Calculating the Aqueous pKa of Phenols: Predictions for Antioxidants and Cannabinoids
Abstract
:1. Introduction
2. Computational Methodology
3. Results and Discussion
3.1. Exploring Several Methodologies for the Direct Calculation of pKa Values
3.1.1. Results Obtained from the Direct Application of Reactions (R1) and (R2)
3.1.2. Results Obtained from the Direct Application of Reaction (R3)
3.2. Exploring Various Correlations with Experimental pKa Values and the Training Set
3.3. Predicting Aqueous pKa Values of Complex Phenols
3.3.1. Checking the Predictions with a Test Set
Fitted Equation | ||||
---|---|---|---|---|
Level of Theory | m | n | R2 | MAE |
Set of 20 phenols | ||||
M06-2X(SMD) | 0.3533 | −92.4756 | 0.975 | 0.22 |
B3LYP(SMD) | 0.3266 | −84.9381 | 0.958 | 0.24 |
BHandHLYP(SMD) | 0.3305 | −86.9380 | 0.963 | 0.25 |
PBE0(SMD) d | 0.3761 | −99.8596 | 0.969 | 0.22 |
TPSS(SMD) | 0.3315 | −86.3857 | 0.947 | 0.27 |
M06-2X(PCM) | 0.2988 | −77.5916 | 0.946 | 0.28 |
B3LYP(PCM) | 0.2751 | −70.7109 | 0.916 | 0.34 |
BHandHLYP(PCM) | 0.2847 | −74.4297 | 0.938 | 0.30 |
PBE0(PCM) d | 0.3328 | −88.0977 | 0.935 | 0.36 |
TPSS(PCM) | 0.2789 | −71.8317 | 0.898 | 0.40 |
Set of 27 phenols c | ||||
M06-2X(SMD) | 0.3244 | −84.1492 | 0.953 | 0.27 |
B3LYP(SMD) | 0.3071 | −79.2803 | 0.955 | 0.26 |
BHandHLYP(SMD) | 0.3039 | −79.2127 | 0.950 | 0.27 |
TPSS(SMD) | 0.3104 | −80.2526 | 0.959 | 0.27 |
M06-2X(PCM) | 0.2731 | −70.0432 | 0.960 | 0.26 |
B3LYP(PCM) | 0.2522 | −63.9968 | 0.956 | 0.27 |
BHandHLYP(PCM) | 0.2581 | −66.5540 | 0.957 | 0.26 |
TPSS(PCM) | 0.2489 | −62.9995 | 0.938 | 0.32 |
Solvation Method | SMD | PCM | Exp f | Other Predictions | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Name/Functional | M06-2X | B3LYP | BHandHLYP | TPSS | M06-2X | B3LYP | BHandHLYP | TPSS | Ref. [38] g | Ref. [31] h | |
(21) 2-bromophenol | 0.49 | 0.56 | 0.58 | 0.48 | −0.12 | 0.06 | −0.04 | 0.08 | 8.45 i | 0.49 | |
(22) 2-chlorophenol | −0.14 | −0.06 | −0.09 | −0.11 | −0.11 | 0.00 | −0.07 | −0.69 | 8.56 i | −0.10 | |
(23) 4-(methylthio)phenol | −0.13 | −0.14 | −0.01 | 0.27 | −0.34 | −0.34 | −0.35 | −0.97 | 9.53 i | −0.19 | |
(24) 4-aminophenol | 0.35 | 0.33 | 0.33 | 0.30 | 0.42 | 0.39 | 0.46 | 0.41 | 10.30 i | 0.17 | 0.43 l |
(25) ketobemidone | −0.17 | 0.16 | −0.07 | 0.12 | −0.02 | 0.98 | 1.12 | 0.96 | [9.96] m | −0.26 | |
(26) profadol | −0.24 | −0.19 | −0.26 | −0.22 | −0.05 | 0.00 | 0.04 | −0.01 | [10.27] m | −0.36 | |
(27) tapentadol | −0.36 | −0.29 | −0.32 | −0.31 | −0.36 | −0.37 | −0.35 | −0.33 | 10.45 n, [10.09] m | −0.48 | |
(28) (R)-Trolox | −0.40 | −0.81 | −0.37 | −0.59 | −0.18 | 0.08 | 0.09 | 0.08 | 11.92 j | −0.67 | −0.47 |
(29) ∆9-tetrahydrocannabinol (Δ9-THC) | −0.83 | −0.46 | −0.66 | −0.57 | −0.50 | −0.40 | −0.43 | −0.41 | 10.60 n | −0.91 | −1.37 |
(30) cannabidiol (CBD) d | −0.08 | 0.29 | 0.18 | 0.18 | 0.30 | 0.26 | 0.29 | 0.26 | 9.7 k | −0.18 | |
(4) 2-nitrophenol | −0.38 | −0.12 | −0.56 | 0.15 | 0.11 | 0.32 | 0.31 | 0.63 | 7.23 h | −1.10 | −3.31 |
MAE b (test set with exp values) | 0.39 | 0.38 | 0.34 | 0.38 | 0.29 | 0.23 | 0.25 | 0.42 | |||
MSE b | −0.15 | −0.12 | −0.08 | −0.08 | −0.17 | −0.08 | −0.10 | −0.26 | |||
MAE c (entire test set) | 0.32 | 0.33 | 0.29 | 0.32 | 0.24 | 0.29 | 0.32 | 0.42 | |||
MSE c | −0.15 | −0.06 | −0.07 | −0.05 | −0.10 | 0.06 | 0.08 | −0.06 | |||
MAE (Ref. [38]) e | 0.43 | 0.40 | 0.35 | 0.42 | |||||||
MSE (Ref. [38]) e | −0.24 | −0.08 | −0.09 | −0.26 | |||||||
MAE b,o (complex ph. with exp values) | 0.53 | 0.52 | 0.45 | 0.49 | 0.35 | 0.28 | 0.29 | 0.27 | |||
MSE b,o | −0.53 | −0.52 | −0.45 | −0.49 | −0.35 | −0.23 | −0.23 | −0.22 | |||
MAE c,o (all complex ph.) | 0.35 | 0.37 | 0.31 | 0.33 | 0.23 | 0.35 | 0.39 | 0.34 | |||
MSE c,o | −0.35 | −0.22 | −0.25 | −0.23 | −0.14 | 0.09 | 0.13 | 0.09 | |||
MAE (Ref. [38]) e,o | 0.59 | 0.55 | 0.51 | 0.77 | |||||||
MSE (Ref. [38]) e,o | −0.59 | −0.55 | −0.51 | −0.77 |
3.3.2. Predicting Aqueous pKa Values of Phenols with Potential Antioxidant Activity
