Nanoencapsulation of Maqui (Aristotelia chilensis) Extract in Chitosan–Tripolyphosphate and Chenopodin-Based Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Chemical Reagents
2.3. Methodology
2.3.1. Maqui Extract Standardization
2.3.2. Nanoencapsulation Methods
Preparation of Nanosystems Based on Chenopodin
2.3.3. Characterisation of Nanosystems
2.3.4. In Vitro Release Study of Nanosystems in Phosphate Buffer at pH 7.4
3. Results and Discussion
3.1. Standardisation of Maqui Extract
Source | Mixtures of Solvents Used in the Extraction | mg Cyanidin-3-Glucoside/g Extract | Reference |
---|---|---|---|
Maqui Isla Natura-Chiloé-Chile | acidified (0.1% HCl) ethanol/water (80:20) | 8.62–9.13 | This research |
Maqui Cañete-Chile | acidified (0.1% HCl) methanol/water (80:20) | 22.58 | [20] |
Maqui Fundación Chile | 70%methanol, cleaned up through AmberliteXAD-7 | 8.30 | [24] |
Maqui Paredones- Chile | acidified methanol (0.1% HCl) | 8.82 | [28] |
3.2. Obtaining and Characterisation of Nanosystems
3.2.1. Chitosan–Tripolyphosphate Loaded with Maqui Extract (CTPP-ME)
3.2.2. Nanosystems Based on Chenopodin–Alginate (CHA) and Chenopodin (CH) Loaded with Maqui Extract (ME)
Obtaining 11S Globulin (Chenopodin, CH) from Quinoa Flour
Encapsulation Efficiency (EE) and Load Capacity (LC) in the Nanosystems
FT-IR Analysis of Maqui Extract (ME), Chitosan (CS), Maqui Extract Nanoencapsulated in CTPP (CTPP-ME), Chenopodin (CH), and Chenopodin Maqui Extract (CH-ME)
3.2.3. In Vitro Release of Maqui Extract from CTPP-ME 3% and CH-ME in PBS 1X Buffer at pH 7.4
3.2.4. ORAC Activity of Free and Nanoencapsulated Maqui Extract
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pinto, A.A.; Fuentealba-Sandoval, V.; López, M.D.; Peña-Rojas, K.; Fischer, S. Accumulation of Delphinidin Derivatives and Other Bioactive Compound in Wild Maqui under Different Environmental Conditions and Fruit Ripening Stages. Ind. Crops Prod. 2022, 184, 115064. [Google Scholar] [CrossRef]
- Fuentealba-Sandoval, V.; Fischer, S.; Pinto, A.A.; Bastías, R.M.; Peña-Rojas, K. Maqui (Aristotelia chilensis (Mol.) Stuntz), towards Sustainable Canopy Management: A Review. Ind. Crops Prod. 2021, 170, 113735. [Google Scholar] [CrossRef]
- Rosales, T.K.O.; Hassimotto, N.M.A.; Lajolo, F.M.; Fabi, J.P. Nanotechnology as a Tool to Mitigate the Effects of Intestinal Microbiota on Metabolization of Anthocyanins. Antioxidants 2022, 11, 506. [Google Scholar] [CrossRef]
- Tan, J.; Han, Y.; Han, B.; Qi, X.; Cai, X.; Ge, S.; Xue, H. Extraction and Purification of Anthocyanins: A Review. J. Agric. Food Res. 2022, 8, 100306. [Google Scholar] [CrossRef]
- Liu, S.; Fang, Z.; Ng, K. Recent Development in Fabrication and Evaluation of Phenolic-Dietary Fiber Composites for Potential Treatment of Colonic Diseases. Crit. Rev. Food Sci. Nutr. 2023, 63, 6860–6884. [Google Scholar] [CrossRef] [PubMed]
