Improvement of Fresh Ovine “Tuma” Cheese Quality Characteristics by Application of Oregano Essential Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oregano Essential Oil Extraction and Gas Chromatography Analysis
2.2. Bacterial Strains, Milk Starter Culture Preparation, and Culture Conditions
2.3. In Vitro Antibacterial Activity of Oregano Essential Oil
2.4. Description of Dairy Plant
2.5. Cheese Production and Sample Collection
2.6. Microbiological Analyses
2.7. Monitoring of Starter Cultures and Identification of the Thermoduric Milk LAB
2.8. Physicochemical Analysis of Tuma Cheeses
2.9. Antioxidant Capacity of Tuma Cheeses
2.10. Volatile Organic Compounds Emitted from Tuma Cheeses
2.11. Sensory Evaluation of Tuma Cheeses
2.12. In Vivo Antibacterial Effect of Oregano Essential Oil
2.13. Statistical Analyses
3. Results and Discussion
3.1. Chemical Composition of Oregano Essential Oil
3.2. Antibacterial Activity of Oregano Essential Oil
3.3. Evolution of Microbial Populations during Cheese Making
3.4. Composition of Thermoduric LAB Populations
3.5. Physicochemical Characterisation of Tuma Cheeses
3.6. Antioxidant Capacity of Tuma Cheeses
3.7. Volatile Organic Compounds Emitted from Tuma Cheeses
3.8. Sensory Aspects of Cheeses
3.9. Artificial Contamination Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christaki, S.; Moschakis, T.; Kyriakoudi, A.; Biliaderis, C.G.; Mourtzinos, I. Recent advances in plant essential oils and extracts: Delivery systems and potential uses as preservatives and antioxidants in cheese. Trends Food Sci. Technol. 2021, 116, 264–278. [Google Scholar] [CrossRef]
- Dairy Industries International. Global Cheese Markets Hit Record Highs. Available online: https://www.dairyindustries.com/news/35273/global-cheese-markets-hit-record-highs/ (accessed on 5 April 2023).
- Tong, X.; Chen, G.-C.; Zhang, Z.; Wei, Y.-L.; Xu, J.-Y.; Qin, L.-Q. Cheese consumption and risk of all-cause mortality: A meta-analysis of prospective studies. Nutrients 2017, 9, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jay, J.M.; Loessner, M.J.; Golden, D.A. Microbiologia Degli Alimenti, 7th ed.; Springer Science & Business Media: Berlin, Germany, 2009; ISBN 8847007860. [Google Scholar]
- Costa, M.J.; Maciel, L.C.; Teixeira, J.A.; Vicente, A.A.; Cerqueira, M.A. Use of edible films and coatings in cheese preservation: Opportunities and challenges. Food Res. Int. 2018, 107, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Lima, R.C.; de Carvalho, A.P.A.; Vieira, C.P.; Moreira, R.V.; Conte-Junior, C.A. Green and healthier alternatives to chemical additives as cheese preservative: Natural antimicrobials in active nanopackaging/coatings. Polymers 2021, 13, 2675. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, C.; Long, Y.; Chen, Q.; Zhang, W.; Liu, G. Food additives: From functions to analytical methods. Crit. Rev. Food Sci. Nutr. 2022, 62, 8497–8517. [Google Scholar] [CrossRef]
- Ritota, M.; Manzi, P. Natural preservatives from plant in cheese making. Animals 2020, 10, 749. [Google Scholar] [CrossRef]
- Khorshidian, N.; Yousefi, M.; Khanniri, E.; Mortazavian, A.M. Potential application of essential oils as antimicrobial preservatives in cheese. Innov. Food Sci. Emerg. Technol. 2018, 45, 62–72. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S. Essential oils: Extraction, bioactivities, and their uses for food preservation. J. Food Sci. 2014, 79, R1231–R1249. [Google Scholar] [CrossRef]
- Worwood, V.A. The Complete Book of Essential Oils and Aromatherapy, Revised and Expanded: Over 800 Natural, Nontoxic, and Fragrant Recipes to Create Health, Beauty, and Safe Home and Work Environments; New World Library: Novato, CA, USA, 2016. [Google Scholar]
- FDA (Food and Drug Administration) USA. Substances Generally Recognized as Safe. Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-182 (accessed on 5 April 2023).
