Antioxidant and Anti-Diabetic Properties of Olive (Olea europaea) Leaf Extracts: In Vitro and In Vivo Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Extraction of Phenolic Compounds
2.3. Total Phenolic and Flavonoids Content
2.4. Antioxidant Activity
2.4.1. DPPH Assay
2.4.2. Reducing Power
2.4.3. Nitric Oxide Scavenging Activity
2.5. HPLC Analysis of Phenolic Compounds
2.6. In Vitro α-Glucosidase Inhibitory Activity
2.7. Hemolytic Activity Assay
2.8. Animal Models and Experimental Design
- Group A: designated as a Negative Control (NC), rats received 1 mL of saline orally and were fed pellets.
- Group B: Positive Control (PC), diabetic rats with diabetes that had been induced with STZ received 1 mL of saline orally and were fed pellets.
- Group C: STZ (diabetic rats) received a metformin (200 mg) orally once a day.
- Group D: STZ (diabetic rats) received OLE (200 mg) orally once a day.
- Group E: STZ (diabetic rats) received a mix of OLE (100 mg) and metformin (100 mg) once a day.
2.9. Biochemical Analysis
2.10. Histopathology
2.11. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic and Flavonoids Content
3.2. Antioxidant Activity
3.2.1. DPPH Assay
3.2.2. Reducing Power
3.2.3. Nitric Oxide Scavenging Activity
3.3. Identification of Phenolic Compounds by HPLC
3.4. α-Glucose Oxidase Inhibitory Properties
3.5. Anti-Hemolytic Activity
3.6. Biochemical Investigation
3.6.1. Glucose and HbA1c Levels in Diabetic Rats
3.6.2. Lipid Profile of Diabetic Rats
3.6.3. The Liver Functions of Induced Diabetic Rats
3.6.4. Kidney Function in Diabetic Rats
3.7. Histopathologic Examination
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kabbash, E.M.; Ayoub, I.M.; Gad, H.A.; Abdel-Shakour, Z.T.; El-Ahmady, S.H. Quality assessment of leaf extracts of 12 olive cultivars and impact of seasonal variation based on UV spectroscopy and phytochemcial content using multivariate analyses. Phytochem. Anal. 2021, 32, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, M.T.; Tawfik, W.A.; Mahdy, E.S.M.; Abdelgawad, M.E.; Abdel-Azim, N.S.; El-Missiry, M.M. Chemical and biological evaluation of olive leaves as a waste by-product of olive oil industry. Egypt. Pharmaceut. J. 2019, 18, 172–177. [Google Scholar] [CrossRef]
- Abbattista, R.; Ventura, G.; Calvano, C.D.; Cataldi, T.R.I.; Losito, I. Bioactive Compounds in Waste By-Products from Olive Oil Production: Applications and Structural Characterization by Mass Spectrometry Techniques. Foods 2021, 10, 1236. [Google Scholar] [CrossRef] [PubMed]
- Benjeddou, H.; Ben Ahmed, C.; Ben Rouina, B. Influence of antioxidative enzymes, phytohormones and pigments in alternate bearing of three olive cultivars. Sci. Hortic. 2019, 253, 17–23. [Google Scholar] [CrossRef]
- Bouaziz, M.; Sayadi, S. Isolation and evaluation of antioxidants from leaves of a Tunisian cultivar olive tree. Eur. J. Lipid Sci. Technol. 2005, 107, 497–504. [Google Scholar] [CrossRef]
- Japón-Luján, R.; Luque de Castro, M.D. Static–dynamic superheated liquid extraction of hydroxytyrosol and other biophenols from alperujo (a semisolid residue of the olive oil industry). J. Agric. Food Chem. 2007, 55, 3629–3634. [Google Scholar] [CrossRef] [PubMed]
- Cavaca, L.A.; López-Coca, I.M.; Silvero, G.; Afonso, C.A. The olive-tree leaves as a source of high-added value molecules: Oleuropein. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2020; Volume 64, pp. 131–180. [Google Scholar] [CrossRef]
