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Abstract: We aim to develop a theoretical methodology for the accurate aqueous pKa prediction of
structurally complex phenolic antioxidants and cannabinoids. In this study, five functionals (M06-2X,
B3LYP, BHandHLYP, PBE0, and TPSS) and two solvent models (SMD and PCM) were combined with
the 6-311++G(d,p) basis set to predict pKa values for twenty structurally simple phenols. None of the
direct calculations produced good results. However, the correlations between the calculated Gibbs
energy difference of each acid and its conjugate base, ∆G

◦

aq(BA) = ∆G
◦

aq(A−) − ∆G
◦

aq(HA), and the
experimental aqueous pKa values had superior predictive accuracy, which was also tested relative to
an independent set of ten molecules of which six were structurally complex phenols. New correlations
were built with twenty-seven phenols (including the phenols with experimental pKa values from
the test set), which were used to make predictions. The best correlation equations used the PCM
method and produced mean absolute errors of 0.26–0.27 pKa units and R2 values of 0.957–0.960. The
average range of predictions for the potential antioxidants (cannabinoids) was 0.15 (0.25) pKa units,
which indicates good agreement between our methodologies. The new correlation equations could
be used to make pKa predictions for other phenols in water and potentially in other solvents where
they might be more soluble.

Keywords: acid dissociation constant; pKa; phenols; predictions; antioxidants; cannabinoids; DFT;
SMD; PCM

1. Introduction

Acid dissociation constants (Ka, pKa = −log Ka) are crucial physico-chemical quantities
that impact chemical, environmental, and biochemical research [1–6]. Biochemical kinetic
and thermodynamic studies involving acids require the calculation of molar fractions or
Gibbs free energies of reaction at physiological pH for which aqueous pKa values are
necessary [7–11]. Accurate predictions of aqueous pKa values can also be used to predict
pKa values in non-aqueous environments [12]. The quest for determining reliable aqueous
pKa values for complex phenolic compounds, including cannabinoids, has been motivated
by our antioxidant studies on this family of compounds.

Choosing the best methods for obtaining reliable experimental pKa values can be challeng-
ing (due to low solubility, difficulty isolating, high reactivity, and variable ionic strength solu-
tions) and time consuming [13–15]. Hence, theoretical calculations are a promising alternative.
A traditional methodology uses thermodynamic cycles [14–19], which combine experimental
or calculated ab initio gas phase Gibbs free energies with calculated solution Gibbs free energies.
Another approach uses the dissociation equilibrium, HA(aq) 
 A−

(aq) + H+
(aq), and requires

experimental data for H+, which is quite variable [14,15,20,21]. Other acid-base equilibria can be
applied as well, relative to a reference acid whose experimental pKa is required [22,23]. Alterna-
tively, various linear correlations between calculated properties (in the gas phase or in solution)
and experimental pKa values have shown to have important predictive value [24–28]. The
application of density functional theory methods combined with continuum solvation methods
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such as SMD (solvent model based on density) or PCM (polarizable continuum model) is a
practical approach for estimating properties in solution. However, in some cases explicit solute
molecules are required in addition to the continuum, especially around charged species, to
achieve good results [29–31].

Phenolic molecules are ubiquitous in the human body, as well as in nature [32]. Exam-
ples of endogenous phenolic molecules that play a crucial role are the neurotransmitters
serotonin and dopamine and the thyroid hormones and estradiol [33,34]. Other phenolic
natural products have made it into the modern-day pharmacopeia: aspirin is sourced
from the bark of the willow tree [35], and morphine is an alkaloid present in the opium
poppy [36]. Other classes of phenolic molecules include cannabinoids, flavonoids, catechins,
and polyphenols, which have shown promising pharmacological properties, including
antioxidant activity [32,37].

Previous theoretical studies have focused on the aqueous pKa determination of phe-
nols [23,31,38]. Thapa and Schlegel’s best results include three explicit water molecules sur-
rounding the –OH and –O– groups in the acids and conjugate bases, respectively (HA·3H2O(aq)

 A−·3H2O(aq) + H+

(aq)), while working at the B3LYP(SMD)/6-311++G(d,p) level of the-
ory [31]. They achieved mean absolute (MAE) and signed errors (MSE) of 0.45 and −0.02 pKa
units, respectively. It is important to note that the set of twenty-five phenols they considered
(with pKa values ranging from 7.66 to 10.30) does not include nitrophenols nor 2-substituted
phenols, which are compounds we are interested in studying. An earlier study by Galano’s
group in 2011 focused on four large phenolic derivatives (acetaminophen, profadol, tapentadol,
and ketobemidone) and explored calculations using twenty-two reaction schemes and nine
functionals combined with the PCM solvation method (applied through single-point energy
calculations) with up to seven explicit solvent molecules [23]. They recommended the reaction
scheme HA + OH− (3H2O) 
 A− (H2O) + 3H2O, and their best results were obtained with the
PBE0 (MAE = 0.77), TPSS (MAE = 0.82), BHandHLYP (MAE = 0.82), and B3LYP (MAE = 0.86)
functionals, using the Gaussian03’s PCM implementation in single-point calculations. In the
absence of experimental values, calculations were tested relative to theoretical predictions
made with the ACD/Laboratories Software [39]. In a newer publication, that came to our
attention after our calculations had finished, Galano et al. reported an extensive study (also
considering carboxylic acids and amines) that applied 74 levels of theory (all with the SMD
solvation model) to a set of twenty simple phenols covering a pKa range from 6.33 to 10.31.
Their recommended predictive approach requires the Gibbs energy difference between an acid
and its conjugate base and can produce MAE less than 0.35 pKa units for 98.6% of the ten
simple phenols they tested [38]. The correlation equations reported, which they have applied
in several studies [40,41], are yet to be evaluated with phenols that are more complex for which
experimental data exist. We will be referring to the results obtained by these studies and will
test their predictive capabilities alongside our work.

We have selected twenty simple phenols ((1–20), displayed in Figure 1) containing
a variety of functional groups with experimental aqueous pKa values in the range from
4.07 to 10.62 [42–44], with the objective to develop a methodology for the accurate pKa
determination of more complex phenols including cannabinoids. Five functionals, two
solvation methods, and three acid-base dissociation equilibria will help us test the accuracy
of the direct aqueous pKa calculations. Various correlations to experimental data will also
be considered.

