N.; Mahadevan, K.; Tiwari, B. Ultrasound assisted hydration of Navy beans (Phaseolus vulgaris). Ultrason. Sonochem. 2014, 21, 409–414. [Google Scholar] [CrossRef]
- Patero, T.; Augusto, P.E. Ultrasound (US) enhances the hydration of sorghum (Sorghum bicolor) grains. Ultrason. Sonochem. 2015, 23, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Floros, J.D.; Liang, H. Acoustically assisted diffusion through membranes and biomaterials. Food Technol. 1994, 48, 7984. [Google Scholar]
- Miano, A.C.; Augusto, P.E.D. The ultrasound assisted hydration as an opportunity to incorporate nutrients into grains. Food Res. Int. 2018, 106, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Miano, A.C.; Sabadoti, V.D.; Pereira, J.d.C.; Augusto, P.E.D. Hydration kinetics of cereal and pulses: New data and hypothesis evaluation. J. Food Process. Eng. 2018, 41. [Google Scholar] [CrossRef]
- Mashkour, M.; Maghsoudlou, Y.; Kashaninejad, M.; Aalami, M. Effect of ultrasound pretreatment on iron fortification of potato using vacuum impregnation. J. Food Process. Preserv. 2018, 42, e13590. [Google Scholar] [CrossRef]
- Purizaca-Santisteban, K.; Ruiz-Flores, L.A.; Sócola, Z.; Chaves, E.S.; Espinoza-Delgado, P.M. Ultrasound-assisted fortification of yellow sweet potato (Ipomoea batatas) with iron and ascorbic acid. Front. Sustain. Food Syst. 2023, 7, 1193496. [Google Scholar] [CrossRef]
- Bonto, A.P.; Tiozon, R.N.; Rojviriya, C.; Sreenivasulu, N.; Camacho, D.H. Sonication increases the porosity of uncooked rice kernels affording softer textural properties, loss of intrinsic nutrients and increased uptake capacity during fortification. Ultrason. Sonochem. 2020, 68, 105234. [Google Scholar] [CrossRef]
- Bonto, A.P.; Camacho, K.S.I.; Camacho, D.H. Increased vitamin B5 uptake capacity of ultrasonic treated milled rice: A new method for rice fortification. LWT Food Sci. Technol. 2018, 95, 32–39. [Google Scholar] [CrossRef]
- Tiozon, R.N.T., Jr.; Camacho, D.H.; Bonto, A.P.; Oyong, G.G.; Sreenivasulu, N. Efficient fortification of folic acid in rice through ultrasonic treatment and absorption. Food Chem. 2021, 335, 127629. [Google Scholar] [CrossRef]
- Serventi, L. Cooking water composition. In Upcycling Legume Water: From Wastewater Food Ingredients, 1st ed.; Serventi, L.E., Ed.; Springer Nature: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Kaptso, K.; Njintang, Y.; Komnek, A.; Hounhouigan, J.; Scher, J.; Mbofung, C. Physical properties and rehydration kinetics of two varieties of cowpea (Vigna unguiculata) and bambara groundnuts (Voandzeia subterranea) seeds. J. Food Eng. 2008, 86, 91–99. [Google Scholar] [CrossRef]
- Peleg, M. An empirical model for the description of moisture sorption curves. J. Food Sci. 1988, 53, 1216–1217. [Google Scholar] [CrossRef]
- Chen, P.X.; Zhang, H.; Marcone, M.F.; Pauls, K.P.; Liu, R.; Tang, Y.; Zhang, B.; Renaud, J.B.; Tsao, R. Anti-inflammatory effects of phenolic-rich cranberry bean (Phaseolus vulgaris L.) extracts and enhanced cellular antioxidant enzyme activities in Caco-2 cells. J. Funct. Foods 2017, 38, 675–685. [Google Scholar] [CrossRef]