- Edziri, H.; Mastouri, M.; Mahjoub, M.; Patrich, G.; Matieu, M.; Ammar, S.; Ali, S.; Laurent, G.; Zine, M.; Aouni, M. Antibacterial, antiviral and antioxidant activities of aerial part extracts of Peganum harmala L. grown in Tunisia. Toxicol. Environ. Chem. 2010, 92, 1283–1292. [Google Scholar] [CrossRef]
- Hashmi, M.A.; Khan, A.; Hanif, M.; Farooq, U.; Perveen, S. Traditional Uses, Phytochemistry, and Pharmacology of Olea europaea (Olive). Evid. Based Complement. Altern. Med. 2015, 2015, 41591. [Google Scholar] [CrossRef] [Green Version]
- Alam, S.; Sarker, M.R.; Sultana, T.N.; Chowdhury, N.R.; Rashid, M.A.; Chaity, N.I.; Zhao, C.; Xiao, J.; Hafez, E.E.; Alam Khan, S.; et al. Antidiabetic Phytochemicals from Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front. Endocrinol. 2022, 13, 800714. [Google Scholar] [CrossRef]
- Candar, A.; Demirci, H.; Baran, A.K.; Akpınar, Y. The association between quality of life and complementary and alternative medicine use in patients with diabetes mellitus. Complement. Ther. Clin. Pract. 2018, 31, 1–6. [Google Scholar] [CrossRef]
- Chatzikonstantinou, A.V.; Giannakopoulou, A.; Spyrou, S.; Simos, Y.V.; Kontogianni, V.G.; Peschos, D.; Katapodis, P.; Polydera, A.C.; Stamatis, H. Production of hydroxytyrosol rich extract from Olea europaea leaf with enhanced biological activity using immobilized enzyme reactors. Environ. Sci. Pollut. Res. 2021, 29, 29624–29637. [Google Scholar] [CrossRef] [PubMed]
- Samala, S.; Veeresham, C. Pharmacokinetic and Pharmacodynamic Interaction of Boswellic Acids and Andrographolide with Glyburide in Diabetic Rats: Including Its PK/PD Modeling. Phytother. Res. 2016, 30, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Tenore, G.C.; Caruso, D.; D’avino, M.; Buonomo, G.; Caruso, G.; Ciampaglia, R.; Schiano, E.; Maisto, M.; Annunziata, G.; Novellino, E. A Pilot Screening of Agro-Food Waste Products as Sources of Nutraceutical Formulations to Improve Simulated Postprandial Glycaemia and Insulinaemia in Healthy Subjects. Nutrients 2020, 12, 1292. [Google Scholar] [CrossRef] [PubMed]
- Wainstein, J.; Ganz, T.; Boaz, M.; Bar Dayan, Y.; Dolev, E.; Kerem, Z.; Madar, Z. Olive Leaf Extract as a Hypoglycemic Agent in Both Human Diabetic Subjects and in Rats. J. Med. Food 2012, 15, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Stamatopoulos, K.; Chatzilazarou, A.; Katsoyannos, E. Optimization of Multistage Extraction of Olive Leaves for Recovery of Phenolic Compounds at Moderated Temperatures and Short Extraction Times. Foods 2013, 3, 66–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vongsak, B.; Sithisarn, P.; Mangmool, S.; Thongpraditchote, S.; Wongkrajang, Y.; Gritsanapan, W. Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Ind. Crops Prod. 2012, 44, 566–571. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 1992, 40, 945–948. [Google Scholar] [CrossRef]
- Ferreira, I.C.; Baptista, P.; Vilas-Boas, M.; Barros, L. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem. 2007, 100, 1511–1516. [Google Scholar] [CrossRef]
- Chakraborthy, G.S. Free radical scavenging activity of Costus speciosus leaves. Indian J. Pharm. Educ. Res. 2009, 43, 96–98. [Google Scholar]
- Determination of Biophenols in Olive Oils by HPLC; COI (T.20/Doc.n.9)); IOOC (International Olive Oil Council): Madrid, Spain, 2009.