- Desam, N.R.; Al-Rajab, A.J.; Sharma, M.; Mylabathula, M.M.; Gowkanapalli, R.R.; Albratty, M. Chemical constituents, in vitro antibacterial and antifungal activity of Mentha × Piperita L.(peppermint) essential oils. J. King Saud Univ. Sci. 2019, 31, 528–533. [Google Scholar] [CrossRef]
- Tuttolomondo, T.; La Bella, S.; Licata, M.; Virga, G.; Leto, C.; Saija, A.; Trombetta, D.; Tomaino, A.; Speciale, A.; Napoli, E.M.; et al. Biomolecular characterization of wild sicilian oregano: Phytochemical screening of essential oils and extracts, and evaluation of their antioxidant activities. Chem. Biodivers. 2013, 10, 411–433. [Google Scholar] [CrossRef]
- Vekiari, S.A.; Oreopoulou, V.; Tzia, C.; Thomopoulos, C.D. Oregano flavonoids as lipid antioxidants. J. Am. Oil Chem. Soc. 1993, 70, 483–487. [Google Scholar] [CrossRef]
- Yildiz, S.; Turan, S.; Kiralan, M.; Ramadan, M.F. Antioxidant properties of thymol, carvacrol, and thymoquinone and its efficiencies on the stabilization of refined and stripped corn oils. J. Food Meas. Charact. 2021, 15, 621–632. [Google Scholar] [CrossRef]
- O’Connell, J.E.; Fox, P.F. Significance and applications of phenolic compounds in the production and quality of milk and dairy products: A review. Int. Dairy J. 2001, 11, 103–120. [Google Scholar] [CrossRef]
- Gaglio, R.; Barbaccia, P.; Barbera, M.; Restivo, I.; Attanzio, A.; Maniaci, G.; Di Grigoli, A.; Francesca, N.; Tesoriere, L.; Bonanno, A.; et al. The use of winery by-products to enhance the functional aspects of the fresh ovine “Primosale” cheese. Foods 2021, 10, 461. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Patel, D.; Kim, J.E.; Min, S.C. Retardation of Listeria monocytogenes growth in mozzarella cheese using antimicrobial sachets containing rosemary oil and thyme oil. J. Food Sci. 2014, 79, E2272–E2278. [Google Scholar] [CrossRef]
- Olmedo, R.H.; Nepote, V.; Grosso, N.R. Preservation of sensory and chemical properties in flavoured cheese prepared with cream cheese base using oregano and rosemary essential oils. LWT-Food Sci. Technol. 2013, 53, 409–417. [Google Scholar] [CrossRef]
- Iaria, C.; Ricciardi, F.; Marano, F.; Puglisi, G.; Pappas, G.; Cascio, A. Live nativity and brucellosis, Sicily. Emerg. Infect. Dis. 2006, 12, 2001–2002. [Google Scholar] [CrossRef]
- Barbaccia, P.; Busetta, G.; Matraxia, M.; Sutera, A.M.; Craparo, V.; Moschetti, G.; Francesca, N.; Settanni, L.; Gaglio, R. Monitoring commercial starter culture development in presence of red grape pomace powder to produce polyphenol-enriched fresh ovine cheeses at industrial scale level. Fermentation 2021, 7, 35. [Google Scholar] [CrossRef]
- Gaglio, R.; Restivo, I.; Barbera, M.; Barbaccia, P.; Ponte, M.; Tesoriere, L.; Bonanno, A.; Attanzio, A.; Di Grigoli, A.; Francesca, N.; et al. Effect on the antioxidant, lipoperoxyl radical scavenger capacity, nutritional, sensory and microbiological traits of an ovine stretched cheese produced with grape pomace powder addition. Antioxidants 2021, 10, 306. [Google Scholar] [CrossRef]
- Gaglio, R.; Barbera, M.; Aleo, A.; Lommatzsch, I.; La Mantia, T.; Settanni, L. Inhibitory activity and chemical characterization of Daucus carota subsp. maximus essential oils. Chem. Biod. 2017, 14, e1600477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miceli, A.; Aleo, A.; Corona, O.; Sardina, M.T.; Mammina, C.; Settanni, L. Antibacterial activity of Borago officinalis and Brassica juncea aqueous extracts evaluated in vitro and in situ using different food model systems. Food Control 2014, 40, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Militello, M.; Settanni, L.; Aleo, A.; Mammina, C.; Moschetti, G.; Giammanco, G.M.; Amparo Blàzquez, M.; Carrubba, A. Chemical composition and antibacterial potential of Artemisia arborescens L. essential oil. Curr. Microbiol. 2011, 62, 1274–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaglio, R.; Francesca, N.; Di Gerlando, R.; Mahony, J.; De Martino, S.; Stucchi, C.; Moschetti, G.; Settanni, L. Enteric bacteria of food ice and their survival in alcoholic beverages and soft drinks. Food Microbiol. 2017, 67, 17–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Gaglio, R.; Cruciata, M.; Di Gerlando, R.; Scatassa, M.L.; Cardamone, C.; Mancuso, I.; Sardina, M.T.; Moschetti, G.; Portolano, B.; Settanni, L. Microbial activation of wooden vats used for traditional cheese production and evolution of the neo-formed biofilms. Appl. Environ. Microbiol. 2016, 82, 585–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CIE (Commission Internationale de l’Eclairage). Colorimetry; Commission Internationale de l’Eclairage: Vienna, Austria, 1986; Volume CIE 15.2. [Google Scholar]
- ISO 21807:2004; Microbiology of Food and Animal Feeding Stuffs—Determination of Water Activity. International Standardization Organization: Geneva, Switzerland, 2004.