3.3.3. Predicting Aqueous pKa Values of Cannabinoids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samuelsen, L.; Holm, R.; Lathuile, A.; Schönbeck, C. Buffer solutions in drug formulation and processing: How pKa values depend on temperature, pressure and ionic strength. Int. J. Pharm. 2019, 560, 357–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, J.E.; McCammon, J.A. Calculating pKa values in enzyme active sites. Protein Sci. 2003, 12, 1894–1901. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.-S.; Honig, B. On the pH Dependence of Protein Stability. J. Mol. Biol. 1993, 231, 459–474. [Google Scholar] [CrossRef] [PubMed]
- Sonam, N.; Chahal, V.; Kakkar, R. Theoretical study of the structural features and antioxidant potential of 4-thiazolidinones. Struct. Chem. 2020, 31, 1599–1608. [Google Scholar] [CrossRef]
- Mtewa, A.; Ngwira, K.; Lampiao, F.; Weisheit, A.; Tolo, C.; Ogwang, P.; Sesaazi, D. Fundamental Methods in Drug Permeability, pKa, LogP and LogDx Determination. J. Drug Res. Dev. 2019, 5, 1–6. [Google Scholar] [CrossRef]
- Yunta, M.J.R. Some Critical Aspects of Molecular Interactions Between Drugs and Receptors. Am. J. Model. Optim. 2014, 2, 84–102. [Google Scholar] [CrossRef] [Green Version]
- Galano, A.; Álvarez-Idaboy, J.R. Computational Strategies for Predicting Free Radical Scavengers’ Protection Against Oxidative Stress: Where Are We and What Might Follow? Int. J. Quantum Chem. 2019, 119, 4–7. [Google Scholar] [CrossRef] [Green Version]
- Ramis, R.; Casasnovas, R.; Ortega-Castro, J.; Frau, J.; Álvarez-Idaboy, J.R.; Mora-Diez, N. Modelling the Repair of Carbon-centred Protein Radicals by the Antioxidants Glutathione and Trolox. New J. Chem. 2019, 43, 2085–2097. [Google Scholar] [CrossRef]
- Monreal-Corona, R.; Biddlecombe, J.; Ippolito, A.; Mora-Diez, N. Theoretical Study of the Iron Complexes with Lipoic and Dihydrolipoic Acids: Exploring Secondary Antioxidant Activity. Antioxidants 2020, 9, 674. [Google Scholar] [CrossRef]
- García-Díez, G.; Ramis, R.; Mora-Diez, N. Theoretical Study of the Copper Complexes with Aminoguanidine: Investigating Secondary Antioxidant Activity. ACS Omega 2020, 5, 14502–14512. [Google Scholar] [CrossRef]
- García-Díez, G.; Mora-Diez, N. Theoretical Study of the Iron Complexes with Aminoguanidine: Investigating Secondary Antioxidant Activity. Antioxidants 2020, 9, 756. [Google Scholar] [CrossRef] [PubMed]
- Busch, M.; Ahlberg, E.; Ahlberg, E.; Laasonen, K. How to Predict the pKa of Any Compound in Any Solvent. ACS Omega 2022, 7, 17369–17383. [Google Scholar] [CrossRef]
- Reijenga, J.; Van Hoof, A.; Van Loon, A.; Teunissen, B. Development of Methods for the Determination of pKa values. Anal. Chem. Insights 2013, 8, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Fu, A.; Xue, X.; Guo, F.; Huai, W.; Chu, T.; Wang, Z. Density Functional Theory Prediction of pKa for Carboxylated Single-wall Carbon Nanotubes and Graphene. Chem. Phys. 2017, 490, 47–54. [Google Scholar] [CrossRef]
- Motahari, A.; Fattahi, A. Theoretical Aspects of the Enhancement of Metal Binding Affinity by Intramolecular Hydrogen Bonding and Modulating pKa values. New J. Chem. 2017, 41, 15110–15119. [Google Scholar] [CrossRef]
- Ho, J.; Coote, M.L. First-principles Prediction of Acidities in the Gas and Solution Phase. Wires Comput. Mol. Sci. 2011, 1, 649–660. [Google Scholar] [CrossRef]
- Kakkar, R.; Bhandari, M. Theoretical investigation of the alloxan–dialuric acid redox cycle. Int. J. Quantum Chem. 2013, 113, 2060–2069. [Google Scholar] [CrossRef]
- Prasad, S.; Huang, J.; Zeng, Q.; Brooks, B.R. An Explicit-solvent Hybrid QM and MM Approach for Predicting pKa of Small Molecules in SAMPL6 Challenge. J. Comput. Aided Mol. Des. 2018, 32, 1191–1201. [Google Scholar] [CrossRef]
- Viayna, A.; Pinheiro, S.; Curutchet, C.; Luque, F.J.; Zamora, W.J. Prediction of N-octanol/water Partition Coefficients and Acidity Constants (pKa) in the SAMPL7 Blind Challenge with the IEFPCM-MST Model. J. Comput. Aided Mol. Des. 2021, 35, 803–811. [Google Scholar] [CrossRef]