- Wresdiyati, T.; Sa’Diah, S.; Winarto, A.; Febriyani, V. Alpha-Glucosidase Inhibition and Hypoglycemic Activities of Sweitenia mahagoni Seed Extract. HAYATI J. Biosci. 2015, 22, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Afsar, T.; Razak, S.; Khan, M.R.; Mawash, S.; Almajwal, A.; Shabir, M.; Haq, I.U. Evaluation of antioxidant, anti-hemolytic and anticancer activity of various solvent extracts of Acacia hydaspica R. Parker aerial parts. BMC Complement. Altern. Med. 2016, 16, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodds, C. General Anaesthesia: Practical recommendations and recent advances. Drugs 1999, 58, 453–467. [Google Scholar] [CrossRef] [PubMed]
- Rowbottom, L. Clinical Biochemistry Handbook; Wirral University Teaching Hospital: Wirral, UK, 2022; pp. 1–84. [Google Scholar]
- Bancroft, J.D.; Stevens, A. Theory and Practice of Histological Techniques, 4th ed.; Histopathology; Churchill Livingston: London, UK, 1996. [Google Scholar] [CrossRef]
- Kırbaşlar, Ş.I.; Şahin, S. Recovery of bioactive ingredients from biowaste of olive tree (Olea europaea) using microwave-assisted extraction: A comparative study. Biomass Convers. Biorefinery 2021, 13, 2849–2861. [Google Scholar] [CrossRef]
- Kabbash, E.M.; Abdel-Shakour, Z.T.; El-Ahmady, S.H.; Wink, M.; Ayoub, I.M. Comparative metabolic profiling of olive leaf extracts from twelve different cultivars collected in both fruiting and flowering seasons. Sci. Rep. 2023, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Batçıoğlu, K.; Küçükbay, F.Z.; Alagöz, M.A.; Günal, S.; Yilmaztekin, Y. Antioxidant and antithrombotic properties of fruit, leaf, and seed extracts of the Halhalı olive (Olea europaea L.) native to the Hatay region in Turkey. Food Raw Mater. 2023, 11, 84–93. [Google Scholar] [CrossRef]
- Rosa-Martínez, E.; Bovy, A.; Plazas, M.; Tikunov, Y.; Prohens, J.; Pereira-Dias, L. Genetics and breeding of phenolic content in tomato, eggplant and pepper fruits. Front. Plant Sci. 2023, 14, 1135237. [Google Scholar] [CrossRef]
- Cosme, P.; Rodríguez, A.B.; Espino, J.; Garrido, M. Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications. Antioxidants 2020, 9, 1263. [Google Scholar] [CrossRef]
- El-Sohaimy, S.A.; Mansour, H.M.M.; Zeitoun, A.A.; Zeitoun, M.A.A. Antioxidant, antimicrobial and anti-inflammatory potential of Olive leaves. Zagazig J. Agric. Res. 2021, 48, 161–173. Available online: http://zjar.journals.ekb.eg (accessed on 20 April 2023). [CrossRef]
- Paciulli, M.; Grimaldi, M.; Rinaldi, M.; Cavazza, A.; Flamminii, F.; Di Mattia, C.; Gennari, M.; Chiavaro, E. Microencapsulated olive leaf extract enhances physicochemical stability of biscuits. Futur. Foods 2023, 7, 100209. [Google Scholar] [CrossRef]