- Lavelli, V.; Harsha, P.S. Microencapsulation of grape skin phenolics for pH controlled release of antiglycation agents. Food Res. Int. 2018, 119, 822–828. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Haladjian, N.; Fayad, R.; Toufeili, I.; Shadarevian, S.; Sidahmed, M.; Baydoun, E.; Karwe, M. pH, Temperature and hydration kinetics of faba beans (Vicia Faba L.). J. Food Process. Preserv. 2003, 27, 9–20. [Google Scholar] [CrossRef]
- Aguilera, Y.; Estrella, I.; Benitez, V.; Esteban, R.M.; Martín-Cabrejas, M.A. Bioactive phenolic compounds and functional properties of dehydrated bean flours. Food Res. Int. 2011, 44, 774–780. [Google Scholar] [CrossRef]
- Guajardo-Flores, D.; García-Patiño, M.; Serna-Guerrero, D.; Gutiérrez-Uribe, J.; Serna-Saldívar, S. Characterization and quantification of saponins and flavonoids in sprouts, seed coats and cotyledons of germinated black beans. Food Chem. 2012, 134, 1312–1319. [Google Scholar] [CrossRef]
- Xu, B.; Chang, S.K. Effect of soaking, boiling, and steaming on total phenolic contentand antioxidant activities of cool season food legumes. Food Chem. 2008, 110, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.X.; Tang, Y.; Marcone, M.F.; Pauls, P.K.; Zhang, B.; Liu, R.; Tsao, R. Characterization of free, conjugated and bound phenolics and lipophilic antioxidants in regular- and non-darkening cranberry beans (Phaseolus vulgaris L.). Food Chem. 2015, 185, 298–308. [Google Scholar] [CrossRef]
- Giusti, F.; Caprioli, G.; Ricciutelli, M.; Vittori, S.; Sagratini, G. Determination of fourteen polyphenols in pulses by high performance liquid chromatography-diode array detection (HPLC-DAD) and correlation study with antioxidant activity and colour. Food Chem. 2017, 221, 689–697. [Google Scholar] [CrossRef]
- Mojica, L.; Meyer, A.; Berhow, M.A.; de Mejía, E.G. Bean cultivars (Phaseolus vulgaris L.) have similar high antioxidant capacity, in vitro inhibition of α-amylase and α-glucosidase while diverse phenolic composition and concentration. Food Res. Int. 2015, 69, 38–48. [Google Scholar] [CrossRef]
- Madrera, R.R.; Negrillo, A.C.; Valles, B.S.; Fernández, J.J.F. Characterization of extractable phenolic profile of common bean seeds (Phaseolus vulgaris L.) in a Spanish diversity panel. Food Res. Int. 2020, 138, 109713. [Google Scholar] [CrossRef] [PubMed]
- Lavelli, V.; Corti, S. Phloridzin and other phytochemicals in apple pomace: Stability evaluation upon dehydration and storage of dried product. Food Chem. 2011, 129, 1578–1583. [Google Scholar] [CrossRef]
- Lin, L.-Z.; Harnly, J.M.; Pastor-Corrales, M.S.; Luthria, D.L. The polyphenolic profiles of common bean (Phaseolus vulgaris L.). Food Chem. 2008, 107, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.-Q.; Gan, R.-Y.; Ge, Y.-Y.; Zhang, D.; Corke, H. Ultrasonic treatment increases extraction rate of common bean (Phaseolus vulgaris L.). Antioxidants 2019, 8, 83. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Chang, S.K.C. Total phenolic, phenolic acid, anthocyanin, flavan-3-ol, and flavonol profiles and antioxidant properties of Pinto and Black beans (Phaseolus vulgaris L.) as affected by thermal processing. J. Agric. Food Chem. 2009, 57, 4754–4764. [Google Scholar] [CrossRef] [PubMed]