- Alexander, N.; Augenstein, M.; Sorensen, A.M.; Garcia, C.; Greene, A.; Harrison, A.W. Computational Design of Β-fluorinated Morphine Derivatives for pH-specific Binding. Chem. Phys. Lett. 2021, 777, 138723. [Google Scholar] [CrossRef]
- Ristić, M.M.; Petković, M.; Milovanović, B.; Belić, J.; Etinski, M. New Hybrid Cluster-continuum Model for pKa Values Calculations: Case Study of Neurotransmitters’ Amino Group Acidity. Chem. Phys. 2019, 516, 55–62. [Google Scholar] [CrossRef]
- Brown, T.N.; Mora-Diez, N. Computational Determination of Aqueous pKa Values of Protonated Benzimidazoles (Part 1). J. Phys. Chem. B. 2006, 110, 9270–9279. [Google Scholar] [CrossRef] [PubMed]
- Rebollar-Zepeda, A.M.; Campos-Hernández, T.; Ramírez-Silva, M.T.; Rojas-Hernández, A.; Galano, A. Searching for Computational Strategies to Accurately Predict pKas of Large Phenolic Derivatives. J. Chem. Theory Comput. 2011, 7, 2528–2538. [Google Scholar] [CrossRef] [PubMed]
- Soriano, E.; Cerdán, S.; Ballesteros, P. Computational determination of pKa values. A comparison of different theoretical approaches and a novel procedure. J. Mol. Struct. (Theo. Chem.) 2004, 684, 121–128. [Google Scholar] [CrossRef]
- Charif, I.E.; Mekelleche, S.M.; Villemin, D.; Mora-Diez, N. Correlation of aqueous pKa values of carbon acids with theoretical descriptors: A DFT study. J. Mol. Struct. Theor. Chem. 2007, 818, 1–6. [Google Scholar] [CrossRef]
- Brown, T.N.; Mora-Diez, N. Computational Determination of Aqueous pKa Values of Protonated Benzimidazoles (Part 2). J. Phys. Chem. B. 2006, 110, 20546–20554. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Y.; Yang, J.; Liu, Y.; Zhang, L.; Luo, S.; Cheng, J. Holistic Prediction of the pKa in Diverse Solvents Based on a Machine-learning Approach. Angew. Chem. Int. Ed. 2020, 59, 19282–19291. [Google Scholar] [CrossRef]
- Lawler, R.; Liu, Y.-H.; Majaya, N.; Allam, O.; Ju, H.; Kim, J.Y.; Jang, S.S. DFT-machine Learning Approach for Accurate Prediction of pKa. J. Phys. Chem. A. 2021, 125, 8712–8721. [Google Scholar] [CrossRef]
- Pliego, J.R.; Riveros, J.M. Theoretical Calculation of pKa Using the Cluster-continuum Model. J. Phys. Chem. A. 2002, 106, 7434–7439. [Google Scholar] [CrossRef]
- Thapa, B.; Schlegel, H.B. Density Functional Theory Calculation of pKa’s of Thiols in Aqueous Solution Using Explicit Water Molecules and the Polarizable Continuum Model. J. Phys. Chem. A. 2016, 120, 5726–5735. [Google Scholar] [CrossRef]
- Thapa, B.; Schlegel, H.B. Improved pKa Prediction of Substituted Alcohols, Phenols, and Hydroperoxides in Aqueous Medium Using Density Functional Theory and a Cluster-continuum Solvation Model. J. Phys. Chem. A. 2017, 121, 4698–4706. [Google Scholar] [CrossRef] [PubMed]
- Ambriz-Pérez, D.L.; Leyva-López, N.; Gutierrez-Grijalva, E.P.; Heredia, J.B. Phenolic Compounds: Natural Alternative in Inflammation Treatment. A Review. Cogent Food Agric. 2016, 2, 1–14. [Google Scholar] [CrossRef]
- Siraki, A.G.; O’Brien, P.J. Prooxidant activity of free radicals derived from phenol-containing neurotransmitters. Toxicology 2002, 177, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Arulmozhiraja, S.; Shiraishi, F.; Okumura, T.; Iida, M.; Takigami, H.; Edmonds, J.S.; Morita, M. Structural Requirements for the Interaction of 91 Hydroxylated Polychlorinated Biphenyls with Estrogen and Thyroid Hormone Receptors. Toxicol. Sci. 2005, 84, 49–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuster, V.; Sweeny, J.M. Aspirin: A historical and contemporary therapeutic overview. Circulation 2011, 123, 768–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Presley, C.C.; Lindsley, C.W. DARK Classics in Chemical Neuroscience: Opium, a Historical Perspective. ACS Chem. Neurosci. 2018, 9, 2503–2518. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Galano, A.; Pérez-González, A.; Castañeda-Arriaga, R.; Muñoz-Rugeles, L.; Mendoza-Sarmiento, G.; Romero-Silva, A.; Ibarra-Escutia, A.; Rebollar-Zepeda, A.M.; León-Carmona, J.R.; Hernández-Olivares, M.A.; et al. Empirically Fitted Parameters for Calculating pKa Values with Small Deviations from Experiments Using a Simple Computational Strategy. J. Chem. Inf. Model. 2016, 56, 1714–1724. [Google Scholar] [CrossRef]