- Trigo, J.P.; Alexandre, E.M.C.; Saraiva, J.A.; Pintado, M.E. High value-added compounds from fruit and vegetable by-products—Characterization, bioactivities, and application in the development of novel food products. Crit. Rev. Food Sci. Nutr. 2019, 60, 1388–1416. [Google Scholar] [CrossRef]
- Márquez, K.; Márquez, N.; Ávila, F.; Cruz, N.; Burgos-Edwards, A.; Pardo, X.; Carrasco, B. Oleuropein-Enriched Extract from Olive Mill Leaves by Homogenizer-Assisted Extraction and Its Antioxidant and Antiglycating Activities. Front. Nutr. 2022, 9, 895070. [Google Scholar] [CrossRef] [PubMed]
- Qabaha, K.; Al-Rimawi, F.; Qasem, A.; Naser, S.A. Oleuropein Is Responsible for the Major Anti-Inflammatory Effects of Olive Leaf Extract. J. Med. Food 2018, 21, 302–305. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yue, P.; Lu, T.; Wang, Y.; Wei, Y.; Wei, X. Role of lysosomes in physiological activities, diseases, and therapy. J. Hematol. Oncol. 2021, 14, 79. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.M.; Ebrahimzadeh, M.A.; Nabavi, S.F.; Hamidinia, A.; Bekhradnia, A.R. Determination of antioxidant activity, phenol, and flavonoids content of Parrotia persica Mey. Pharmacologyonline 2008, 2, 560–567. Available online: https//pharmacologyonline.silae.it/files/archives/2008/vol2/53_Ebrahimzadeh.pdf (accessed on 20 April 2023).
- Martínez-Navarro, M.E.; Kaparakou, E.H.; Kanakis, C.D.; Cebrián-Tarancón, C.; Alonso, G.L.; Salinas, M.R.; Tarantilis, P.A. Quantitative Determination of the Main Phenolic Compounds, Antioxidant Activity, and Toxicity of Aqueous Extracts of Olive Leaves of Greek and Spanish Genotypes. Horticulturae 2023, 9, 55. [Google Scholar] [CrossRef]
- Visioli, F.; Poli, A.; Gall, C. Antioxidant and other biological activities of phenols from olives and olive oil. Med. Res. Rev. 2001, 22, 65–75. [Google Scholar] [CrossRef]
- Orak, H.H.; Karamać, M.; Amarowicz, R.; Orak, A.; Penkacik, K. Genotype-Related Differences in the Phenolic Compound Profile and Antioxidant Activity of Extracts from Olive (Olea europaea L.) Leaves. Molecules 2019, 24, 1130. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Xin, X.; Zhang, J.; Zhu, S.; Niu, E.; Zhou, Z.; Liu, D. Comparative Evaluation of the Phytochemical Profiles and Antioxidant Potentials of Olive Leaves from 32 Cultivars Grown in China. Molecules 2022, 27, 1292. [Google Scholar] [CrossRef]
- Wongon, M.; Limpeanchob, N. Inhibitory effect of Artocarpus lakoocha Roxb and oxyresveratrol on α-glucosidase and sugar digestion in Caco-2 cells. Heliyon 2020, 6, e03458. [Google Scholar] [CrossRef]
- AlShaal, S.; Karabet, F.; Daghestani, M. Evaluation the antioxidant activity of syrian ficus and olive leaf extracts and their inhibitory effects on α-glucosidase in vitro. Moroc. J. Chem. 2020, 8, 235–243. [Google Scholar]