- Layek, B.; Mandal, S. Natural Polysaccharides for Controlled Delivery of Oral Therapeutics: A Recent Update. Carbohydr. Polym. 2020, 230, 115617. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Zhao, J.; Wang, S. Multifunctional Hydrogels Based on Chitosan, Hyaluronic Acid and Other Biological Macromolecules for the Treatment of Inflammatory Bowel Disease: A Review. Int. J. Biol. Macromol. 2023, 227, 505–523. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, Y.; Li, X.; Mei, Z.; Wu, S.; He, Y.; Jiang, X.; Sun, J.; Xiao, J.; Deng, L.; et al. Nanoencapsulation of Cyanidin-3-O-Glucoside Enhances Protection Against UVB-Induced Epidermal Damage through Regulation of P53-Mediated Apoptosis in Mice. J. Agric. Food Chem. 2018, 66, 5359–5367. [Google Scholar] [CrossRef]
- Wang, M.; Li, L.; Wan, M.; Lin, Y.; Tong, Y.; Cui, Y.; Deng, H.; Tan, C.; Kong, Y.; Meng, X. Preparing, Optimising, and Evaluating Chitosan Nanocapsules to Improve the Stability of Anthocyanins from Aronia melanocarpa. RSC Adv. 2020, 11, 210–218. [Google Scholar] [CrossRef]
- Ge, J.; Yue, P.; Chi, J.; Liang, J.; Gao, X. Formation and Stability of Anthocyanins-Loaded Nanocomplexes Prepared with Chitosan Hydrochloride and Carboxymethyl Chitosan. Food Hydrocoll. 2018, 74, 23–31. [Google Scholar] [CrossRef]
- Elmowafy, M.; Shalaby, K.; Elkomy, M.H.; Alsaidan, O.A.; Gomaa, H.A.M.; Abdelgawad, M.A.; Mostafa, E.M. Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges. Polymers 2023, 15, 1123. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, M.; Vahidi, O.; Moghbeli, M.; Ahmadi, S.; Asadnia, M.; Akhavan, O.; Seidi, F.; Rabiee, M.; Saeb, M.R.; Webster, T.J.; et al. Customizing Nano-Chitosan for Sustainable Drug Delivery. J. Control. Release 2022, 350, 175–192. [Google Scholar] [CrossRef] [PubMed]
- Mani, S.; Balasubramanian, B.; Balasubramani, R.; Chang, S.W.; Ponnusamy, P.; Esmail, G.A.; Arasu, M.V.; Al-Dhabi, N.A.; Duraipandiyan, V. Synthesis and Characterization of Proanthocyanidin-Chitosan Nanoparticles: An Assessment on Human Colorectal Carcinoma HT-29 Cells. J. Photochem. Photobiol. B 2020, 210, 111966. [Google Scholar] [CrossRef] [PubMed]
- Rashwan, A.K.; Karim, N.; Xu, Y.; Xie, J.; Cui, H.; Mozafari, M.R.; Chen, W. Potential Micro-/Nano-Encapsulation Systems for Improving Stability and Bioavailability of Anthocyanins: An Updated Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 3362–3385. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.; Sun, H.; Qi, B.; Zhang, M.; Li, Y.; Jiang, L. Functional and Conformational Changes to Soy Proteins Accompanying Anthocyanins: Focus on Covalent and Non-Covalent Interactions. Food Chem. 2018, 245, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Zang, Z.; Chou, S.; Si, X.; Cui, H.; Tan, H.; Ding, Y.; Liu, Z.; Wang, H.; Lang, Y.; Tang, S.; et al. Effect of Bovine Serum Albumin on the Stability and Antioxidant Activity of Blueberry Anthocyanins during Processing and in Vitro Simulated Digestion. Food Chem. 2022, 373, 131496. [Google Scholar] [CrossRef]
- Ge, J.; Yue, X.; Wang, S.; Chi, J.; Liang, J.; Sun, Y.; Gao, X.; Yue, P. Nanocomplexes Composed of Chitosan Derivatives and β-Lactoglobulin as a Carrier for Anthocyanins: Preparation, Stability and Bioavailability in Vitro. Food Res. Int. 2019, 116, 336–345. [Google Scholar] [CrossRef]
- Romo, I.; Abugoch, L.; Tapia, C. Soluble Complexes between Chenopodins and Alginate/Chitosan: Intermolecular Interactions and Structural-Physicochemical Properties. Carbohydr. Polym. 2020, 227, 115334. [Google Scholar] [CrossRef]