- Advanced Chemistry Development (ACD/Laboratories). Software V11.02; ACD/Laboratories: Toronto, ON, Canada, 2011. [Google Scholar]
- Castañeda-Arriaga, R.; Marino, T.; Russo, N.; Alvarez-Idaboy, J.R.; Galano, A. Chalcogen Effects on the Primary Antioxidant Activity of Chrysin and Quercetin. New J. Chem. 2020, 44, 9073–9082. [Google Scholar] [CrossRef]
- Francisco-Marquez, M.; Galano, A. Detailed Investigation of the Outstanding Peroxyl Radical Scavenging Activity of Two Novel Amino-Pyridinol-Based Compounds. J. Chem. Inf. Model. 2019, 59, 3494–3505. [Google Scholar] [CrossRef]
- Rumble, J.R. Dissociation Constants of Organic Acids and Bases. In CRC Handbook, 102nd ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Smith, R.M.; Martell, A.E.; Motekaitis, R.J. NIST Standard Reference Database 46; National Institute of Standards and Technology (NIST): Gaithersburg, ML, USA; Texas A&M University: College Station, TX, USA, 2004. [Google Scholar]
- Hasemann, P.; Ter Balk, M.; Preu, L.; Wätzig, H. Separation of Cold Medicine Ingredients Using a Precise MEKC Method at Elevated pH. Electrophoresis 2007, 28, 1779–1787. [Google Scholar] [CrossRef] [PubMed]
- Walton-Raaby, M.; Floen, T.; Mora-Diez, N. Modeling the Repair of Carbon-Centered Protein Radicals by Vitamin E Analogues and Commercial Antioxidants. New J. Chem. 2019, 43, 2085–2097, in preparation. [Google Scholar]
- Floen, T.; Walton-Raaby, M.; Mora-Diez, N. Computational Modelling of Protein Radical Repair by Various Aminophenol and Stilbene Antioxidants. In preparation.
- Walton-Raaby, M.; Floen, T.; Mora-Diez, N. Antioxidant Activity of Catechins in Tea and Resveratrol-Related Compounds: A DFT Study. In preparation.
- Halliwell, B.; Aeschbach, R.; Löliger, J.; Aruoma, O.I. The Characterization of Antioxidants. Food Chem. Toxicol. 1995, 33, 601–617. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.S.; Johnson, E.R.; Dilabio, G.A. Predicting the Activity of Phenolic Antioxidants: Theoretical Method, Analysis of Substituent Effects, and Application to Major Families of Antioxidants. J. Am. Chem. Soc. 2001, 123, 1173–1183. [Google Scholar] [CrossRef]
- Penner, N.A.; Nesterenko, P.N. Simultaneous Determination of Dihydroxybenzenes, Aminophenols and Phenylenediamines in Hair Dyes by High-performance Liquid Chromatography on Hypercross-linked Polystyrene. Analyst. 2000, 125, 1249–1254. [Google Scholar] [CrossRef]
- Mitchell, S.C.; Carmichael, P.; Waring, R. Aminophenols. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Abyadeh, M.; Gupta, V.; Paulo, J.A.; Gupta, V.; Chitranshi, N.; Godinez, A.; Saks, D.; Hasan, M.; Amirkhani, A.; McKay, M.; et al. A Proteomic View of Cellular and Molecular Effects of Cannabis. Biomolecules 2021, 11, 1411. [Google Scholar] [CrossRef]
- Worob, A.; Wenthur, C. DARK Classics in Chemical Neuroscience: Synthetic Cannabinoids (Spice/K2). ACS Chem. Neurosci. 2020, 11, 3881–3892. [Google Scholar] [CrossRef]
- Banister, S.D.; Arnold, J.C.; Connor, M.; Glass, M.; McGregor, I.S. Dark Classics in Chemical Neuroscience: Δ9-tetrahydrocannabinol. ACS Chem. Neurosci. 2019, 10, 2160–2175. [Google Scholar] [CrossRef]
- White, C.M. A Review of Human Studies Assessing Cannabidiol’s (CBD) Therapeutic Actions and Potential. J. Clin. Pharmacol. 2019, 59, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Hampson, A.J.; Axelrod, J.; Grimaldi, M. Cannabinoids as Antioxidants and Neuroprotectants. U.S. Patent #:6630507, 7 October 2003. [Google Scholar]
- Silver, R.J. The Endocannabinoid System of Animals. Animals 2019, 9, 686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabilone. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Nabilone (accessed on 23 November 2021).