Another group of ten phenols ((21–30), displayed in Figure 2) is used as an indepen-
dent test set to compare our predictions to previously reported experimental or theoretical
aqueous pKa values. This test group includes six complex phenols. The best methodolo-
gies are later used to predict the aqueous pKa values of complex phenols with potential
antioxidant properties that are currently under study by our group [45–47]. This group of
compounds ((31–42), shown in Figure 3) includes food additives (31 and 32) [48], vitamin E
analogues (33–37) which have a methyl group in place of the phytyl tail (C16H33) due to the
tail’s small impact on local properties such as acidity [49], aminophenols (38–40) used in
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cosmetics, dyes, and photographic developers [50,51], and stilbenes related to resveratrol
(41 and 42) [49].
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Furthermore, aqueous pKa predictions will also be made for of a set of nine cannabi-
noids displayed in Figure 4. Cannabinoids are phytochemicals found in the Cannabis
plant [52]; nevertheless, this term is also used for any substance which interacts with
the endocannabinoid system, including drugs that bear no resemblance to plant-derived
cannabinoids [53]. Given the current pharmacological interest, inherent legalities, and little
data available for cannabinoids, we thought that it would be appropriate to investigate
these molecules that also have a phenol ring in their basic structure. Increasing evidence in-
dicates that certain cannabinoids are effective antioxidants, in addition to their therapeutic
uses [54–59]. For this study, we have chosen eight phytocannabinoids (29, 30, 43–45, and
48–50), which are important components in the Cannabis sativa plant, and two synthetic
cannabinoids (46 and 47), all of which are being investigated for potential therapeutic uses.
The test set includes ∆9-tetrahydrocannabinol (∆9-THC, 29) and cannabidiol (CBD, 30),
which have an experimental and a predicted aqueous pKa value reported, respectively. For
molecules with stereocenters, labels have been added to identify the stereoisomer used in
each case (see Figures 2 and 4), although the calculated pKa is not affected by this.
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2. Computational Methodology

Calculations were performed with the Gaussian16 software package [60]. Five DFT
functionals were applied with the 6-311++G(d,p) basis set: M06-2X, B3LYP, BHandHLYP,
PBE0, and TPSSTPSS (referred to as TPSS). These functionals were chosen based on their
performance in previous pKa studies of phenols [23,31,38]. The aqueous environment
was modelled by two widely used continuum methods, the Integral Equation Formalism
Polarizable Continuum Model [61–64] (IEFPCM, with the solute cavities built by the united
atom for Hartree–Fock model; radii = UAHF) [65] and the Solvation Model based on
Density (SMD) [66]. The default implementation of IEFPCM (referred to as PCM) in
Gaussian16, unlike SMD, neglects explicit non-electrostatic energy contribution terms (e.g.,
cavity formation, dispersion, and repulsion terms).

Geometry optimizations were followed by a frequency calculation, both including
solvent effects, at the same level of theory to determine the nature of the stationary points,
and all structures were confirmed to be local minima in which no imaginary frequencies
were present. Given that the conformation used for an acid and its conjugate base can
greatly affect the calculated pKa value [67], every effort was made to ensure the most
stable conformer was optimized in each case. For example, in 2-substituted halogen
groups (molecules 6, 9, 21, and 22), SMD typically favoured the OH facing the halogen
while PCM favoured the opposite case. Additionally, the pKa of the (amino) protonated
form of molecules 15, 17, and 24–27 was computed to assess the possibility of concurrent
microequilibria, of which none were considered significant. The optimized structures of all
the species considered in this study at the M06-2X(SMD)/6-311++G(d,p) level of theory
are provided in the Supporting Information. The absolute aqueous Gibbs free energies of
the different species considered in this study at the various levels of theory at 298.15 K are
reported in Tables S1–S5 of the Supporting Information.

This study explores three aqueous acid-base dissociation equilibria (Reactions
(R1)–(R3), shown below as (R1)–(R3)) for calculating the absolute pKa value of an acid,
HA, whose conjugate base is A− . Reactions (R1) and (R3) are standard ones used
in theoretical pKa determinations and, together with Reaction (R2), have produced
reasonable results for phenolic molecules [23].

HA 
 A− + H+ pKa =
∆G◦

(aq)
RTln(10)

(R1)

HA + OH− (3H2O) 
 A− (H2O) + 3H2O pKa =
∆G◦

(aq)
RTln(10) + 14 + 3 log[H2O] (R2)

HA + Ref− 
 A− + HRef pKa =
∆G◦

(aq)
RTln(10) + pKa(HRef) (R3)

Reaction (R1) requires an experimental aqueous Gibbs free energy value for H+ to
be combined with the calculated aqueous G◦ values of HA and A−. Even though sev-
eral values have been reported and used in calculations, we have chosen to work with
−270.29 kcal/mol [20,23,30,31,38], because it has been corrected for the 1 M reference state
and it has sometimes led to a good reproducibility of experimental aqueous pKa values.

Reaction (R2) includes explicit water molecules solvating the anions, which attempts to
simulate the solute–solvent interactions that are not fully modelled in the implicit solvation
models used. Hydrogen bonding between a water molecule and the conjugate base in
A− (H2O) can significantly stabilize the charged species. The species OH− (3H2O) is the
OH− ion solvated by three water molecules, while the species indicated as 3H2O is a water
cluster of three molecules. The concentration of water used is 55.55 mol/L [23].

Reaction (R3) involves a reference acid similar in structure to the acid studied for
which a reliable pKa value is available. For all molecules except phenol, phenol was
used as the reference acid (experimental pKa = 9.99). For the determination of phenol,
3-methoxyphenol was used as the reference acid (experimental pKa = 9.65).
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The uneven distribution of charges across the equilibrium of Reaction (R1) makes this
approach more prone to errors. Reactions (R2) and (R3) do not encounter this difficulty
since both sides of their equilibria are balanced in terms of charges, thus contributing to
better results due to the cancellation of errors. Reactions (R1)–(R3) contain the same number
of computed reactant and product species; thus, reference state conversions are not needed.

Molecules 30 and 50 both contain two equivalent deprotonation sites through rotation
of the sigma bond connecting the benzene ring to its substituent. As a result, the acid
equilibrium constant should be doubled [68]. Accordingly, pKa values for molecules 30 and
50 must be corrected by subtracting log(2) from their respective calculated values using
Reactions (R1)–(R3) or the correlation equations [38]. The deprotonation of both sites was
tested, and the most stable conformer was used in each case.

3. Results and Discussion
3.1. Exploring Several Methodologies for the Direct Calculation of pKa Values

Eleven phenols of varying structural complexities are used to initially test the aqueous
pKa calculations using five functionals, two solvation models, and three acid–base equilibria.
The training set is then increased to twenty phenols (see Figure 1) for all functionals other
than PBE0 because of significant technical issues. Mean absolute errors (MAEs), used to
assess prediction quality, have been compiled in Table 1. The direct calculation results using
the SMD solvation method are always much better than the corresponding results using
PCM in each case considered, except when using the M06-2X and TPSS functionals with
Reaction (R2). While there are differences between the results obtained with the different
functionals using each reaction scheme, the reaction scheme used is much more impactful
on the overall accuracy of the methodology applied, and that is how we have organized
the discussion that follows.

Table 1. Summary of mean absolute pKa errors (MAE) for the phenols in the training set (obtained
from direct calculations and using the correlations between the experimental pKa values and calcu-
lated ∆G◦ values) at several levels of theory using Reactions (R1)–(R3) at 298.15 K.