- Arazo, M.; Jaque, N.; Caro, N.; Abugoch, L.; Tapia, C. Development of a Scalable Procedure by a Discontinuous Crossflow DF/UF to Obtain a Concentrate of Chenopodin from a Dead-End Centrifugal UF at Bench Scale. Food Chem. 2020, 313, 126154. [Google Scholar] [CrossRef]
- Genskowsky, E.; Puente, L.A.; Pérez-Álvarez, J.A.; Fernández-López, J.; Muñoz, L.A.; Viuda-Martos, M. Determination of Polyphenolic Profile, Antioxidant Activity and Antibacterial Properties of Maqui [Aristotelia chilensis (Molina) Stuntz] a Chilean Blackberry. J. Sci. Food Agric. 2016, 96, 4235–4242. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-Throughput Assay of Oxygen Radical Absorbance Capacity (ORAC) Using a Multichannel Liquid Handling System Coupled with a Microplate Fluorescence Reader in 96-Well Format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef]
- Tanaka, J.; Kadekaru, T.; Ogawa, K.; Hitoe, S.; Shimoda, H.; Hara, H. Maqui Berry (Aristotelia chilensis) and the Constituent Delphinidin Glycoside Inhibit Photoreceptor Cell Death Induced by Visible Light. Food Chem. 2013, 139, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Rojo, L.E.; Ribnicky, D.; Logendra, S.; Poulev, A.; Rojas-Silva, P.; Kuhn, P.; Dorn, R.; Grace, M.H.; Lila, M.A.; Raskin, I. In Vitro and in Vivo Anti-Diabetic Effects of Anthocyanins from Maqui Berry (Aristotelia chilensis). Food Chem. 2012, 131, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Rosales, T.K.O.; Fabi, J.P. Nanoencapsulated Anthocyanin as a Functional Ingredient: Technological Application and Future Perspectives. Colloids Surf. B Biointerfaces 2022, 218, 112707. [Google Scholar] [CrossRef]
- Cabrita, L.; Fossen, T.; Andersen, M. Colour and Stability of the Six Common Anthocyanidin 3-Glucosides in Aqueous Solutions. Food Chem. 2000, 68, 101–107. [Google Scholar] [CrossRef]
- Cavalcanti, R.N.; Santos, D.T.; Meireles, M.A.A. Non-Thermal Stabilization Mechanisms of Anthocyanins in Model and Food Systems—An Overview. Food Res. Int. 2011, 44, 499–509. [Google Scholar] [CrossRef]
- Fredes, C.; Montenegro, G.; Zoffoli, J.P.; Gómez, M.; Robert, P. Polyphenol Content and Antioxidant Activity of Maqui (Aristotelia chilensis [Molina] Stuntz) during fruit development and maturation in central Chile. Chil. J. Agric. Res. 2012, 72, 582–589. [Google Scholar] [CrossRef]
- Arazo, M. Nuevas Emulsiones Solubles Basadas en Quenopodina-Quitosano y Quenopodina-Alginato, Como Matrices de Liberación Controlada de Quercetina a Nivel Colónico. Ph.D. Thesis, Universidad de Chile, Santiago, Chile, 2021. [Google Scholar]
- Abugoch James, L.E. Quinoa (Chenopodium quinoa Willd.): Composition, Chemistry, Nutritional, and Functional Properties. Adv. Food Nutr. Res. 2009, 58, 1–31. [Google Scholar] [CrossRef]
- Sharif, N.; Khoshnoudi-Nia, S.; Jafari, S.M. Nano/Microencapsulation of Anthocyanins; a Systematic Review and Meta-Analysis. Food Res. Int. 2020, 132, 109077. [Google Scholar] [CrossRef]
- Šaponjac, V.T.; Ćetković, G.; Čanadanović-Brunet, J.; Dilas, S.; Pajin, B.; Petrović, J.; Stajčić, S.; Vulić, J. Encapsulation of Sour Cherry Pomace Extract by Freeze Drying: Characterization and Storage Stability. Acta Chim. Slov. 2017, 64, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Rashid, R.; Wani, S.M.; Manzoor, S.; Masoodi, F.A.; Altaf, A. Nanoencapsulation of Pomegranate Peel Extract Using Maltodextrin and Whey Protein Isolate. Characterisation, Release Behaviour and Antioxidant Potential during Simulated Invitro Digestion. Food Biosci. 2022, 50, 102135. [Google Scholar] [CrossRef]