- Adams, R.; Harfenist, M.; Loewe, S. New Analogs of Tetrahydrocannabinol. XIX. J. Am. Chem. Soc. 1949, 71, 1624–1628. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Tomasi, J.; Mennucci, B.; Cances, E. The IEF Version of the PCM Solvation Method: An Overview of a New Method Addressed to Study Molecular Solutes at the QM Ab Initio Level. J. Mol. Struct. Theor. Chem. 1999, 464, 211. [Google Scholar] [CrossRef]
- Cancès, E.; Mennucci, B. New Applications of Integral Equations Methods for Solvation Continuum Models: Ionic Solutions and Liquid Crystals. J. Math. Chem. 1998, 23, 309. [Google Scholar] [CrossRef]
- Cancès, E.; Mennucci, B.; Tomasi, J. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics. J. Chem. Phys. 1997, 107, 3032. [Google Scholar] [CrossRef]
- Mennucci, B.; Cancès, E.; Tomasi, J. Evaluation of Solvent Effects in Isotropic and Anisotropic Dielectrics and in Ionic Solutions with a Unified Integral Equation Method: Theoretical Bases, Computational Implementation, and Numerical Applications. J. Phys. Chem. B 1997, 101, 10506. [Google Scholar] [CrossRef]
- Barone, V.; Cossi, M.; Tomasi, J. A New Definition of Cavities for the Computation of Solvation Free Energies by the Polarizable Continuum Model. J. Chem. Phys. 1997, 107, 3210–3221. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B. 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Juhasz, J.R.; Pisterzi, L.F.; Gasparro, D.M.; Almeida, D.R.P.; Csizmadia, I.G. The Effects of Conformation on the Acidity of Ascorbic Acid: A Density Functional Study. J. Mol. Struct. Theor. Chem. 2003, 666–667, 401–407. [Google Scholar] [CrossRef]
- Szakács, Z.; Noszál, B. Protonation Microequilibrium Treatment of Polybasic Compounds with Any Possible Symmetry. J. Math. Chem. 1999, 26, 139–155. [Google Scholar] [CrossRef]
- Zhang, S. A Reliable and Efficient First Principles-based Method for Predicting pKa values. 4. Organic Bases. J. Comput. Chem. 2012, 33, 2469–2482. [Google Scholar] [CrossRef]
- Klamt, A.; Eckert, F.; Diedenhofen, M. First Principles Calculations of Aqueous Pka Values for Organic and Inorganic Acids Using COSMO−RS Reveal an Inconsistency in the Slope of the pKa Scale. J. Phys. Chem. A. 2003, 107, 9380–9386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neil, M.J.; Heckelman, P.E.; Dobbelaar, P.H.; Roman, K.J.; Kenny, C.M.; Karaffa, L.S. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals; Royal Society of Chemistry: Cambridge, UK, 2013. [Google Scholar]
- Steenken, S. One-electron Redox Potentials of Phenols. Hydroxy- and Aminophenols and Related Compounds of Biological Interest. J. Phys. Chem. 1982, 86, 3661–3667. [Google Scholar] [CrossRef]
- Mazina, J.; Spiljova, A.; Vaher, M.; Kaljurand, M.; Kulp, M. A Rapid Capillary Electrophoresis Method with Led-induced Native Fluorescence Detection for the Analysis of Cannabinoids in Oral Fluid. Anal. Methods 2015, 7, 7741–7747. [Google Scholar] [CrossRef]