- FIL-IDF 4A; Cheese and Processed Cheese Product. Determination of the Total Solids Content. International Dairy Federation: Brussels, Belgium, 1982.
- FIL-IDF 5B; Cheese and Processed Cheese Product. Determination of Fat Content-Gravimetric Method. International Dairy Federation: Brussels, Belgium, 1986.
- FIL-IDF 27; Determination of the Ash Content of Processed Cheese Products. International Dairy Federation: Brussels, Belgium, 1964.
- Rashidinejad, A.; Birch, J.E.; Sun-Waterhouse, D.; Everett, D.W. Effects of catechin on the phenolic content and antioxidant properties of low-fat cheese. Int. J. Food Sci. Technol. 2013, 48, 2448–2455. [Google Scholar] [CrossRef]
- Bonanno, A.; Di Grigoli, A.; Vitale, F.; Di Miceli, G.; Todaro, M.; Alabiso, M.; Gargano, M.L.; Venturella, G.; Anike, F.N.; Isikhuemhenal, O.S. Effects of feeding diets supplemented with medicinal mushrooms myceliated grains on some production, health and oxidation traits of dairy ewes. Int. J. Med. Mushrooms 2019, 21, 89–103. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- FIL-IDF 74A; Determination of the Peroxide Value. International Dairy Federation: Brussels, Belgium, 1991.
- Tarladgis, B.G.; Watts, B.M.; Younathan, M.T.; Dugan, L., Jr. A distillation method for the quantitative determination of malonaldehyde in rancid foods. J. Am. Oil Chem. Soc. 1960, 37, 44–48. [Google Scholar] [CrossRef]
- Mele, M.; Contarini, G.; Cercaci, L.; Serra, A.; Buccioni, A.; Povolo, M.; Conte, G.; Funaro, A.; Banni, S.; Lercker, G.; et al. Enrichment of pecorino cheese with conjugated linoleic acid by feeding dairy ewes with extruded linseed: Effect on fatty acid and triglycerides composition and on oxidative stability. Int. Dairy J. 2011, 21, 365–372. [Google Scholar] [CrossRef]
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. International Standardization Organization: Geneva, Switzerland, 2007.
- Ashkezary, M.R.; Bonanno, A.; Todaro, M.; Settanni, L.; Gaglio, R.; Todaro, A.; Alabiso, M.; Maniaci, G.; Mazza, F.; Di Grigoli, A. Effects of adding solid and molten chocolate on the physicochemical, antioxidant, microbiological, and sensory properties of ewe’s milk cheese. J. Food Sci. 2020, 85, 556–566. [Google Scholar] [CrossRef]
- Vokou, D.; Kokkini, S.; Bessiere, J.-M. Geographic variation of Greek oregano (Origanum vulgare ssp. hirtum) essential oils. Biochem. Syst. Ecol. 1993, 21, 287–295. [Google Scholar] [CrossRef]
- Morshedloo, M.R.; Mumivand, H.; Craker, L.E.; Maggi, F. Chemical composition and antioxidant activity of essential oils in Origanum vulgare subsp. gracile at different phenological stages and plant parts. J. Food Process. Preserv. 2018, 42, e13516. [Google Scholar] [CrossRef]
- Tsitlakidou, P.; Papachristoforou, A.; Tasopoulos, N.; Matzara, A.; Hatzikamari, M.; Karamanoli, K.; Mourtzinos, I. Sensory analysis, volatile profiles and antimicrobial properties of Origanum vulgare L. essential oils. Flavour Fragr. J. 2022, 37, 43–51. [Google Scholar] [CrossRef]
- Morshedloo, M.R.; Salami, S.A.; Nazeri, V.; Maggi, F.; Craker, L. Essential oil profile of oregano (Origanum vulgare L.) populations grown under similar soil and climate conditions. Ind. Crops Prod. 2018, 119, 183–190. [Google Scholar] [CrossRef]
- Mechergui, K.; Jaouadi, W.; Coelho, J.P.; Khouja, M.L. Effect of harvest year on production, chemical composition and antioxidant activities of essential oil of oregano (Origanum vulgare subsp glandulosum (Desf.) Ietswaart) growing in North Africa. Ind. Crops Prod. 2016, 90, 32–37. [Google Scholar] [CrossRef]