Solvent Model SMD PCM

Reaction Used M06-2X B3LYP BHandHLYPPBE0 e TPSS M06-2X B3LYP BHandHLYPPBE0 e TPSS

1 (direct) 3.09 3.43 5.24 4.66 3.48 4.76 4.77 7.05 6.15 4.84
1 (corrected) b 0.22 0.24 0.25 0.22 0.27 0.28 0.34 0.30 0.36 0.40

2 (direct) 5.75 5.89 5.22 4.73 7.38 4.75 6.58 5.43 5.27 6.83
2 (11-set, corrected) b 0.20 0.33 0.28 0.33 0.38 0.30 0.47 0.35 0.48 0.47

3 (direct) 1.43 1.61 1.51 1.34 1.61 2.01 2.28 2.15 1.99 2.23
3 (direct, excl. NO, NO2) a 0.78 0.88 0.74 0.50 0.94 1.16 1.38 1.25 0.90 1.37
3 (corrected) b 0.22 0.24 0.25 0.22 0.27 0.28 0.34 0.30 0.36 0.40

∆G
◦
aq(BA) (20-set, corrected) c 0.22 0.24 0.25 0.22 0.27 0.28 0.34 0.30 0.36 0.40

∆G
◦
aq(BA) (27-set, corrected) c 0.27 0.26 0.27 0.27 0.26 0.27 0.26 0.32

Using Ref. [38] (20-set) d 0.22 0.26 0.27 0.46 0.21
Using Ref. [38] (27-set) d 0.26 0.30 0.29 0.26

a MAE calculated excluding the results for the nitrophenols and nitrosophenol (1–4); b Corrected values ob-
tained using the corresponding correlation equation: pKa (exp) vs. ∆G

◦
aq(BA);

c Corrected values obtained us-
ing the corresponding correlation equation between experimental pKa values and the calculated difference
∆G

◦
aq(BA) = ∆G

◦
aq(A−) − ∆G

◦
aq(HA) for the phenols in the training set; d Using the pKa (exp) vs. ∆G

◦
aq(BA) correla-

tion equations reported; e Values reported for 11 phenols.

3.1.1. Results Obtained from the Direct Application of Reactions (R1) and (R2)

The results obtained with Reactions (R1) and (R2) are not satisfactory. The calculated
individual pKa values and their errors are displayed in Tables S6 and S7 (Tables S8 and S9)
of the Supporting Information when using Reaction (R1) (Reaction (R2)). The MAE ranged
between 3.09 and 5.24 (4.73 and 7.38) pKa units when using Reaction (R1) (Reaction (R2))
and the SMD solvation method for the set of twenty (eleven) phenols. Larger errors were
usually obtained with the PCM solvation method, between 4.76 and 7.05 (4.75 and 6.83) pKa



Antioxidants 2023, 12, 1420 8 of 19

units when using Reaction (R1) (Reaction (R2)). With very few exceptions, the calculated
aqueous pKa values were always overestimated (with positive errors).

It is worth mentioning that Reaction (R1) was shown to drastically improve the pKa
calculations for phenolic molecules (as well as alcohols, hydroperoxides, and thiols) when
three explicit water molecules are added to the HA and A− species, while using the value
of −270.29 kcal/mol for the aqueous Gibbs energy of H+ after corrections [30,31]. This
approach produced MAE of 0.45 pKa units for phenols at the best level of theory reported,
B3LYP(SMD)/6-311++G(d,p) [31]. The M06-2X errors were still significantly large using
this approach with mean signed errors of −1.40 pKa units.

Reaction (R2), using the Gaussian03 implementation of PCM through single-point
energy calculations, was reported to produce much smaller MAE values which were gener-
ally in the 0.77–0.86 pKa unit range using similar functionals [23]. Our approach, including
PCM as implemented in Gaussian16 in both geometry optimizations and frequency calcu-
lations, leads to much larger errors for direct pKa predictions. Given the results obtained
for eleven phenols using Reaction (R2), which requires the additional calculation of the
explicitly solvated conjugate base, we decided not to take it into account any further.

3.1.2. Results Obtained from the Direct Application of Reaction (R3)

The best direct calculation results are obtained using Reaction (R3), and M06-2X was
the best-performing functional with both solvation models. The calculated individual pKa
values and their errors are displayed in Table 2 and Table S10, respectively. Table 2 also
displays the experimental values used. The best predictive methodologies are expected to
have the lowest MAEs and mean signed errors (MSEs, taking their sign into account). When
considering the training set of twenty phenols, MAEs between 1.34 and 1.61 (between 1.99
and 2.28) pKa units are obtained when using SMD (PCM).

Table 2. Experimental aqueous pKa values [49–51] and calculated errors (MAE and MSE) at several
levels of theory using Reaction (R3) (HRef = phenol) for direct calculations at 298.15 a,b.

Solvent Model SMD PCM

Name/Functional Exp.
pKa

M06-2X B3LYP BHandHLYP PBE0 g TPSS M06-2X B3LYP BHandHLYP PBE0 g TPSS

(1) 2,4-dinitrophenol 4.07 d −5.02 −5.13 −5.37 −4.26 −4.69 −6.55 −6.40 −7.08 −5.53 −5.92
(2) 4-nitrosophenol 6.33 e −3.85 −5.12 −4.47 −5.25 −5.97 −7.29 −6.49 −7.59
(3) 4-nitrophenol 7.15 d −3.77 −4.71 −4.33 −3.87 −4.83 −5.74 −6.59 −6.23 −5.71 −6.79
(4) 2-nitrophenol 7.23 d −3.36 −3.17 −4.07 −2.60 −2.55 −3.44 −3.24 −3.20 −2.37 −2.46
(5) 4-hydroxy-3-
methoxybenzaldehyde 7.396 e −1.59 −2.12 −1.55 −2.34 −1.72 −2.17 −1.59 −2.55