Solvent Model | SMD | PCM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Reaction Used | M06-2X | B3LYP | BHandHLYP | PBE0 e | TPSS | M06-2X | B3LYP | BHandHLYP | PBE0 e | TPSS |
1 (direct) | 3.09 | 3.43 | 5.24 | 4.66 | 3.48 | 4.76 | 4.77 | 7.05 | 6.15 | 4.84 |
1 (corrected) b | 0.22 | 0.24 | 0.25 | 0.22 | 0.27 | 0.28 | 0.34 | 0.30 | 0.36 | 0.40 |
2 (direct) | 5.75 | 5.89 | 5.22 | 4.73 | 7.38 | 4.75 | 6.58 | 5.43 | 5.27 | 6.83 |
2 (11-set, corrected) b | 0.20 | 0.33 | 0.28 | 0.33 | 0.38 | 0.30 | 0.47 | 0.35 | 0.48 | 0.47 |
3 (direct) | 1.43 | 1.61 | 1.51 | 1.34 | 1.61 | 2.01 | 2.28 | 2.15 | 1.99 | 2.23 |
3 (direct, excl. NO, NO2) a | 0.78 | 0.88 | 0.74 | 0.50 | 0.94 | 1.16 | 1.38 | 1.25 | 0.90 | 1.37 |
3 (corrected) b | 0.22 | 0.24 | 0.25 | 0.22 | 0.27 | 0.28 | 0.34 | 0.30 | 0.36 | 0.40 |
(20-set, corrected) c | 0.22 | 0.24 | 0.25 | 0.22 | 0.27 | 0.28 | 0.34 | 0.30 | 0.36 | 0.40 |
(27-set, corrected) c | 0.27 | 0.26 | 0.27 | 0.27 | 0.26 | 0.27 | 0.26 | 0.32 | ||
Using Ref. [38] (20-set) d | 0.22 | 0.26 | 0.27 | 0.46 | 0.21 | |||||
Using Ref. [38] (27-set) d | 0.26 | 0.30 | 0.29 | 0.26 |
Solvent Model | SMD | PCM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Name/Functional | Exp. pKa | M06-2X | B3LYP | BHandHLYP | PBE0 g | TPSS | M06-2X | B3LYP | BHandHLYP | PBE0 g | TPSS |
(1) 2,4-dinitrophenol | 4.07 d | −5.02 | −5.13 | −5.37 | −4.26 | −4.69 | −6.55 | −6.40 | −7.08 | −5.53 | −5.92 |
(2) 4-nitrosophenol | 6.33 e | −3.85 | −5.12 | −4.47 | −5.25 | −5.97 | −7.29 | −6.49 | −7.59 | ||
(3) 4-nitrophenol | 7.15 d | −3.77 | −4.71 | −4.33 | −3.87 | −4.83 | −5.74 | −6.59 | −6.23 | −5.71 | −6.79 |
(4) 2-nitrophenol | 7.23 d | −3.36 | −3.17 | −4.07 | −2.60 | −2.55 | −3.44 | −3.24 | −3.20 | −2.37 | −2.46 |
(5) 4-hydroxy-3-methoxybenzaldehyde | 7.396 e | −1.59 | −2.12 | −1.55 | −2.34 | −1.72 | −2.17 | −1.59 | −2.55 | ||
(6) 2,3-dichlorophenol | 7.44 d | −1.71 | −1.63 | −1.57 | −1.83 | −3.06 | −2.77 | −2.93 | −2.82 | ||
(7) 3-cyanophenol | 8.61 d | −1.04 | −1.04 | −0.90 | −1.06 | −1.18 | −2.46 | −2.44 | −2.29 | −2.44 | −2.64 |
(8) 4-trifluoromethylphenol | 8.675 d | −1.68 | −1.29 | −0.89 | −1.56 | −1.51 | −3.06 | −3.11 | −3.08 | ||
(9) 2-fluorophenol | 8.73 d | −0.79 | −1.03 | −0.88 | −0.91 | −1.47 | −1.50 | −1.46 | −1.50 | ||
(10) 3-hydroxybenzaldehyde | 8.98 d | −0.28 | −0.48 | −0.22 | −0.42 | −0.65 | −1.17 | −1.42 | −1.11 | −1.25 | −1.66 |
(11) 3-chlorophenol | 9.12 d | −0.94 | −0.98 | −0.92 | −1.05 | −1.88 | −1.85 | −1.82 | −2.00 | ||
(12) 4-bromophenol | 9.37 d | −0.67 | −0.60 | −0.66 | −0.71 | −0.63 | −1.54 | −1.41 | −1.49 | −1.51 | −1.53 |
(13) acetaminophen | 9.50 f | 0.27 | −0.01 | 0.42 | 0.35 | −0.05 | 0.38 | 0.92 | −0.07 | 0.28 | |
(14) 3-methoxyphenol | 9.65 d | 0.19 | 0.36 | 0.17 | 0.18 | 0.45 | −0.09 | 0.14 | −0.11 | −0.02 | 0.21 |
(15) 4-(2-aminoethyl)phenol | 9.74 d | 0.86 | 0.92 | 0.97 | 0.79 | 0.74 | 0.77 | 0.82 | 0.61 | ||
(16) phenol | 9.99 d | −0.19 | −0.36 | −0.17 | −0.18 | −0.45 | 0.09 | −0.14 | 0.11 | 0.02 | −0.21 |
(17) 3-aminophenol | 9.82 d | 0.59 | 0.78 | 0.49 | 0.87 | 0.75 | 1.02 | 0.67 | 1.11 | ||