- Fleisher, A.; Sneer, N. Oregano spices and Origanum chemotypes. J. Sci. Food Agric. 1982, 33, 441–446. [Google Scholar] [CrossRef]
- Karkabounas, S.; Kostoula, O.K.; Daskalou, T.; Veltsistas, P.; Karamouzis, M.; Zelovitis, I.; Metsios, A.; Lekkas, P.; Evangelou, A.M.; Kotsis, N.; et al. Anticarcinogenic and antiplatelet effects of carvacrol. Exp. Oncol. 2006, 28, 121–125. [Google Scholar] [PubMed]
- Keawchaoon, L.; Yoksan, R. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloid Surf. B. Biointerfaces 2011, 84, 163–171. [Google Scholar] [CrossRef]
- Jayakumar, S.; Madankumar, A.; Asokkumar, S.; Raghunandhakumar, S.; Gokula Dhas, K.; Kamaraj, S.; Josephine Divya, M.G.; Devaki, T. Potential preventive effect of carvacrol against diethylnitrosamine-induced hepatocellular carcinoma in rats. Mol. Cell. Biochem. 2012, 360, 51–60. [Google Scholar] [CrossRef]
- Friedman, M. Chemistry and multibeneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices. J. Agric. Food Chem. 2014, 62, 7652–7670. [Google Scholar] [CrossRef] [PubMed]
- Kousta, M.; Mataragas, M.; Skandamis, P.; Drosinos, E.H. Prevalence and sources of cheese contamination with pathogens at farm and processing levels. Food Control 2010, 21, 805–815. [Google Scholar] [CrossRef]
- Settanni, L.; Moschetti, G. Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiol. 2010, 27, 691–697. [Google Scholar] [CrossRef]
- La Pergola, A.; Restuccia, C.; Napoli, E.; Bella, S.; Brighina, S.; Russo, A.; Suma, P. Commercial and wild Sicilian Origanum vulgare essential oils: Chemical composition, antimicrobial activity and repellent effects. J. Essent. Oil Res. 2017, 29, 451–460. [Google Scholar] [CrossRef]
- Karapinar, M.; Aktuǧ, Ş.E. Inhibition of foodborne pathogens by thymol, eugenol, menthol and anethole. Int. J. Food Microbiol. 1987, 4, 161–166. [Google Scholar] [CrossRef]
- Aravena-Román, M.; Inglis, T.J.J.; Henderson, B.; Riley, T.V.; Chang, B.J. Antimicrobial susceptibilities of Aeromonas strains isolated from clinical and environmental sources to 26 antimicrobial agents. Antimicrob. Agents Chemother. 2012, 56, 1110–1112. [Google Scholar] [CrossRef] [Green Version]
- Guarcello, R.; Carpino, S.; Gaglio, R.; Pino, A.; Rapisarda, T.; Caggia, C.; Marino, G.; Randazzo, C.L.; Settanni, L.; Todaro, M. A large factory-scale application of selected autochthonous lactic acid bacteria for PDO Pecorino Siciliano cheese production. Food Microbiol. 2016, 59, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Gaglio, R.; Cruciata, M.; Scatassa, M.L.; Tolone, M.; Mancuso, I.; Cardamone, C.; Corona, O.; Todaro, M.; Settanni, L. Influence of the early bacterial biofilms developed on vats made with seven wood types on PDO Vastedda della valle del Belìce cheese characteristics. Int. J. Food Microbiol. 2019, 291, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Barbaccia, P.; Busetta, G.; Barbera, M.; Alfonzo, A.; Garofalo, G.; Francesca, N.; Moscarelli, A.; Moschetti, G.; Settanni, L.; Gaglio, R. Effect of grape pomace from red cultivar ‘Nero d’Avola’ on the microbiological, physicochemical, phenolic profile and sensory aspects of ovine Vastedda-like stretched cheese. J. Appl. Microbiol. 2022, 133, 130–144. [Google Scholar] [CrossRef]
- Gaglio, R.; Gentile, C.; Bonanno, A.; Vintaloro, L.; Perrone, A.; Mazza, F.; Barbaccia, P.; Settanni, L.; Di Grigoli, A. Effect of saffron addition on the microbiological, physicochemical, antioxidant and sensory characteristics of yoghurt. Int. J. Dairy Technol. 2019, 72, 208–217. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union 2005, 338, 1–26. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32005R2073 (accessed on 10 April 2023).