- Hadrich, F.; Bouallagui, Z.; Junkyu, H.; Isoda, H.; Sayadi, S. The α-Glucosidase and α-Amylase Enzyme Inhibitory of Hydroxytyrosol and Oleuropein. J. Oleo Sci. 2015, 64, 835–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasouli, H.; Hosseini-Ghazvini, S.M.; Adibi, H.; Khodarahmi, R. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: A virtual screening perspective for the treatment of obesity and diabetes. Food Funct. 2017, 8, 1942–1954. [Google Scholar] [CrossRef] [PubMed]
- Bothon, F.T.; Debiton, E.; Avlessi, F.; Forestier, C.; Teulade, J.-C.; Sohounhloue, D.K. In vitro biological effects of two anti-diabetic medicinal plants used in Benin as folk medicine. BMC Complement. Altern. Med. 2013, 13, 51. [Google Scholar] [CrossRef]
- Hammoudi, D.K.; Tlili, M.L.; Khenfer, S.; Medjouel, M.; Mahammed, M.H. Biological activities of phenolic extracts of a medicinal plant, endemic to the Algerian Sahara: Salvia chudaei Batt. & Trab Roukia. Int. J. Biosci. 2017, 11, 108–115. [Google Scholar] [CrossRef]
- Fibach, E. The Role of Oxidative Stress in Hemolytic Anemia. Curr. Mol. Med. 2008, 8, 609–619. [Google Scholar] [CrossRef]
- Lins, P.G.; Pugine, S.M.P.; Scatolini, A.M.; de Melo, M.P. In vitro antioxidant activity of olive leaf extract (Olea europaea L.) and its protective effect on oxidative damage in human erythrocytes. Heliyon 2018, 4, e00805. [Google Scholar] [CrossRef] [Green Version]
- Kherbachi, S.; Kheniche, M.; Tacherfiout, M. Antihemolytic activity of hydroalcoholic leaves and bark extracts from Rhamnus alaternus against AAPH induced hemolysis on human erythrocytes. Int. J. Plant Based Pharm. 2022, 2, 210–219. [Google Scholar] [CrossRef]
- Jimenez-Garcia, S.N.; Garcia-Mier, L.; Vazquez-Cruz, M.A.; Ramirez-Gomez Guevara-Gonzalez, X.S.; Garcia-Trejo, R.G. Role of Natural Bio-active Compounds as Antidiabetic Agents. In Bioactive Natural Products for Pharmaceutical Applications. Advanced Structured Materials; Pal, D., Nayak, A.K., Eds.; Springer: Cham, Switzerland, 2021; Volume 140. [Google Scholar] [CrossRef]
- Al-Shudiefat, A.A.-R.; Alturk, H.; Al-Ameer, H.J.; Zihlif, M.; Alenazy, M. Olive Leaf Extract of Olea europaea Reduces Blood Glucose Level through Inhibition of AS160 in Diabetic Rats. Appl. Sci. 2023, 13, 5939. [Google Scholar] [CrossRef]
- Somova, L.; Shode, F.; Ramnanan, P.; Nadar, A. Antihypertensive, antiatherosclerotic and antioxidant activity of triterpenoids isolated from Olea europaea, subspecies africana leaves. J. Ethnopharmacol. 2003, 84, 299–305. [Google Scholar] [CrossRef]