- Ross, K.A.; Zhang, L.; Arntfield, S.D. Understanding water uptake from the induced changes occurred during processing: Chemistry of Pinto and Navy bean seed coats. Int. J. Food Prop. 2010, 13, 631–647. [Google Scholar] [CrossRef]
- Mironeasa, S.; Coţovanu, I.; Mironeasa, C.; Ungureanu-Iuga, M. A Review of the changes produced by extrusion cooking on the bioactive compounds from vegetal sources. Antioxidants 2023, 12, 1453. [Google Scholar] [CrossRef]
- McClements, D.J. Designing healthier and more sustainable ultraprocessed foods. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13331. [Google Scholar] [CrossRef]
- Harsha, P.S.C.S.; Lavelli, V. Use of grape pomace phenolics to counteract endogenous and exogenous formation of advanced glycation end-products. Nutrients 2019, 11, 1917. [Google Scholar] [CrossRef]
Sigmoidal Behavior–WKB | ||||
H2O-S | H2O-US-S | GS-S | GS-US-S | |
τ (min) | 155 ± 5 | 123 ± 4 | 204 ± 25 | 217 ± 9 |
k (min−1) | 0.013 ± 0.0006 | 0.017 ± 0.0008 | 0.009 ± 0.001 | 0.010 ± 0.0004 |
M∞ (gwater/100 gd.s.) | 112 ± 3 | 127 ± 2 | 96 ± 9 | 123 ± 5 |
R2 | 0.997 | 0.996 | 0.985 | 0.998 |
RMSD | 2.9 | 2.5 | 2.7 | 1.4 |
NRMSD | 3.0 | 2.0 | 4.1 | 1.6 |
Downward concave shape behavior–CB | ||||
H2O-S | H2O-US-S | GS-S | GS-US-S | |
k1 (min · gwater/100 gd.s.)−1 | 1.18 ± 0.13 | 0.57 ± 0.07 | 1.47 ± 0.33 | 1.47 ± 0.13 |
k2 (gwater/100 gd.s.)−1 | 0.0063 ± 0.0004 | 0.0076 ± 0.0002 | 0.008 ± 0.001 | 0.0074 ± 0.0004 |
Mo (gwater/100 gd.s.) | 8 ± 3 | 13 ± 3 | 17 ± 4.1 | 16 ± 2 |
M∞ (gwater/100 gd.s.) | 113 ± 4 | 122 ± 4 | 97 ± 6 | 103 ± 3 |
R2 | 0.992 | 0.991 | 0.967 | 0.995 |
RMSD | 2.9 | 2.9 | 4.9 | 2.0 |
NRMSD | 3.0 | 2.7 | 5.6 | 2.2 |
Soaked WKB | Soaked and Heated WKB | ||||||
---|---|---|---|---|---|---|---|
Dry WKB | H2O-S | GS-S | GS-US-S | H2O-S-H | GS-S-H | GS-US-H | |
Q-G | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Q | n.d. | n.d. | 9.8 b ± 1 | 16.5 c ± 2 | n.d. | 2.7 a ± 0.3 | 4.7 a ± 0.3 |
K-G | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
K | n.d. | n.d. | 3.4 b ± 0.3 | 6.9 d ± 0.1 | n.d. | 2.0 a ± 0.1 | 5.1 c ± 0.1 |
Σ Flo | 13.2 c ± 0.1 | 23.4 d ± 3.4 | 4.6 a ± 0.1 | 9.7 b ± 0.1 | |||
C | 9.9 ab ± 1.9 | 5.4 a ± 0.1 | 14.7 bc ± 3.0 | 16.5 bcd ± 1.0 | 17.9 cd ± 1.1 | 23.2 de ± 0.5 | 26 e ± 6 |
E | 1.0 a ± 0.1 | 0.53 a ± 0.1 | 1.8 ab ± 0.1 | 2.5 ab ± 0.1 | 1.5 a ± 0.1 | 4.2 ab ± 2.6 | 6.3 b ± 3.9 |
Σ Fla | 10.9 ab ± 1.4 | 5.9 a ± 0.1 | 16.5 abc ± 3 | 19.0 bc ± 0.9 | 19 bc ± 3 | 27 cd ± 3 | 32 d ± 10 |
Mv-G | n.d. | n.d. | 10.5 ± 2.6 | 7.6 ± 2.5 | n.d. | n.d. | n.d. |
Σ AC | 10.5 ± 2.6 | 7.6 ± 2.5 | |||||
Fe | 25.9 ab ± 0.1 | 28.6 b ± 0.5 | 39.7 c ± 1.7 | 16.9 a ± 1.6 | 19.0 a ± 0.5 | 19 a ± 6 | 24.5 ab ± 5 |
Sy | 4.0 a ± 0.8 | 6.8 a ± 0.1 | 7.6 a ± 1.7 | 6.7 a ± 0.8 | 25.8 b ± 5.1 | 31.0 b ± 0.6 | 27.5 b ± 2.3 |
p-Cu | 5.0 a ± 0.1 | 5.5 a ± 0.1 | 9.3 a ± 1.4 | 5.1 a ± 2.2 | 9.6 a ± 0.6 | 16 b ± 4 | 9.3 a ± 1.4 |
c HC | 489 d ± 33 | 406 c ± 25 | 482 d ± 25 | 406 c ± 5 | 196 ab ± 7 | 236 b ± 8 | 161 a ± 7 |
Σ HC | 524 d ± 33 | 447 c ± 26 | 539 d ± 20 | 435 c ± 1 | 250 a ± 14 | 302 b ± 10 | 222 a ± 31 |
Soaked CB | Soaked and Heated CB | ||||||