- Settanni, L.; Di Grigoli, A.; Tornambé, G.; Bellina, V.; Francesca, N.; Moschetti, G.; Bonanno, A. Persistence of wild Streptococcus thermophilus strains on wooden vat and during the manufacture of a traditional Caciocavallo type cheese. Int. J. Food Microbiol. 2012, 155, 73–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcial, G.E.; Gerez, C.L.; de Kairuz, M.N.; Araoz, V.C.; Schuff, C.; de Valdez, G.F. Influence of oregano essential oil on traditional Argentinean cheese elaboration: Effect on lactic starter cultures. Rev. Argent. Microbiol. 2016, 48, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Fusco, V.; Quero, G.M.; Poltronieri, P.; Morea, M.; Baruzzi, F. Autochthonous and probiotic lactic acid bacteria employed for production of “advanced traditional cheeses”. Foods 2019, 8, 412. [Google Scholar] [CrossRef] [Green Version]
- Grujović, M.Ž.; Mladenović, K.G.; Semedo-Lemsaddek, T.; Laranjo, M.; Stefanović, O.D.; Kocić-Tanackov, S.D. Advantages and disadvantages of non-starter lactic acid bacteria from traditional fermented foods: Potential use as starters or probiotics. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1537–1567. [Google Scholar] [CrossRef]
- Quigley, L.; O’Sullivan, O.; Stanton, C.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; Cotter, P.D. The complex microbiota of raw milk. FEMS Microbiol. Rev. 2013, 37, 664–698. [Google Scholar] [CrossRef] [Green Version]
- Delgado, S.; Rachid, C.T.C.C.; Fernández, E.; Rychlik, T.; Alegría, Á.; Peixoto, R.S.; Mayo, B. Diversity of thermophilic bacteria in raw, pasteurized and selectively-cultured milk, as assessed by culturing, PCR-DGGE and pyrosequencing. Food Microbiol. 2013, 36, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Busetta, G.; Ponte, M.; Barbera, M.; Alfonzo, A.; Ioppolo, A.; Maniaci, G.; Guarcello, R.; Francesca, N.; Palazzolo, E.; Bonanno, A.; et al. Influence of Citrus Essential Oils on the Microbiological, Physicochemical and Antioxidant Properties of Primosale Cheese. Antioxidants 2022, 11, 2004. [Google Scholar] [CrossRef] [PubMed]
- Bonanno, A.; Di Grigoli, A.; Mazza, F.; De Pasquale, C.; Giosuè, C.; Vitale, F.; Alabiso, M. Effects of ewes grazing sulla or ryegrass pasture for different daily durations on forage intake, milk production and fatty acid composition of cheese. Animal 2016, 10, 2074–2082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todaro, M.; Alabiso, M.; Scatassa, M.L.; Di Grigoli, A.; Mazza, F.; Maniaci, G.; Bonanno, A. Effect of the inclusion of fresh lemon pulp in the diet of lactating ewes on the properties of milk and cheese. Anim. Feed Sci. Technol. 2017, 225, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Boroski, M.; Giroux, H.J.; Sabik, H.; Petit, H.V.; Visentainer, J.V.; Matumoto-Pintro, P.T.; Britten, M. Use of oregano extract and oregano essential oil as antioxidants in functional dairy beverage formulations. LWT-Food Sci. Technol. 2012, 47, 167–174. [Google Scholar] [CrossRef]
- McSweeney, P.L.; Sousa, M.J. Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review. Le Lait 2000, 80, 293–324. [Google Scholar] [CrossRef]