(18) 4-methoxyphenol | 10.21 d | 0.55 | 1.09 | 0.89 | 0.78 | 1.23 | 0.29 | 0.93 | 0.75 | 0.99 | 0.88 |
(19) 4-methylphenol | 10.26 d | 0.43 | 0.21 | 0.16 | 0.36 | −0.10 | 1.06 | 1.06 | 1.06 | −0.04 | 0.62 |
(20) 2-(tertbutyl)phenol | 10.62 d | 0.74 | 1.18 | 1.05 | 0.89 | 0.37 | 0.55 | 0.67 | 0.19 | ||
MAE (20 phenols) | 1.43 | 1.61 | 1.51 | 1.34 | 1.61 | 2.01 | 2.28 | 2.15 | 1.99 | 2.23 | |
MAE (exc. NO, NO2) c | 0.78 | 0.88 | 0.74 | 0.50 | 0.94 | 1.16 | 1.38 | 1.25 | 0.90 | 1.37 | |
MSE (exc. NO, NO2) c | −0.33 | −0.31 | −0.23 | −0.09 | −0.41 | −0.70 | −0.71 | −0.74 | −0.61 | −0.88 |
Solvation Method | SMD | PCM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Name/Functional | M06-2X | B3LYP | BHandHLYP | PBE0 f | TPSS | M06-2X | B3LYP | BHandHLYP | PBE0 f | TPSS |
(1) 2,4-dinitrophenol | 0.46 | 0.76 | 0.59 | 0.55 | 0.91 | 0.72 | 1.11 | 0.73 | 0.75 | 1.27 |
(2) 4-nitrosophenol | −0.15 | −0.49 | −0.24 | −0.58 | −0.39 | −0.63 | −0.42 | −0.76 | ||
(3) 4-nitrophenol | −0.54 | −0.76 | −0.63 | −0.75 | −0.84 | −0.78 | −0.88 | −0.82 | −1.01 | −0.97 |
(4) 2-nitrophenol | −0.38 | −0.12 | −0.56 | −0.14 | 0.15 | 0.11 | 0.32 | 0.31 | 0.46 | 0.63 |
(5) 4-hydroxy-3-methoxybenzaldehyde | 0.39 | 0.25 | 0.49 | 0.15 | 0.72 | 0.62 | 0.83 | 0.49 | ||
(6) 2,3-dichlorophenol | 0.31 | 0.44 | 0.46 | 0.36 | 0.14 | 0.37 | 0.28 | 0.36 | ||
(7) 3-cyanophenol | 0.02 | 0.06 | 0.11 | −0.33 | 0.01 | −0.30 | −0.24 | −0.18 | −0.33 | −0.30 |
(8) 4-trifluoromethylphenol | −0.32 | −0.09 | 0.08 | −0.19 | 0.04 | −0.51 | −0.54 | −0.50 | ||
(9) 2-fluorophenol | 0.08 | 0.00 | 0.06 | 0.07 | 0.03 | 0.04 | 0.07 | 0.06 | ||
(10) 3-hydroxybenzaldehyde | 0.20 | 0.10 | 0.22 | 0.13 | 0.05 | 0.00 | −0.09 | 0.05 | 0.02 | −0.15 |
(11) 3-chlorophenol | −0.19 | −0.19 | −0.17 | −0.21 | −0.37 | −0.33 | −0.31 | −0.37 | ||
(12) 4-bromophenol | −0.19 | −0.16 | −0.20 | −0.21 | −0.15 | −0.38 | −0.33 | −0.34 | −0.32 | −0.34 |
(13) acetaminophen | 0.20 | 0.02 | 0.22 | 0.27 | 0.04 | 0.32 | 0.47 | 0.13 | 0.27 | |
(14) 3-methoxyphenol | 0.08 | 0.11 | 0.03 | 0.11 | 0.18 | 0.05 | 0.08 | 0.02 | 0.21 | 0.15 |
(15) 4-(2-aminoethyl)phenol | 0.35 | 0.31 | 0.34 | 0.29 | 0.33 | 0.26 | 0.33 | 0.24 | ||
(16) phenol | −0.19 | −0.24 | −0.24 | −0.15 | −0.21 | −0.12 | −0.18 | −0.14 | 0.03 | −0.14 |
(17) 3-aminophenol | 0.19 | 0.20 | 0.08 | 0.28 | 0.29 | 0.30 | 0.23 | 0.38 | ||
(18) 4-methoxyphenol | −0.04 | 0.12 | 0.04 | 0.14 | 0.23 | −0.13 | 0.03 | 0.02 | 0.36 | 0.05 |
(19) 4-methylphenol | −0.12 | −0.30 | −0.32 | −0.09 | −0.40 | 0.15 | 0.05 | 0.11 | −0.13 | −0.08 |
(20) 2-(tertbutyl)phenol | −0.16 | −0.07 | −0.11 | −0.15 | −0.34 | −0.37 | −0.26 | −0.46 | ||
MAE (20-set) | 0.22 | 0.24 | 0.25 | 0.22 | 0.27 | 0.28 | 0.34 | 0.30 | 0.36 | 0.40 |
Correlations from Ref. [38] (20-set) e | 0.22 | 0.26 | 0.27 | 0.46 | 0.21 |
Name/Functional | M06-2X | B3LYP | BHandHLYP | TPSS | Range (Spread) | Average |
---|---|---|---|---|---|---|
(25) ketobemidone | 9.96 | 10.86 | 10.97 | 10.85 | 9.96–10.97 (1.01) | 10.66 |