- Arroyo-Maya, I.J.; McClements, D.J. Biopolymer Nanoparticles as Potential Delivery Systems for Anthocyanins: Fabrication and Properties. Food Res. Int. 2015, 69, 1–8. [Google Scholar] [CrossRef]
- He, Q.; Gong, K.; Ao, Q.; Ma, T.; Yan, Y.; Gong, Y.; Zhang, X. Positive Charge of Chitosan Retards Blood Coagulation on Chitosan Films. J. Biomater. Appl. 2013, 28, 1032–1045. [Google Scholar] [CrossRef] [PubMed]
- Dreghici, D.B.; Butoi, B.; Predoi, D.; Iconaru, S.L.; Stoican, O.; Groza, A. Chitosan–Hydroxyapatite Composite Layers Generated in Radio Frequency Magnetron Sputtering Discharge: From Plasma to Structural and Morphological Analysis of Layers. Polymers 2020, 12, 3065. [Google Scholar] [CrossRef] [PubMed]
- Intiquilla, A.; Jiménez-Aliaga, K.; Iris Zavaleta, A.; Gamboa, A.; Caro, N.; Diaz, M.; Gotteland, M.; Abugoch, L.; Tapia, C. Nanoencapsulation of Antioxidant Peptides from Lupinus mutabilis in Chitosan Nanoparticles Obtained by Ionic Gelling and Spray Freeze Drying Intended for Colonic Delivery. Food Biosci. 2022, 50, 102055. [Google Scholar] [CrossRef]
- Ahmed, J.K.; Amer, Z.J.A.; Al-Bahate, M.J.M. Effect of Chlorophyll and Anthocyanin on the Secondary Bonds of Poly Methyl Methacrylate (pmma). Int. J. Tech. Res. Appl. 2014, 73–80. [Google Scholar]
- Vankar, P.S.; Shukla, D. Natural Dyeing with Anthocyanins from Hibiscus rosa sinensis Flowers. J. Appl. Polym. Sci. 2011, 122, 3361–3368. [Google Scholar] [CrossRef]
- Pereira, V.A.; de Arruda, I.N.Q.; Stefani, R. Active Chitosan/PVA Films with Anthocyanins from Brassica oleraceae (Red Cabbage) as Time-Temperature Indicators for Application in Intelligent Food Packaging. Food Hydrocoll. 2015, 43, 180–188. [Google Scholar] [CrossRef]
- Oliveira, R.N.; Mancini, M.C.; de Oliveira, F.C.S.; Passos, T.M.; Quilty, B.; Thiré, R.M.d.S.M.; McGuinness, G.B. Análise Por FTIR e Quantificação de Fenóis e Flavonóides de Cinco Produtos Naturais Disponíveis Comercialmente Utilizados No Tratamento de Feridas. Rev. Mater. 2016, 21, 767–779. [Google Scholar] [CrossRef]
- Vieira, W.T.; Nicollini, M.V.S.; da Silva, M.G.C.; de Oliveira Nascimento, L.; Vieira, M.G.A. Natural Polysaccharides and Proteins Applied to the Development of Gastroresistant Multiparticulate Systems for Anti-Inflammatory Drug Delivery—A Systematic Review. Eur. Polym. J. 2022, 172, 111205. [Google Scholar] [CrossRef]
- Gamboa, A.; Araujo, V.; Caro, N.; Gotteland, M.; Abugoch, L.; Tapia, C. Spray Freeze-Drying as an Alternative to the Ionic Gelation Method to Produce Chitosan and Alginate Nano-Particles Targeted to the Colon. J. Pharm. Sci. 2015, 104, 4373–4385. [Google Scholar] [CrossRef]
- Chamizo-González, F.; Estévez, I.G.; Gordillo, B.; Manjón, E.; Escribano-Bailón, M.T.; Heredia, F.J.; González-Miret, M.L. First Insights into the Binding Mechanism and Colour Effect of the Interaction of Grape Seed 11S Globulin with Malvidin 3-O-Glucoside by Fluorescence Spectroscopy, Differential Colorimetry and Molecular Modelling. Food Chem. 2023, 413, 135591. [Google Scholar] [CrossRef]