- Thierry, A.; Collins, Y.F.; Mukdsi, M.C.A.; McSweeney, P.L.H.; Wilkinson, M.G.; Spinnler, H.E. Lipolysis and metabolism of fatty acids in cheese. In Cheese: Chemistry, Physics and Microbiology; McSweeney, P.L.H., Fox, P.F., Cotter, P.D., Everett, D.W., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 423–444. [Google Scholar]
- Rehman, S.-U.; Banks, J.M.; Brechany, E.Y.; Muir, D.D.; McSweeney, P.L.H.; Fox, P.F. Influence of ripening temperature on the volatiles profile and flavour of Cheddar cheese made from raw or pasteurised milk. Int. Dairy J. 2000, 10, 55–65. [Google Scholar] [CrossRef]
- Kirmaci, H.A.; Hayaloğlu, A.A.; Özer, H.B.; Atasoy, A.F.; Levent, O. Effects of wild-type starter culture (artisanal strains) on volatile profile of Urfa cheese made from ewe milk. Int. J. Food Prop. 2015, 18, 1915–1929. [Google Scholar] [CrossRef]
- Świąder, K.; Marczewska, M. Trends of using sensory evaluation in new product development in the food industry in countries that belong to the EIT regional innovation scheme. Foods 2021, 10, 446. [Google Scholar] [CrossRef] [PubMed]
- Qasem, A.A.A.; Alamri, M.S.; Mohamed, A.A.; Hussain, S.; Mahmood, K.; Ibraheem, M.A. Soluble fiber-fortified sponge cakes: Formulation, quality and sensory evaluation. J. Food Meas. Charact. 2017, 11, 1516–1522. [Google Scholar] [CrossRef]
- Mahato, N.; Sharma, K.; Koteswararao, R.; Sinha, M.; Baral, E.; Cho, M.H. Citrus essential oils: Extraction, authentication and application in food preservation. Crit. Rev. Food Sci. Nutr. 2019, 59, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Cardamone, C.; Cirlincione, F.; Gaglio, R.; Puccio, V.; Daidone, F.; Sciortino, S.; Mancuso, I.; Scatassa, M.L. Behavior of four main dairy pathogenic bacteria during manufacturing and ripening of Pecorino Siciliano cheese. J. Food Qual. Hazards Control 2020, 7, 27–35. [Google Scholar] [CrossRef]
- de Campos, A.C.L.P.; Nandi, R.D.S.; Scandorieiro, S.; Gonçalves, M.C.; Reis, G.F.; Dibo, M.; Medeiros, L.P.; Panagio, L.A.; Fagan, E.P.; Kobayashi, R.K.T.; et al. Antimicrobial effect of Origanum vulgare (L.) essential oil as an alternative for conventional additives in the Minas cheese manufacture. LWT-Food Sci. Technol. 2022, 157, 11306. [Google Scholar] [CrossRef]
Species | Strains | Inhibition (mm) | MIC (µL/mL) |
---|---|---|---|
Pro-technological | |||
Lc. lactis | NT1 | - | n.d. |
Lc. lactis | NT5 | - | n.d. |
Pathogenic | |||
E. coli | ATCC25922 | 42.5 ± 0.1 | 1.25 |
L. monocytogenes | ATCC19114 | 35.8 ± 0.2 | 2.50 |
S. Enteritidis | ATCC13076 | 42.0 ± 0.2 | 0.625 |
St. aureus | ATCC33862 | 38.2 ± 0.1 | 1.25 |
Microbial Counts | Samples | SEM | p-Value | |
---|---|---|---|---|
RM | PM | |||
TMM | 6.02 a | 3.24 b | 0.45 | <0.0001 |
Coccus LAB | 5.71 a | 2.91 b | 0.45 | <0.0001 |
Rod LAB | 4.27 a | 1.49 b | 0.44 | <0.0001 |
Enterococci | 2.87 a | <1 b | 0.46 | <0.0001 |
Entericacteriaceae | 3.03 a | <1 b | 0.48 | <0.0001 |
E. coli | 2.79 a | <1 b | 0.44 | <0.0001 |
CPS | 2.42 a | <1 b | 0.38 | <0.0001 |