(6) 2,3-dichlorophenol 7.44 d −1.71 −1.63 −1.57 −1.83 −3.06 −2.77 −2.93 −2.82
(7) 3-cyanophenol 8.61 d −1.04 −1.04 −0.90 −1.06 −1.18 −2.46 −2.44 −2.29 −2.44 −2.64
(8) 4-trifluoromethylphenol 8.675 d −1.68 −1.29 −0.89 −1.56 −1.51 −3.06 −3.11 −3.08
(9) 2-fluorophenol 8.73 d −0.79 −1.03 −0.88 −0.91 −1.47 −1.50 −1.46 −1.50
(10) 3-hydroxybenzaldehyde 8.98 d −0.28 −0.48 −0.22 −0.42 −0.65 −1.17 −1.42 −1.11 −1.25 −1.66
(11) 3-chlorophenol 9.12 d −0.94 −0.98 −0.92 −1.05 −1.88 −1.85 −1.82 −2.00
(12) 4-bromophenol 9.37 d −0.67 −0.60 −0.66 −0.71 −0.63 −1.54 −1.41 −1.49 −1.51 −1.53
(13) acetaminophen 9.50 f 0.27 −0.01 0.42 0.35 −0.05 0.38 0.92 −0.07 0.28
(14) 3-methoxyphenol 9.65 d 0.19 0.36 0.17 0.18 0.45 −0.09 0.14 −0.11 −0.02 0.21
(15) 4-(2-aminoethyl)phenol 9.74 d 0.86 0.92 0.97 0.79 0.74 0.77 0.82 0.61
(16) phenol 9.99 d −0.19 −0.36 −0.17 −0.18 −0.45 0.09 −0.14 0.11 0.02 −0.21
(17) 3-aminophenol 9.82 d 0.59 0.78 0.49 0.87 0.75 1.02 0.67 1.11
(18) 4-methoxyphenol 10.21 d 0.55 1.09 0.89 0.78 1.23 0.29 0.93 0.75 0.99 0.88
(19) 4-methylphenol 10.26 d 0.43 0.21 0.16 0.36 −0.10 1.06 1.06 1.06 −0.04 0.62
(20) 2-(tertbutyl)phenol 10.62 d 0.74 1.18 1.05 0.89 0.37 0.55 0.67 0.19

MAE (20 phenols) 1.43 1.61 1.51 1.34 1.61 2.01 2.28 2.15 1.99 2.23
MAE (exc. NO, NO2) c 0.78 0.88 0.74 0.50 0.94 1.16 1.38 1.25 0.90 1.37
MSE (exc. NO, NO2) c −0.33 −0.31 −0.23 −0.09 −0.41 −0.70 −0.71 −0.74 −0.61 −0.88

a Mean absolute (MAE) and signed errors (MSE); b The calculated aqueous pKa values are reported in Table S10;
c Calculated excluding the results for the nitrophenols and nitrosophenol (1–4); d Ref. [42]; e Ref. [43]; f Ref. [44];
g Values reported for 11 phenols.

In general, direct calculations with Reaction (R3) led to underestimated (overestimated)
pKa values for compounds more (less) acidic than phenol. The more acidic the phenol,
the larger and more negative the error in these calculations. The calculated pKa values for
the three nitrophenols and nitrosophenol, compounds 1–4, have the largest MAEs (e.g.,
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between −3.36 and −5.02 pKa units with M06-2X(SMD)). These results indicate that the
direct methodology tested is insufficient to predict nitrophenols.

When the calculated pKa values of compounds 1–4 are excluded, the MAEs become
significantly reduced with values between 0.50 and 0.94 with SMD (between 0.90 and 1.38
with PCM), and MSE between −0.09 and −0.41 (−0.61 and −0.88) when using SMD (PCM).
The PBE0 functional seems to produce the best results, even though only eleven of the
twenty phenols were calculated because of significant technical issues when applying this
functional, with MAEs and MSEs of 0.50 and −0.09 (0.90 and −0.61), respectively, with
SMD (PCM). Ignoring the incomplete PBE0 results, BHandHLYP(SMD) produces the best
results with an MAE and MSE of 0.74 and −0.23, respectively, followed by M06-2X(SMD)
with an MAE of 0.78 and MSE of −0.33. Searching for smaller MAE values in the calculated
aqueous pKa values of phenols, various correlations between the calculated ∆G◦

(aq) values
and the experimental aqueous pKa values are investigated.

3.2. Exploring Various Correlations with Experimental pKa Values and the Training Set

Correlations between calculated properties (descriptors), including ∆G◦ values related
to the acid dissociation equilibrium, and experimental aqueous pKa values have been
previously reported [12,24–28,38,69,70]. When a correlation has a significantly large R2

value and the MAE is very small, the fitted equation can be directly used to predict new
aqueous pKa values of similar compounds.

Correlations between the experimental aqueous pKa values and the calculated ∆G◦
(aq)

for Reactions (R1)–(R3) produced very high R2 values (>0.90) in all but one case and much
smaller and more consistent MAEs when the corresponding correlation equation is used at
a given level of theory (see Table 1). Ignoring the results for Reaction (R2) and the PBE0
functional (which only considers eleven phenols in the training set and leads to slightly
larger MAEs in most cases), MAEs between 0.22 and 0.27 (0.28 and 0.40) are obtained with
SMD (PCM), which is an excellent result since a pKa error of 0.50 units corresponds to a
0.68 kcal/mol error in the calculated ∆G◦

(aq).
Given that when calculating ∆G◦

(aq) for Reactions (R1) and (R3) the only variables are
G◦(A−) and G◦(HA), we decided to directly focus the correlation between the experimental
aqueous pKa values and their difference, ∆G

◦

aq(BA) = ∆G
◦

aq(A−) − ∆G
◦

aq(HA). The calculated
pKa values and their errors for each of the twenty phenols in the training set, relative to the
corresponding correlation equation, are displayed in Table 3 and Table S11, respectively,
for the various levels of theory considered (only eleven phenols were calculated with the
PBE0 functional). The MAEs for these correlations are shown in Table 1, and the associated
correlation equations and R2 values are listed in Table 4.

Table 3. Errors in the calculated aqueous pKa values (displayed in Table S11) after using the corre-
sponding pKa (exp) vs. ∆G

◦

aq(BA) correlation equation at 298.15 K a,b,c,d.

Solvation Method SMD PCM

Name/Functional M06-2X B3LYP BHandHLYP PBE0 f TPSS M06-2X B3LYP BHandHLYP PBE0 f TPSS

(1) 2,4-dinitrophenol 0.46 0.76 0.59 0.55 0.91 0.72 1.11 0.73 0.75 1.27
(2) 4-nitrosophenol −0.15 −0.49 −0.24 −0.58 −0.39 −0.63 −0.42 −0.76
(3) 4-nitrophenol −0.54 −0.76 −0.63 −0.75 −0.84 −0.78 −0.88 −0.82 −1.01 −0.97
(4) 2-nitrophenol −0.38 −0.12 −0.56 −0.14 0.15 0.11 0.32 0.31 0.46 0.63
(5) 4-hydroxy-3-
methoxybenzaldehyde 0.39 0.25 0.49 0.15 0.72 0.62 0.83 0.49

(6) 2,3-dichlorophenol 0.31 0.44 0.46 0.36 0.14 0.37 0.28 0.36
(7) 3-cyanophenol 0.02 0.06 0.11 −0.33 0.01 −0.30 −0.24 −0.18 −0.33 −0.30
(8) 4-trifluoromethylphenol −0.32 −0.09 0.08 −0.19 0.04 −0.51 −0.54 −0.50
(9) 2-fluorophenol 0.08 0.00 0.06 0.07 0.03 0.04 0.07 0.06
(10) 3-hydroxybenzaldehyde 0.20 0.10 0.22 0.13 0.05 0.00 −0.09 0.05 0.02 −0.15
(11) 3-chlorophenol −0.19 −0.19 −0.17 −0.21 −0.37 −0.33 −0.31 −0.37
(12) 4-bromophenol −0.19 −0.16 −0.20 −0.21 −0.15 −0.38 −0.33 −0.34 −0.32 −0.34
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Table 3. Cont.