Formulations | Maqui Extract (mL) | Chitosan 0.3% (p/v) (mL) | TPP 0.1% (p/v) (mL) |
---|---|---|---|
CTPP-ME 1% | 0.5 | 49.5 | 20 |
CTPP-ME 3% | 1.5 | 48.5 | 20 |
CTPP-ME 5% | 2.5 | 47.5 | 20 |
Components | CHA-ME | CH-ME |
---|---|---|
Maqui Extract (g) | 23 | 23 |
Chenopodin (g) | 0.72 | 1.2 |
Alginate (g) | 0.48 | - |
Tween 80 (g) | 0.8 | 0.8 |
Total (g) | 25 | 25 |
Batch | Anthocyanin Concentration (mg Equivalent Cyanidin-3-Glucoside/mL) |
---|---|
1 | 4.35 ± 0.01 a |
2 | 4.34 ± 0.01 a |
3 | 3.92 ± 0.28 b |
4 | 4.11 ± 0.03 ab |
Formula | z-Average (nm) | PdI | Zeta Potential (mV) |
---|---|---|---|
CTPP-ME 1% | 361.52 a ± 111.62 | 0.61 b ± 0.18 | 38.04 d ± 15.35 |
CTPP-ME 3% | 273.67 a ± 20.85 | 0.67 b ± 0.23 | 41.00 d ± 1.87 |
CTPP-ME 5% | 321.93 a ± 79.27 | 0.51 bc ± 0.06 | 33.68 d ± 11.42 |
Source of Anthocyanin | Anthocyanin Concentration (mg/mL) | Chitosan | Chitosan/ TPP Ratio | z-Average nm | PdI | Zeta Potential mV | Reference |
---|---|---|---|---|---|---|---|
Aronia Melanocarpa Extract | 3 | Sigma MMW 310 kDa | 1/3 p/v | 196.5 | 0.03 | 42.7 | [9] |
Cyanidin-3- glucoside | 0.1 | Beijing KehuajingweiScientific Co.Ltd. Chitosan oligosaccharides | 5/1 p/p | 288 | - | 30 | [8] |
Maqui extract | 4.2 | Sigma LMW 269 kDa | 2/1 v/v | 273.7–361.5 | 0.51–0.68 | 33.7–41.0 | This research |
Nanosystem | z-Average (nm) | PdI | Zeta Potential (mV) |
---|---|---|---|
CHA-ME | 589.47 a ± 75.08 | 0.57 b ± 0.05 | −8.73 c ± 0.15 |
CH-ME | 152.23 b ± 10.32 | 0.57 b ± 0.04 | −5.24 d ± 0.10 |
Formulations | EE (%) | LC (%) |
---|---|---|
CTPP-ME 1% | 47.860 a ± 6.24 | 0.755 d ± 0.05 |
CTPP-ME 3% | 90.984 b ± 2.50 | 3.248 e ± 0.06 |
CTPP-ME 5% | 68.261 c ± 2.09 | 4.227 f ± 0.12 |
Formulation | EE (%) | LC (%) |
---|---|---|
CH-ME | 78.92 a ± 2.35 | 3.67 c ± 0.10 |
CHA-ME | 53.78 b ± 4.26 | 2.40 d ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, D.; Maldonado-Bravo, F.; Alburquerque, A.; Pérez, C.; Gamboa, A.; Caro, N.; Díaz-Dosque, M.; Gotelland, M.; Abugoch, L.; Tapia, C. Nanoencapsulation of Maqui (Aristotelia chilensis) Extract in Chitosan–Tripolyphosphate and Chenopodin-Based Systems. Antioxidants 2024, 13, 273. https://doi.org/10.3390/antiox13030273
Andrade D, Maldonado-Bravo F, Alburquerque A, Pérez C, Gamboa A, Caro N, Díaz-Dosque M, Gotelland M, Abugoch L, Tapia C. Nanoencapsulation of Maqui (Aristotelia chilensis) Extract in Chitosan–Tripolyphosphate and Chenopodin-Based Systems. Antioxidants. 2024; 13(3):273. https://doi.org/10.3390/antiox13030273
Chicago/Turabian StyleAndrade, Daniela, Francisca Maldonado-Bravo, Amador Alburquerque, Camilo Pérez, Alexander Gamboa, Nelson Caro, Mario Díaz-Dosque, Martin Gotelland, Lilian Abugoch, and Cristian Tapia. 2024. "Nanoencapsulation of Maqui (Aristotelia chilensis) Extract in Chitosan–Tripolyphosphate and Chenopodin-Based Systems" Antioxidants 13, no. 3: 273. https://doi.org/10.3390/antiox13030273
APA StyleAndrade, D., Maldonado-Bravo, F., Alburquerque, A., Pérez, C., Gamboa, A., Caro, N., Díaz-Dosque, M., Gotelland, M., Abugoch, L., & Tapia, C. (2024). Nanoencapsulation of Maqui (Aristotelia chilensis) Extract in Chitosan–Tripolyphosphate and Chenopodin-Based Systems. Antioxidants, 13(3), 273. https://doi.org/10.3390/antiox13030273