(26) profadol | 10.22 | 10.24 | 10.27 | 10.26 | 10.22–10.27 (0.05) | 10.25 |
Antioxidants | ||||||
(31) 2-butylated hydroxyanisole | 10.75 | 10.64 | 10.72 | 10.66 | 10.64–10.75 (0.11) | 10.69 |
(32) 3-butylated hydroxyanisole | 10.77 | 10.64 | 10.70 | 10.68 | 10.64–10.77 (0.13) | 10.70 |
(33) tocol | 10.68 | 10.62 | 10.66 | 10.66 | 10.62–10.68 (0.06) | 10.66 |
(34) δ-tocopherol | 10.88 | 10.85 | 10.87 | 10.88 | 10.85–10.88 (0.03) | 10.87 |
(35) β-tocopherol | 11.09 | 11.09 | 11.16 | 11.09 | 11.09–11.16 (0.07) | 11.11 |
(36) γ-tocopherol | 11.16 | 11.06 | 11.14 | 11.07 | 11.06–11.16 (0.10) | 11.11 |
(37) α-tocopherol | 11.32 | 11.26 | 11.37 | 11.27 | 11.26–11.37 (0.11) | 11.31 |
(38) N,N-dimethyl-4-aminophenol | 10.57 | 10.64 | 10.49 | 10.76 | 10.49–10.76 (0.27) | 10.62 |
(39) 6-hydroxy-5,7,8-trimethyl-1,2,3,4-tetrahydroquinoline | 11.47 | 11.55 | 11.50 | 11.53 | 11.47–11.55 (0.08) | 11.51 |
(40) 9-hydroxyjulolidine | 11.11 | 10.86 | 11.07 | 11.12 | 10.86–11.12 (0.26) | 11.04 |
(41) 4-butadienylphenol | 9.27 | 9.17 | 9.21 | 8.95 | 8.95–9.27 (0.32) | 9.15 |
(42) 4-hydroxystilbene | 9.29 | 9.42 | 9.29 | 9.02 | 9.02–9.42 (0.40) | 9.26 |
Cannabinoids | ||||||
(29) ∆9-tetrahydrocannabinol (Δ9-THC) b | 10.11 | 10.18 | 10.14 | 10.20 | 10.11–10.20 (0.09) | 10.16 |
(30) cannabidiol (CBD) a,c | 9.98 | 9.93 | 9.95 | 9.96 | 9.93–9.98 (0.05) | 9.96 |
(43) ∆8-tetrahydrocannabinol (Δ8-THC) | 10.11 | 10.14 | 10.13 | 10.22 | 10.11–10.22 (0.11) | 10.15 |
(44) iso-tetrahydrocannabinol (iso-THC) | 10.31 | 10.29 | 10.21 | 10.41 | 10.21–10.41 (0.20) | 10.31 |
(45) ∆9-tetrahydrocannabivarin (THCV) | 9.83 | 10.14 | 10.69 | 10.21 | 9.83–10.69 (0.86) | 10.22 |
(46) 3-homotetrahydrocannibinol | 9.68 | 9.94 | 9.95 | 9.92 | 9.68–9.95 (0.27) | 9.87 |
(47) nabilone | 9.96 | 10.07 | 10.05 | 10.02 | 9.96–10.07 (0.11) | 10.03 |
(48) cannabinol (CBN) | 9.01 | 9.43 | 9.05 | 9.53 | 9.01–9.53 (0.52) | 9.26 |
(49) cannabichromene (CBC) | 9.17 | 9.19 | 9.16 | 9.32 | 9.16–9.32 (0.16) | 9.21 |
(50) cannabigerol (CBG) a | 9.95 | 9.90 | 10.05 | 9.94 | 9.90–10.05 (0.15) | 9.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walton-Raaby, M.; Floen, T.; García-Díez, G.; Mora-Diez, N. Calculating the Aqueous pKa of Phenols: Predictions for Antioxidants and Cannabinoids. Antioxidants 2023, 12, 1420. https://doi.org/10.3390/antiox12071420
Walton-Raaby M, Floen T, García-Díez G, Mora-Diez N. Calculating the Aqueous pKa of Phenols: Predictions for Antioxidants and Cannabinoids. Antioxidants. 2023; 12(7):1420. https://doi.org/10.3390/antiox12071420
Chicago/Turabian StyleWalton-Raaby, Max, Tyler Floen, Guillermo García-Díez, and Nelaine Mora-Diez. 2023. "Calculating the Aqueous pKa of Phenols: Predictions for Antioxidants and Cannabinoids" Antioxidants 12, no. 7: 1420. https://doi.org/10.3390/antiox12071420
APA StyleWalton-Raaby, M., Floen, T., García-Díez, G., & Mora-Diez, N. (2023). Calculating the Aqueous pKa of Phenols: Predictions for Antioxidants and Cannabinoids. Antioxidants, 12(7), 1420. https://doi.org/10.3390/antiox12071420