Solvation Method SMD PCM

Name/Functional M06-2X B3LYP BHandHLYP PBE0 f TPSS M06-2X B3LYP BHandHLYP PBE0 f TPSS

(13) acetaminophen 0.20 0.02 0.22 0.27 0.04 0.32 0.47 0.13 0.27
(14) 3-methoxyphenol 0.08 0.11 0.03 0.11 0.18 0.05 0.08 0.02 0.21 0.15
(15) 4-(2-aminoethyl)phenol 0.35 0.31 0.34 0.29 0.33 0.26 0.33 0.24
(16) phenol −0.19 −0.24 −0.24 −0.15 −0.21 −0.12 −0.18 −0.14 0.03 −0.14
(17) 3-aminophenol 0.19 0.20 0.08 0.28 0.29 0.30 0.23 0.38
(18) 4-methoxyphenol −0.04 0.12 0.04 0.14 0.23 −0.13 0.03 0.02 0.36 0.05
(19) 4-methylphenol −0.12 −0.30 −0.32 −0.09 −0.40 0.15 0.05 0.11 −0.13 −0.08
(20) 2-(tertbutyl)phenol −0.16 −0.07 −0.11 −0.15 −0.34 −0.37 −0.26 −0.46

MAE (20-set) 0.22 0.24 0.25 0.22 0.27 0.28 0.34 0.30 0.36 0.40

Correlations from Ref. [38]
(20-set) e 0.22 0.26 0.27 0.46 0.21

a Mean absolute (MAE) and signed errors (MSE); b ∆G
◦
aq(BA) = ∆G

◦
aq(A−) − ∆G

◦
aq(HA);

c Details of the correlation

equations are displayed in Table 4; d The calculated aqueous pKa values are reported in Table S11; e Using the
pKa (exp) vs. ∆G

◦
aq(BA) correlation equations reported; f Values reported for 11 phenols.

The correlations using the SMD solvation model have lower MAEs and better R2

values than the equivalent correlations using PCM, which is the same trend seen from the
direct calculations previously discussed (see Table 4). The MAE values between 0.22 and
0.27 (0.28 and 0.40) and the R2 values between 0.947 and 0.975 (0.898 and 0.946) when using
SMD (PCM) are excellent results. M06-2X(SMD) produced the most promising results with
an MAE of 0.22 (and R2 = 0.975); likewise, this functional also produced the best results
using PCM with an MAE of 0.28 (and R2 = 0.946).

It is important to note that when using these correlations (see Table 3), the calculated
errors for the nitrophenols (1,3,4) and the nitrosophenol (2), which were very large when
considering direct pKa calculations, are very small, in agreement with the calculated errors
for the other compounds. This indicates that our correlations correctly adjust for the
previously underestimated pKa predictions. Another observation is that the molecules
with intramolecular hydrogen bonding affecting the most stable conformation of the acid
form (1,4,5) tend to have a slightly higher error, as seen in Figure 5. We suspect that the
additional stabilization in the acidic form may lead to an underestimated pKa prediction.
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Correlations between the experimental aqueous pKa values and ∆G
◦

aq(BA) were re-
ported for simple phenols by Galano et al. at several levels of theory using only the SMD
solvation method [38]. Their training set of twenty simple phenols covered the experimen-
tal pKa range from 6.33 to 10.31. Using their reported correlation equations, we calculated
slightly larger MAE (from 0.21 to 0.46) for the compounds in our training set (see Table 1).
Apart from the fact that our correlation was built from these data, this difference is pos-
sibly due to the larger number of molecules more acidic than phenol in our training set,
compared to theirs.

3.3. Predicting Aqueous pKa Values of Complex Phenols

A significant number of phenolic molecules that we are interested in studying (see
Figures 2–4) are of greater structural complexity than the twenty molecules included in
our training set. Hence, it is essential to test the performance of our correlation equations
with more complex phenols. This is a largely underexplored area, partly because most
complex phenols lack experimental aqueous pKa values and no previous theoretical studies
have verified the quality of aqueous pKa predictions for complex phenols using reliable
experimental data.

3.3.1. Checking the Predictions with a Test Set

To check the accuracy of our correlations from the training set of twenty simple phenols,
we collected ten phenolic molecules of varying complexity (displayed in Figure 2). Seven
of them have experimental aqueous pKa values reported (21–24 and 27–29) [42,71,72], and
three other ones (25, 26, and 30) only have predicted values; 25 and 26 were predicted
by the ACD/Laboratories Software [39], and 30 has a minimum experimental aqueous
pKa value reported [73]. However, the same experimental methodology approximated
the pKa of 29 within 0.1 pKa units [73]. While phenols 21–24 are simple, phenols 25–30
are of significant structural complexity, and 27–29 have experimental pKa values reported.
Hence, for the first time to our knowledge, we will be assessing aqueous pKa predictions of
complex phenols using correlations involving the experimental values of simpler ones.

Table 4. Details of the correlation equations obtained for the initial training set of 20 phenols and for
the final training set of 27 phenols a,b.

Fitted Equation pKa (exp)=m∆G
◦

aq(BA)+n

Level of Theory m n R2 MAE

Set of 20
phenols
M06-2X(SMD) 0.3533 −92.4756 0.975 0.22
B3LYP(SMD) 0.3266 −84.9381 0.958 0.24
BHandHLYP(SMD) 0.3305 −86.9380 0.963 0.25
PBE0(SMD) d 0.3761 −99.8596 0.969 0.22
TPSS(SMD) 0.3315 −86.3857 0.947 0.27

M06-2X(PCM) 0.2988 −77.5916 0.946 0.28
B3LYP(PCM) 0.2751 −70.7109 0.916 0.34
BHandHLYP(PCM) 0.2847 −74.4297 0.938 0.30
PBE0(PCM) d 0.3328 −88.0977 0.935 0.36
TPSS(PCM) 0.2789 −71.8317 0.898 0.40
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Table 4. Cont.

Fitted Equation pKa (exp)=m∆G
◦

aq(BA)+n

Level of Theory m n R2 MAE

Set of 27
phenols c

M06-2X(SMD) 0.3244 −84.1492 0.953 0.27
B3LYP(SMD) 0.3071 −79.2803 0.955 0.26
BHandHLYP(SMD) 0.3039 −79.2127 0.950 0.27
TPSS(SMD) 0.3104 −80.2526 0.959 0.27

M06-2X(PCM) 0.2731 −70.0432 0.960 0.26
B3LYP(PCM) 0.2522 −63.9968 0.956 0.27
BHandHLYP(PCM) 0.2581 −66.5540 0.957 0.26
TPSS(PCM) 0.2489 −62.9995 0.938 0.32

a ∆G
◦
aq(BA) = ∆G

◦
aq(A−) − ∆G

◦
aq(HA), new pKa values should be calculated as pKa (calc) = m∆G

◦
aq(BA) + n; b Using

the 6-311++G(d,p) basis set; c The 7 phenols of the test set (which includes 3 large phenols) with experimental pKa

values (see Table 5) have been added to the initial set of 20 phenols; d Calculated using 11 phenols.