L. monocytogenes | <1 | <1 | n.e. | n.e. |
Salmonella spp. | <1 | <1 | n.e. | n.e. |
Samples | SEM | p-Value | |||
---|---|---|---|---|---|
CCP | ECPO100 | ECPO200 | |||
Cheese weight at 48 h, kg | 2.93 | 3.52 | 3.61 | 2.244 | 0.2222 |
Cheese yield at 48 h, g/100 g | 14.63 | 15.97 | 16.45 | 0.350 | 0.1206 |
Cheese yield at 48 h, g/100 g dry matter | 8.65 | 9.02 | 9.34 | 0.208 | 0.1145 |
Dry matter (DM), % | 59.16 a | 56.52 b | 56.79 b | 0.608 | <0.0001 |
Ash, % DM | 6.54 | 6.81 | 6.53 | 0.414 | 0.8531 |
Protein, % DM | 43.34 | 42.39 | 43.24 | 1.413 | 0.5178 |
Fat, % DM | 45.92 | 45.65 | 42.20 | 4.846 | 0.8041 |
pH | 5.52 | 5.23 | 5.21 | 0.260 | 0.6878 |
Water activity, aw | 0.971 b | 0.979 ab | 0.986 a | 0.015 | 0.0267 |
Hardness, N/mm2 | 0.451 a | 0.300 b | 0.347 ab | 0.041 | 0.0137 |
Lightness L* | 83.27 b | 86.91 a | 86.12 a | 1.0988 | 0.0005 |
Redness a* | −3.551 b | −3.161 a | −3.078 a | 0.5096 | 0.0014 |
Yellowness b* | 12.96 a | 12.48 ab | 11.94 b | 1.4333 | 0.0111 |
TEAC, mmol/kg DM | 55.51 b | 68.26 b | 98.25 a | 4.763 | 0.0005 |
POV, mEq O2/kg fat | 2.39 b | 3.14 a | 2.81 ab | 0.148 | 0.0089 |
TBARs, mg MDA/kg DM | 0.066 c | 0.109 b | 0.172 a | 0.006 | <0.0001 |
Chemical Compounds | Samples | SEM | p-Value | ||
---|---|---|---|---|---|
CCP | ECPO100 | ECPO200 | |||
Acids | |||||
Acetic acid | 6.93 a | 1.27 b | 1.09 b | 0.97 | <0.0001 |
Butanoic acid | 8.05 a | 2.65 b | 2.35 b | 0.96 | <0.0001 |
Exanoinc acid | 13.41 a | 2.94 b | 3.19 b | 1.76 | <0.0001 |
2-hydroxy-4-methyl-Pentanoic acid | 6.51 a | 1.98 b | 1.07 b | 0.86 | <0.0001 |
Octanoic Acid | 4.47 a | 1.54 b | 0.97 b | 0.57 | 0.001 |
Nonanoic acid | 1.83 a | 0.30 b | 0.09 b | 0.29 | <0.0001 |
Ketones | |||||
2-pentanone | 1.53 a | 0.10 b | 0.07 b | 0.25 | <0.0001 |
3-hydroxy-2-butanone, | 4.97 a | 0.80 b | 1.19 b | 0.70 | 0.001 |
2-heptanone | 0.58 a | 0.010 b | 0.03 b | 0.09 | <0.0001 |
2,3 octanedione | 1.97 a | 0.66 b | 0.17 b | 0.28 | 0.000 |
3,5 octadien-2-one | 0.39 a | n.d. b | n.d. b | 0.07 | <0.0001 |
Alcohol | |||||
3-Methyl-1-butanol | 13.65 a | 4.76 b | 3.36 b | 1.70 | 0.001 |
1 pentanol | 0.81 a | 0.19 b | 0.12 b | 0.11 | <0.0001 |
2-butanol | 2.64 a | 0.39 b | 0.24 b | 0.40 | <0.0001 |
Octan-1-ol | 2.79 a | 0.30 b | 0.50 b | 0.40 | <0.0001 |
Hydrocarbons | |||||
Hexane-2-methyl | 1.46 a | 0.10 b | n.d. c | 0.24 | <0.0001 |
Heptane 2,4 dimenthyl | 2.45 a | 0.90 b | 0.24 b | 0.34 | <0.0001 |
Aldeyde | |||||
4 heptenal | 0.18 | 0.020 | n.d. | 0.04 | 0.169 |
Hexanal | 13.03 a | 5.09 b | 4.34 b | 1.45 | <0.0001 |
Heptanal | 10.53 a | 3.98 b | 2.63 b | 1.29 | 0.001 |
Nonanal | 1.82 a | 0.33 b | 0.09 b | 0.28 | <0.0001 |
Monoterpenes | |||||
α-Thujene | n.d. b | 0.20 a | n.d. b | 0.03 | <0.0001 |
α-Pinene | n.d. b | 0.06 a | 0.04 a | 0.01 | 0.000 |
Sabinene | n.d. c | 0.05 a | 0.01 b | 0.01 | <0.0001 |
β-Pinene | n.d. c | 0.10 a | 0.01 b | 0.02 | <0.0001 |
Myrcene | n.d. c | 0.90 a | 0.62 b | 0.13 | <0.0001 |
α-Phellandrene | n.d. b | 0.11 a | 0.08 a | 0.02 | <0.0001 |
α-Terpinene | n.d. b | 0.90 a | 0.81 a | 0.15 | <0.0001 |