- Fki, I.; Sahnoun, Z.; Sayadi, S. Hypocholesterolemic Effects of Phenolic Extracts and Purified Hydroxytyrosol Recovered from Olive Mill Wastewater in Rats Fed a Cholesterol-Rich Diet. J. Agric. Food Chem. 2007, 55, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Stevens, Y.; Winkens, B.; Jonkers, D.; Masclee, A. The effect of olive leaf extract on cardiovascular health markers: A randomized placebo-controlled clinical trial. Eur. J. Nutr. 2021, 60, 2111–2120. [Google Scholar] [CrossRef] [PubMed]
- Eldesoky, A.H.; Abdel-Rahman, R.F.; Ahmed, O.K.; Soliman, G.A.; Saeedan, A.S.; Elzorba, H.Y.; Elansary, A.A.; Hattori, M. Antioxidant and hepatoprotective potential of Plantago major growing in Egypt and its major phenylethanoid glycoside, acteoside. J. Food Biochem. 2018, 42, e12567. [Google Scholar] [CrossRef]
- Dollah, M.; Parhizkar, S.; Izwan, M. Effect of Nigella sativa on the kidney function in rats. Adv. Pharm. Bull. 2013, 3, 97–102. [Google Scholar] [CrossRef] [Green Version]
Type | TPC (µg GAE/g) | TFC (µg CE/g) |
---|---|---|
Picual | 115.00 ± 4.00 a | 59.00 ± 1.00 a |
Tofahi | 75.34 ± 0.21 b | 49.38 ± 0.16 b |
Shemlali | 60.00 ± 0.50 b | 42.00 ±0.60 c |
OLE * | DPPH (IC50 µg/mL) ** | Reducing Power (EC50 µg/mL) *** | Nitric Oxide Scavenging Activity (IC50 μg/mL) |
---|---|---|---|
Picual | 48.14 ± 0.15 a | 54.00 ± 0.10 a | 19.03 ± 0.13 a |
Tofahi | 56.00 ± 0.10 b | 51.39 ± 0.20 a | 20.00 ± 0.30 a |
Shemlali | 56.00 ± 0.13 b | 55.17 ± 0.16 a | 20.32 ± 0.11 a |
Ascorbic acid | 11.16 ± 2.00 c | 16.00 ± 1.00 b | - |
Quercetin | - | - | 3.00 ± 0.01 |
Phenolic Compound | P | T | S |
---|---|---|---|
Gallic acid | 0.23 ± 0.06 a | 0.20 ± 0.09 a | 0.19 ± 0.02 a |
Catechol | 0.21 ± 0.08 a | 0.21 ± 0.05 a | 0.20 ± 0.02 a |
p-Hydroxy benzoic acid | 375.00 ± 11.00 b | 392.04 ± 5.00 b | 411.36 ± 11.42 a |
Vanillic acid | 58.05 ± 0.45 a | 55.40 ± 1.04 b | 59.33 ± 0.89 a |
Syringic acid | 0.10 ± 0.01 b | 0.11 ± 0.01 b | 0.23 ± 0.03 a |
Oleuropein | 3515.00 ± 8.00 c | 3617.00 ± 16.00 b | 3849.42 ± 8.00 a |
Vanillin | 57.43 ± 2.43 b | 53.32 ± 0.60 b | 65.21 ± 3.19 a |
p-Coumaric Acid | 25.46 ± 2.07 a | 18.00 ± 0.40 b | 26.00 ± 2.00 a |
Ferulic acid | 0.22 ± 0.03 a | 0.18 ± 0.02 a | 0.20 ± 0.13 a |
Rutin | 2325.00 ± 8.00 a | 2075.00 ± 52.00 b | 2325.12 ± 32.00 a |
Ellagic acid | 123.00 ± 2.00 a | 119.00 ± 2.00 a | 120.00 ± 3.00 a |
Benzoic acid | 860.00 ± 5.00 c | 932.33 ± 4.00 b | 1010.70 a ± 12.37 |
o-Coumaric acid | 37.15 ± 0.66 a | 38.16 ± 1.74 a | 38.35 ± 2.17 a |
Salicylic acid | 784.00 ± 7.00 c | 1375.00 ± 22.00 a | 1165.00 ± 11.00 b |
Cinnamic acid | 1.54 ± 0.27 a | 1.22 ± 0.04 a | 1.51 ± 0.61 a |
Concentration (μg/mL) | % Inhibition | ||
---|---|---|---|
P * | T * | S * | |
25 | 88.39 ± 0.28 a | 87.51 ± 0.37 b | 85.54 ± 0.44 c |
50 | 91.51 ± 0.35 a | 90.55 ± 0.28 b | 89.59 ± 0.39 c |