Using the correlation equations (reported in Table 4) for the training set of twenty
phenols employing the functionals M06-2X, B3LYP, BHandHLYP, and TPSS (with both
the SMD and PCM solvation methods), the aqueous pKa values of the training set are
calculated. Experimental pKa values and errors in their prediction, with MAE and MSE
values, are shown in Table 5, while the calculated pKa values are reported in Table S12.
MAE and MSE values are reported for the seven phenols with experimental data and for
the entire set (including predicted values). Predictions using the correlation equations of
Galano et al. [38] and employing the method suggested by Thapa and Schlegel [31] are also
reported for comparison.

Unlike the trends seen in the MAE and MSE values previously reported (see, for
example, Tables 2 and 3), the correlations using SMD usually exhibit larger errors in the
predicted pKa values of the test set than when using PCM. The lowest MAE of 0.24 using
the whole test set is achieved with M06-2X(PCM); however, when only experimental pKa
values are used, the lowest MAE of 0.23 is produced by B3LYP(PCM). The MSE values
are very similar between both solvation models and indicate that our correlations slightly
underestimate the test set’s pKa values.

Comparing our SMD results with Ref. [38], our values almost always produce smaller
MAEs and MSEs. To compare with the predictive ability of the method reported in
Ref. [31], a few molecules in our test set were selected (24, 28, and 29). In all cases (except
for (R)-Trolox using B3LYP(SMD) and TPSS(SMD)), our correlations produce more accurate
values. Moreover, the method reported in Ref. [31] is incompatible with 2-chlorophenol
(and in general, with 2-substituted phenols) since the water molecules would not equili-
brate around the -OH group in the acid species. Given that the pKa values of nitrophe-
nols are difficult to predict directly, we included 2-nitrophenol in Table 5 (experimental
pKa = 7.23) [42]. The pKa predictions of 6.13 and 3.92 by Refs. [31,38], respectively, had
much larger errors than when using our M06-2X(PCM) correlation (7.34, see Table S12).

The more complex phenols (25–30) were isolated from the simpler phenols (21–24),
and the complex phenols with experimental aqueous pKa values (27–30) were further
separated from those with estimated values. When considering all complex phenols in
the test set, the MAEs ranged between 0.31 and 0.37 (0.23 and 0.39) with SMD (PCM).
PCM generally performs better than SMD, with the lowest MAE of 0.23 achieved with the
M06-2X(PCM) functional.

When considering only the complex phenols with experimental aqueous pKa val-
ues, the MAEs increased with SMD, but they generally decreased with PCM. Moreover,
the MSE values increased for all functionals in both solvation models when only con-
sidering the complex phenols with experimental values. The MAEs ranged between
0.45 and 0.53 (0.27 and 0.35) with SMD (PCM). B3LYP(PCM), BHandHLYP(PCM), and
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TPSS(PCM) produce small MAE values for the complex phenols with experimental pKa
values of 0.28, 0.29, and 0.27 pKa units, while their MSE values are −0.23, −0.23, and
−0.22 pKa units, respectively. Compared to Ref. [38], our correlations produced signif-
icantly lower MAE and MSE values, especially with PCM. The performance disparity
between the SMD and PCM solvent models can in part be attributed to the PCM exclusion
of explicit non-electrostatic energy contributions. The excellent results with the test set,
especially when using PCM, indicate that our correlations can be confidently applied to
our prediction sets.

Table 5. Predicted pKa errors and experimental pKa values for the phenols in the test set (21–30)
using the corresponding pKa (exp) vs. ∆G

◦

aq(BA) correlation equation listed in Table 4 (obtained from a
training set of 20 phenols) at several levels of theory at 298.15 K a.

Solvation Method SMD PCM Exp f Other Predictions

Name/Functional M06-2X B3LYP BHandHLYP TPSS M06-2X B3LYP BHandHLYP TPSS Ref. [38] g Ref. [31] h

(21) 2-bromophenol 0.49 0.56 0.58 0.48 −0.12 0.06 −0.04 0.08 8.45 i 0.49
(22) 2-chlorophenol −0.14 −0.06 −0.09 −0.11 −0.11 0.00 −0.07 −0.69 8.56 i −0.10
(23) 4-(methylthio)phenol −0.13 −0.14 −0.01 0.27 −0.34 −0.34 −0.35 −0.97 9.53 i −0.19
(24) 4-aminophenol 0.35 0.33 0.33 0.30 0.42 0.39 0.46 0.41 10.30 i 0.17 0.43 l

(25) ketobemidone −0.17 0.16 −0.07 0.12 −0.02 0.98 1.12 0.96 [9.96] m −0.26
(26) profadol −0.24 −0.19 −0.26 −0.22 −0.05 0.00 0.04 −0.01 [10.27] m −0.36
(27) tapentadol −0.36 −0.29 −0.32 −0.31 −0.36 −0.37 −0.35 −0.33 10.45 n,

[10.09] m −0.48

(28) (R)-Trolox −0.40 −0.81 −0.37 −0.59 −0.18 0.08 0.09 0.08 11.92 j −0.67 −0.47
(29)
∆9-tetrahydrocannabinol
(∆9-THC)

−0.83 −0.46 −0.66 −0.57 −0.50 −0.40 −0.43 −0.41 10.60 n −0.91 −1.37

(30) cannabidiol (CBD) d −0.08 0.29 0.18 0.18 0.30 0.26 0.29 0.26 9.7 k −0.18

(4) 2-nitrophenol −0.38 −0.12 −0.56 0.15 0.11 0.32 0.31 0.63 7.23 h −1.10 −3.31

MAE b (test set with exp
values)

0.39 0.38 0.34 0.38 0.29 0.23 0.25 0.42

MSE b −0.15 −0.12 −0.08 −0.08 −0.17 −0.08 −0.10 −0.26

MAE c (entire test set) 0.32 0.33 0.29 0.32 0.24 0.29 0.32 0.42
MSE c −0.15 −0.06 −0.07 −0.05 −0.10 0.06 0.08 −0.06

MAE (Ref. [38]) e 0.43 0.40 0.35 0.42
MSE (Ref. [38]) e −0.24 −0.08 −0.09 −0.26

MAE b,o (complex ph. with
exp values)

0.53 0.52 0.45 0.49 0.35 0.28 0.29 0.27

MSE b,o −0.53 −0.52 −0.45 −0.49 −0.35 −0.23 −0.23 −0.22

MAE c,o (all complex ph.) 0.35 0.37 0.31 0.33 0.23 0.35 0.39 0.34
MSE c,o −0.35 −0.22 −0.25 −0.23 −0.14 0.09 0.13 0.09