p-Cymene | n.d. b | 1.02 a | 0.89 a | 0.16 | <0.0001 |
Limonene | n.d. b | 0.10 a | 0.11 a | 0.02 | <0.0001 |
(Z)-β-Ocimene | n.d. b | n.d. b | 0.21 a | 0.04 | <0.0001 |
γ-Terpinene | n.d. b | 1.07 a | 0.99 a | 0.18 | <0.0001 |
Monoterpenoids | |||||
Linalool | n.d. b | 0.10 a | 0.10 a | 0.02 | 0.002 |
Thymol | n.d. c | 0.30 a | 0.20 b | 0.04 | <0.0001 |
Carvacrol | n.d. c | 66.08 b | 73.09 a | 11.66 | <0.0001 |
Camphor | n.d. b | n.d. b | 0.10 a | 0.02 | 0.001 |
Terpinen-4-ol | n.d. b | 0.10 a | n.d. b | 0.02 | <0.0001 |
β-Bisabolene | n.d. b | n.d. b | 0.20 a | 0.03 | <0.0001 |
β-Caryophyllene | n.d. c | 0.60 b | 0.80 a | 0.12 | <0.0001 |
Samples | Microbial Counts | |||||
---|---|---|---|---|---|---|
TMM | Lc. lactis | E. coli | L. monocytogenes | S. Enteritidis | St. aureus | |
Pasteurized milk | 2.71 | 2.64 | <1 | <1 | <1 | <1 |
Inoculated milk | ||||||
CCP | 7.09 | 7.01 | 3.99 | 3.91 | 4.02 | 3.88 |
ECPO100 | 7.13 | 7.06 | 3.86 | 3.82 | 3.97 | 3.80 |
ECPO200 | 7.08 | 7.09 | 3.90 | 3.90 | 4.05 | 3.99 |
SEM | 0.06 | 0.05 | 0.06 | 0.05 | 0.05 | 0.06 |
p value | 0.972 | 0.914 | 0.829 | 0.865 | 0.928 | 0.673 |
Curd | ||||||
CCP | 7.96 | 7.95 | 4.90 | 4.82 | 4.79 | 5.01 |
ECPO100 | 8.03 | 7.87 | 4.91 | 4.73 | 4.82 | 4.94 |
ECPO200 | 8.01 | 7.92 | 4.84 | 4.66 | 4.76 | 5.05 |
SEM | 0.05 | 0.04 | 0.05 | 0.06 | 0.04 | 0.04 |
p value | 0.926 | 0.870 | 0.929 | 0.782 | 0.942 | 0.817 |
Cheese | ||||||
CCP | 8.85 | 8.67 | 5.71 a | 5.31 a | 5.09 a | 5.66 a |
ECPO100 | 8.96 | 8.84 | 2.99 b | 2.55 b | 3.01 b | 3.11 b |
ECPO200 | 8.90 | 8.70 | 2.74 b | 2.23 b | 2.93 b | 3.01 b |
SEM | 0.05 | 0.06 | 0.34 | 0.35 | 0.25 | 0.31 |
p value | 0.857 | 0.727 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garofalo, G.; Ponte, M.; Greco, C.; Barbera, M.; Mammano, M.M.; Fascella, G.; Greco, G.; Salsi, G.; Orlando, S.; Alfonzo, A.; et al. Improvement of Fresh Ovine “Tuma” Cheese Quality Characteristics by Application of Oregano Essential Oils. Antioxidants 2023, 12, 1293. https://doi.org/10.3390/antiox12061293
Garofalo G, Ponte M, Greco C, Barbera M, Mammano MM, Fascella G, Greco G, Salsi G, Orlando S, Alfonzo A, et al. Improvement of Fresh Ovine “Tuma” Cheese Quality Characteristics by Application of Oregano Essential Oils. Antioxidants. 2023; 12(6):1293. https://doi.org/10.3390/antiox12061293
Chicago/Turabian StyleGarofalo, Giuliana, Marialetizia Ponte, Carlo Greco, Marcella Barbera, Michele Massimo Mammano, Giancarlo Fascella, Giuseppe Greco, Giulia Salsi, Santo Orlando, Antonio Alfonzo, and et al. 2023. "Improvement of Fresh Ovine “Tuma” Cheese Quality Characteristics by Application of Oregano Essential Oils" Antioxidants 12, no. 6: 1293. https://doi.org/10.3390/antiox12061293
APA StyleGarofalo, G., Ponte, M., Greco, C., Barbera, M., Mammano, M. M., Fascella, G., Greco, G., Salsi, G., Orlando, S., Alfonzo, A., Di Grigoli, A., Piazzese, D., Bonanno, A., Settanni, L., & Gaglio, R. (2023). Improvement of Fresh Ovine “Tuma” Cheese Quality Characteristics by Application of Oregano Essential Oils. Antioxidants, 12(6), 1293. https://doi.org/10.3390/antiox12061293