---|---|---|---|---|---|---|---|
Dry CB | H2O-S | GS-S | GS-US-S | H2O-S-H | GS-S-H | GS-US-H | |
Q-G | 115 b ± 3 | n.d. | 12.1 a ± 4.5 | 22.3 a ± 0.9 | n.d. | n.d. | n.d. |
Q | 5.6 ab ± 1.6 | 1.6 a ± 1.1 | 13.5 d ± 2.7 | 20.0 e ± 1.5 | n.d. | 7.7 bc ± 0.2 | 10.2 cd ± 0.6 |
K-G | 213 ± 1 | n.d. | n.d. | n.d. | n.d. | ||
K | 7.2 b ± 0.1 | 14.1 d ± 2.0 | 9.8 c ± 1.0 | 17.6 e ± 0.3 | 2.9 a ± 1.1 | 8.2 bc ± 0.7 | 14.9 d ± 0.1 |
Σ Flo | 341 f ± 28 | 15.7 b ± 0.9 | 35.4 d ± 3 | 59.9 e ± 0.3 | 2.9 a ± 1.1 | 15.9 b ± 0.6 | 25.1 c ± 0.3 |
C | 210 cd ± 4 | 112 a ± 7 | 166 bc ± 38 | 161 b ± 31 | 146 ab ± 13 | 266 e ± 13 | 245 de ± 4 |
E | 25 bc ± 4 | 6.9 a ± 0.1 | 12 ab ± 6 | 12 ab ± 1 | 35 cd ± 10 | 39 d ± 8 | 19 ab ± 2 |
P-B1 | 99 d ± 12 | 53 bc ± 5 | 56 bc ± 11 | 65 c ± 10 | 31 a ± 6 | 55 bc ± 11 | 43 ab ± 2 |
Σ Fla | 334 c ± 12 | 172 a ± 3 | 234 a ± 55 | 238 ab ± 43 | 212 a ± 8 | 360 c ± 43 | 307 bc ± 6 |
Dp-G | n.d. | n.d. | 3.5 ± 3.5 | 8.4 ± 1.9 | n.d. | n.d. | n.d. |
Cy-G | 4.4 ± 1.6 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Pt-G | 27.7 ± 0.7 | n.d. | 8.2 ± 0.1 | 10.6 ± 0.5 | n.d. | n.d. | n.d. |
Pe-G | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Mv-G | n.d. | n.d. | 27 ± 9.5 | 25.8 ± 9.5 | n.d. | 7.5 ± 0.6 | 7.9 ± 0.7 |
Σ AC | 32.1 ± 0.9 | 38.7 ± 14 | 44.8 ± 10 | 7.5 ± 0.6 | 7.9 ± 0.7 | ||
Fe | 60 b ± 10 | 31 a ± 5 | 127 c ± 21 | 59.5 b ± 8.7 | 31.1 a ± 0.1 | 74.6 b ± 4.9 | 27.2 a ± 1.7 |
Sy | 11.1 b ± 2.4 | 9.1 ab ± 2 | 2.2 a ± 04 | 11.1 b ± 1.0 | 21.0 c ± 5.6 | 11.4 b ± 5 | |
p-Cu | 11.1 c ± 2.2 | 7.7 b ± 0.2 | 4.5 a ± 0.9 | 4.7 a ± 0.7 | 11.3 c ± 0.3 | 5.8 ab ± 0.4 | |
cHC | 591 d ± 8.4 | 100 a ± 4 | 417 c ± 75 | 150 ab ± 2 | 124 a ± 4 | 212 b ± 6 | 96 a ± 2 |
Σ HC | 673 e ± 23 | 131 a ± 1 | 561 d ± 45 | 216 b ± 7 | 171 ab ± 2 | 319 c ± 17 | 140 a ± 4 |
Dry | Soaked | Soaked and Heated | |||||
---|---|---|---|---|---|---|---|
H2O-S | GS-S | GS-US-S | H2O-S-H | GS-S-H | GS-US-H | ||
WKB | 1.23 a ± 0.13 | 1.16 a ± 0.17 | 1.67 b ± 0.27 | 2.07 c ± 0.30 | 1.21 a ± 0.22 | 1.46 ab ± 0.30 | 1.70 b ± 0.17 |
CB | 9.3 e ± 0.4 | 5.3 c ± 1.3 | 7.5 d ± 1.5 | 7.5 d ± 1.1 | 2.8 a ± 0.4 | 4.3 bc ± 1.0 | 3.6 ab ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonassi, G.; Lavelli, V. Hydration and Fortification of Common Bean (Phaseolus vulgaris L.) with Grape Skin Phenolics—Effects of Ultrasound Application and Heating. Antioxidants 2024, 13, 615. https://doi.org/10.3390/antiox13050615
Bonassi G, Lavelli V. Hydration and Fortification of Common Bean (Phaseolus vulgaris L.) with Grape Skin Phenolics—Effects of Ultrasound Application and Heating. Antioxidants. 2024; 13(5):615. https://doi.org/10.3390/antiox13050615
Chicago/Turabian StyleBonassi, Gloria, and Vera Lavelli. 2024. "Hydration and Fortification of Common Bean (Phaseolus vulgaris L.) with Grape Skin Phenolics—Effects of Ultrasound Application and Heating" Antioxidants 13, no. 5: 615. https://doi.org/10.3390/antiox13050615
APA StyleBonassi, G., & Lavelli, V. (2024). Hydration and Fortification of Common Bean (Phaseolus vulgaris L.) with Grape Skin Phenolics—Effects of Ultrasound Application and Heating. Antioxidants, 13(5), 615. https://doi.org/10.3390/antiox13050615