MAE (Ref. [38]) e,o 0.59 0.55 0.51 0.77
MSE (Ref. [38]) e,o −0.59 −0.55 −0.51 −0.77

a The calculated aqueous pKa values are reported in Table S12; b Mean absolute (MAE) and signed (MSE) errors
only taking (7) experimental values into account; c MAE and MSE taking (7) experimental and (3) previously
predicted values (shown in square brackets) into account; d Macroscopic pKa values have been calculated by
accounting for the degenerate deprotonation sites; e Using the correlation equations reported (SMD only) for
the compounds with experimental data; f Values in brackets are theoretical predictions; g Predicted pKa values
using the correlation equation at the M06-2X(SMD) level of theory; h Predicted pKa values using the three-water
clusters for the acid and the conjugate base as done in Ref. [31]; i Ref. [42]; j Ref. [72]; k Ref. [73] (minimum
experimental value); l Value taken from Ref. [31]; m Ref. [39]; n Ref. [71]; o Taking only the complex phenols into
account (25–30).

To increase the statistical value of our work, we included the seven phenols with
experimental aqueous pKa values from our test set into new correlated equations at all
levels of theory. The best correlation graph obtained for the twenty-seven phenols is shown
in Figure 5. The associated equations that will be used for predictions are listed in the
second half of Table 4. While the MAEs of the new correlations with SMD slightly increased
between 0.02 and 0.05 pKa units when the seven phenols were added, the MAEs with PCM
decreased between 0.02 and 0.08 pKa units. The MAE range with twenty-seven phenols
became 0.26–0.27 (0.26–0.32) using SMD (PCM), with the lowest MAE of 0.26 shared by
M06-2X(PCM) and BHandHLYP(PCM). These are excellent results.
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3.3.2. Predicting Aqueous pKa Values of Phenols with Potential Antioxidant Activity

Our group has studied the antioxidant properties of molecules 31–42, shown in
Figure 3, and molecule 24, to repair damaged leucine residues under physiological
conditions (pH 7.4). We require accurate pKa values to understand the biological
mechanisms of action of these potential antioxidants. Additionally, we provide pKa
predictions for molecules 25 and 26 which are opioid analgesics. Table 6 presents
the aqueous pKa predictions using PCM, while additional predictions using SMD are
displayed in Table S13. The predicted aqueous pKa values could be used as reference
values for approximate pKa predictions in other computationally available implicit
solvents, as previously reported [12]. This potential solvent transferability is highly
useful as many of the species in the prediction sets have poor aqueous solubility.

Table 6. Predicted aqueous pKa values for other phenols at 298.15 K with the M06-2X, B3LYP,
BHandHLYP, and TPSS functionals combined with the PCM solvation method using the correspond-
ing pKa (exp) vs. ∆G

◦

aq(BA) correlation equation for 27-phenols listed in Table 4.

Name/Functional M06-2X B3LYP BHandHLYP TPSS Range (Spread) Average

(25) ketobemidone 9.96 10.86 10.97 10.85 9.96–10.97 (1.01) 10.66
(26) profadol 10.22 10.24 10.27 10.26 10.22–10.27 (0.05) 10.25
Antioxidants
(31) 2-butylated hydroxyanisole 10.75 10.64 10.72 10.66 10.64–10.75 (0.11) 10.69
(32) 3-butylated hydroxyanisole 10.77 10.64 10.70 10.68 10.64–10.77 (0.13) 10.70
(33) tocol 10.68 10.62 10.66 10.66 10.62–10.68 (0.06) 10.66
(34) δ-tocopherol 10.88 10.85 10.87 10.88 10.85–10.88 (0.03) 10.87
(35) β-tocopherol 11.09 11.09 11.16 11.09 11.09–11.16 (0.07) 11.11
(36) γ-tocopherol 11.16 11.06 11.14 11.07 11.06–11.16 (0.10) 11.11
(37) α-tocopherol 11.32 11.26 11.37 11.27 11.26–11.37 (0.11) 11.31
(38) N,N-dimethyl-4-aminophenol 10.57 10.64 10.49 10.76 10.49–10.76 (0.27) 10.62
(39) 6-hydroxy-5,7,8-trimethyl-
1,2,3,4-tetrahydroquinoline 11.47 11.55 11.50 11.53 11.47–11.55 (0.08) 11.51

(40) 9-hydroxyjulolidine 11.11 10.86 11.07 11.12 10.86–11.12 (0.26) 11.04
(41) 4-butadienylphenol 9.27 9.17 9.21 8.95 8.95–9.27 (0.32) 9.15
(42) 4-hydroxystilbene 9.29 9.42 9.29 9.02 9.02–9.42 (0.40) 9.26
Cannabinoids
(29) ∆9-tetrahydrocannabinol
(∆9-THC) b 10.11 10.18 10.14 10.20 10.11–10.20 (0.09) 10.16

(43) ∆8-tetrahydrocannabinol
(∆8-THC)

10.11 10.14 10.13 10.22 10.11–10.22 (0.11) 10.15

(44) iso-tetrahydrocannabinol
(iso-THC) 10.31 10.29 10.21 10.41 10.21–10.41 (0.20) 10.31

(30) cannabidiol (CBD) a,c 9.98 9.93 9.95 9.96 9.93–9.98 (0.05) 9.96
(45) ∆9-tetrahydrocannabivarin
(THCV)

9.83 10.14 10.69 10.21 9.83–10.69 (0.86) 10.22

(46) 3-homotetrahydrocannibinol 9.68 9.94 9.95 9.92 9.68–9.95 (0.27) 9.87
(47) nabilone 9.96 10.07 10.05 10.02 9.96–10.07 (0.11) 10.03
(48) cannabinol (CBN) 9.01 9.43 9.05 9.53 9.01–9.53 (0.52) 9.26
(49) cannabichromene (CBC) 9.17 9.19 9.16 9.32 9.16–9.32 (0.16) 9.21
(50) cannabigerol (CBG) a 9.95 9.90 10.05 9.94 9.90–10.05 (0.15) 9.96

a Macroscopic pKa values have been calculated by accounting for the degenerate deprotonation sites; b pKa = 10.60
(Ref. [71]); c pKa = 9.7 (Ref. [73], minimum experimental value).

Molecules 25–26 and 31–42 exhibit similar acidity, with the majority being lipophilic,
with average pKa predictions using PCM (SMD) between 9.15 and 11.51 (9.21 and 11.29).
This is unsurprising since most of them share structural features (e.g., heteroatom at the
4-substituted position). The spread of the predicted pKa values for each of these systems
using PCM (SMD) was 0.40 (0.52) pKa units or less, with the exception of 25 with PCM
predictions spreading up to 1.01 pKa units.