75 | 92.61 ± 0.36 a | 91.52 ± 0.32 b | 91.49 ± 0.36 b |
100 | 92.59 ± 0.21 a | 92.46 ± 0.26 a | 91.48 ± 0.32 b |
IC50 | 14.14 ± 0.41 b | 14.35 ± 0.22 ab | 14.61 ± 0.28 a |
Concentration (μg/mL) | HRBC Membrane Hemolysis (%) | ||
---|---|---|---|
P * | T * | S * | |
50 | 12.00 ± 0.15 a | 11.58 ± 0.10 a | 12.44 ± 0.13 a |
100 | 8.51 ± 0.22 b | 10.06 ± 0.19 a | 7.70 ± 0.16 b |
200 | 4.21 ± 0.14 b | 3.90 ± 0.15 b | 6.00 ± 0.19 a |
500 | 3.40 ± 0.17 b | 3.80 ± 0.11 a | 3.80 ± 0.13 a |
Group | Glucose (mg/dL) | HbA1C (%) |
---|---|---|
Negative control (NC) | 112.00 ± 3.05 b | 4.40 ± 0.10 b |
Positive control (PC) | 340.00 ± 6.82 a | 13.80 ± 0.20 a |
Metformin | 154.00 ± 4.10 b | 4.80 ± 0.10 b |
OLE | 174.33 ± 7.14 b | 4.80 ± 0.10 b |
Metformin + OLE | 121.67 ± 5.49 b | 4.70 ± 0.10 b |
Group | Cholesterol (mg/dL) | Normal | Triglycerides (mg/dL) | Normal | HDL (mg/dL) | Normal | LDL (mg/dL) | Normal |
---|---|---|---|---|---|---|---|---|
NC | 60.00 ± 4.50 ab | <200 mg/dL | 106.33 ± 1.53 c | <150 mg/dL | 54.00 ± 3.21 a | >40 mg/dL | 38.69 ± 0.07 b | <100 mg/dL |
PC | 174.00 ± 4.58 a | 152.00 ± 1.73 a | 40.00 ± 3.06 a | 120.15 ± 0.33 a | ||||
OLE * | 52.00 ± 1.73 b | 118.33 ± 2.89 b | 48.00 ± 5.51 a | 60.36 ± 0.33 b | ||||
Metformin | 72.33 ± 5.33 a | 109.00 ± 2.65 c | 48.33 ± 2.96 a | 56.33 ± 0.33 b | ||||
Metformin + OLE | 49.33 ± 1.45 b | 109.00 ± 3.60 c | 52.33 ± 4.91 a | 51.46 ± 0.33 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansour, H.M.M.; Zeitoun, A.A.; Abd-Rabou, H.S.; El Enshasy, H.A.; Dailin, D.J.; Zeitoun, M.A.A.; El-Sohaimy, S.A. Antioxidant and Anti-Diabetic Properties of Olive (Olea europaea) Leaf Extracts: In Vitro and In Vivo Evaluation. Antioxidants 2023, 12, 1275. https://doi.org/10.3390/antiox12061275
Mansour HMM, Zeitoun AA, Abd-Rabou HS, El Enshasy HA, Dailin DJ, Zeitoun MAA, El-Sohaimy SA. Antioxidant and Anti-Diabetic Properties of Olive (Olea europaea) Leaf Extracts: In Vitro and In Vivo Evaluation. Antioxidants. 2023; 12(6):1275. https://doi.org/10.3390/antiox12061275
Chicago/Turabian StyleMansour, Hanem M. M., Ashraf A. Zeitoun, Hagar S. Abd-Rabou, Hesham Ali El Enshasy, Daniel Joe Dailin, Mohamed A. A. Zeitoun, and Sobhy A. El-Sohaimy. 2023. "Antioxidant and Anti-Diabetic Properties of Olive (Olea europaea) Leaf Extracts: In Vitro and In Vivo Evaluation" Antioxidants 12, no. 6: 1275. https://doi.org/10.3390/antiox12061275
APA StyleMansour, H. M. M., Zeitoun, A. A., Abd-Rabou, H. S., El Enshasy, H. A., Dailin, D. J., Zeitoun, M. A. A., & El-Sohaimy, S. A. (2023). Antioxidant and Anti-Diabetic Properties of Olive (Olea europaea) Leaf Extracts: In Vitro and In Vivo Evaluation. Antioxidants, 12(6), 1275. https://doi.org/10.3390/antiox12061275