Molecule 25 is predicted to have a pKa of 9.96 [39], in good agreement with the
prediction from Ref. [38] of 9.89. On the other hand, our average prediction using PCM is
10.66, but the M06-2X(PCM) prediction is 9.96, and the overall SMD predicted average is
9.89. Our predictions for this molecule are the most spread of all with PCM and the one
with the largest average difference (0.77 pKa units) between PCM and SMD. Conversely,
molecule 26 was predicted to have a pKa of 10.27 [39], which is in good agreement with the
prediction from Ref. [38] of 10.00 and in excellent agreement with our average prediction of
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10.25. The predicted values for 25–27 used the same software [39], and while the predicted
value for 27 was 10.09, the experimental value reported is 10.45 [71].

To our knowledge, there are no previous pKa predictions that we can compare our
results with for molecules 31–42. However, the small average (median) range of 0.15 (0.12)
for values predicted with M06-2X, B3LYP, BHandHLYP, and TPSS functionals using PCM is
a promising result. Evidently, there is good agreement between these levels of theory.

3.3.3. Predicting Aqueous pKa Values of Cannabinoids

Finally, we used the same methodologies to predict the pKa for nine phenolic cannabi-
noids, shown in Figure 4. Of these, 43–46 and 49 present stereoisomerism. In all cases, the
naturally occurring isomer was used (see Figure 4). In addition, two synthetic cannabinoids
(47 and 48) were considered. Compound 46 contains only one stereocenter at C9, which
gives a pair of enantiomers. For consistency, the R enantiomer was used in each case. In the
case of 47, which is usually commercialized as a racemic mixture of (S,S)-(+) and (R,R)-(−)
isomers, the latter was used in our calculations.

We could only find a reliable experimental pKa value for molecule 29 and an estimated
minimum experimental value for 30 [71,73]. These cannabinoids were part of the test
set previously discussed. Our average PCM prediction for 29 is 10.16 (with a spread of
0.09 pKa units, see Table 6), which is in good agreement with the reported experimental
value of 10.60 [71]. The pKa predictions for 29 using the methodologies described in
Refs. [31,38] were 9.23 and 9.69, respectively. Similarly, our average PCM pKa prediction
for molecule 30 is 9.96, which is also in good agreement with the minimum estimated
experimental value of 9.7 [73]. Using the methodology of Ref. [38], the pKa prediction of
9.55 for 30 seems to be slightly underestimated. Further, these results give us confidence
in the accuracy of the methodology followed to calculate the macroscopic pKa value for
molecule 50.

Again, due to the structural similarities of the cannabinoids, the average PCM (SMD)
predicted pKa range for these molecules was between 9.21 and 10.31 (8.98 and 10.22).
An interesting structural trend between molecules 46, 48, and 49, when compared to
the other cannabinoids, is their lower expected pKa values (with values of 9.87, 9.26,
and 9.21, respectively, if using average PCM predictions; see Table 6) because of the
increased conjugate base stabilization from substituent conjugation. All of the cannabinoids
were predicted to be similar or slightly more acidic than molecule 29, if considering its
experimental value of 10.60; this is supported by molecule 43, an isomer of 29, having an
average predicted pKa of 10.15 using PCM (just 0.01 pKa units from 29’s average prediction).

The spread of the predicted pKa values for each of these systems using PCM (SMD)
was 0.51 (0.69) pKa units or less, with the exception of 45 with PCM predictions spreading
over 0.86 pKa units. Similar to what was reported in the previous section, the PCM average
(median) range between the levels of theory for each molecule was 0.25 (0.17) which gives
us confidence in our pKa predictions for these molecules. Furthermore, since the pKa
values of cannabinoids were well reproduced in the test set, our prediction methodology
could be extended to other molecules of this family.

4. Conclusions

Working with an initial training set of eleven structurally simple phenols, which
was later expanded to twenty molecules, direct aqueous pKa calculations (using three
acid dissociation equilibria) were perform with of five DFT functionals (M06-2X, B3LYP,
BHandHLYP, PBE0, and TPSS), using the 6-311++G(d,p) basis set and the SMD and PCM
solvent models. Much better and more consistent results were produced from the correla-
tions between the calculated Gibbs energy difference between each acid and its conjugate
base, ∆G

◦

aq(BA) = ∆G
◦

aq(A−) − ∆G
◦

aq(HA), and the experimental aqueous pKa values, as
previously reported [38]. The correlations using SMD (PCM) produced MAEs between 0.22
and 0.27 (0.28 and 0.40) and R2s between 0.947 and 0.975 (0.898 and 0.946). In general, the
correlations using twenty phenols with SMD produced more accurate results than PCM.
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A new set of ten phenols of varying complexities with experimental and/or predicted
pKa values (separated accordingly) was used to test the performance of our correlations.
In this case, PCM performed significantly better than SMD and the theoretical method-
ologies previously reported [31,38] for the entire test set and when the complex phenols
were isolated. The best performance (for the set with experimental pKa values) was
achieved by B3LYP(PCM) with an MAE (MSE) of 0.23 (−0.08) pKa units. The best perfor-
mance for the complex phenols with experimental values were achieved by B3LYP(PCM),
BHandHLYP(PCM), and TPSS(PCM) with MAE values of 0.28, 0.29, and 0.27 pKa units,
respectively. These three functionals are expected to produce the most accurate pKa pre-
dictions when combined with the PCM solvent model; however, we have included the
remaining levels of theory to form a range of predicted values. Furthermore, we developed
new correlations, including the seven molecules from the training set (working with twenty-
seven phenols in total) to increase the statistical value of our work. The best MAE for the
new correlations was shared by M06-2X(PCM), B3LYP(SMD), and BHandHLYP(PCM) with
an MAE of 0.26 and R2s between 0.955 and 0.960 (see Table 4).

Our correlations were used to predict the pKa values of twelve molecules with poten-
tial antioxidant activity and of nine phenolic cannabinoids. The average prediction range
with the PCM (SMD) solvation model was 0.15 (0.21) and 0.25 (0.34) pKa units, respectively,
which indicates a very good agreement between our methodologies. These aqueous pKa
predictions could be used as reference values for predictions in other solvents [12]. In
the future, when more experimental data are available, it would be ideal to extend these
correlations to a larger set of complex phenolic molecules to create an even better pKa
predictive tool.

Supplementary Materials: The following information is available online at https://www.mdpi.com/
article/10.3390/antiox12071420/s1, The absolute Gibbs free energies of the different species considered
in this study at the various levels of theory (Tables S1–S5); individual pKa values and their errors are
displayed in Tables S6 and S7 (Tables S8 and S9) when using Reaction (R1) (Reaction (R2)); individual
pKa errors when using Reaction (R3) (Table S10); correlated pKa values (Table S11); individual pKa values
in test set predictions (Table S12); predicted pKa values for prediction sets not shown in Table 6 (Table
S13); optimized structures at the M06-2X(SMD)/6-311++G(d,p) level of theory.
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