An Integrated Strategy for Investigating Antioxidants from Ribes himalense Royle ex Decne and Their Potential Target Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equipment
2.2. Chemicals and Reagents
2.3. Extraction and Pretreatment of Crude Sample
2.4. Chromatographic Analysis of Target Fraction
2.5. Online Identification and Directional Separation of Active Peaks by Hydrophilic-HPLC
2.6. Evaluation of Purity and Activity of Antioxidative Flavonoids
2.7. Molecular Docking Study
2.8. Statistical Analysis
3. Results and Discussion
3.1. Sample Pretreatment with MPLC
3.2. Analysis and Activity Peaks Identification of Fr3-1
3.3. Directed Separation of Antioxidants from Fr3-1
3.4. Purity, Structural Characterization, and Activity of the Isolated Antioxidants
3.5. Molecular Docking Study of Related Target Proteins and Antioxidants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, H.P.; Tang, J.F.; Ren, K.; Chen, T.J.; Zhu, P.P.; Sun, D.D.; Wang, W.Y. Phytochemical characterization, antioxidant potential, and health risk assessment of Radix Oryzae Glutinosae. J. Food Drug Anal. 2022, 30, 427–439. [Google Scholar] [CrossRef]
- Wang, X.; Fang, G.; Pang, Y. Chinese medicines in the treatment of prostate cancer: From formulas to extracts and compounds. Nutrients 2018, 10, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Lei, Y.Q.; Dang, J.; Wang, W.D.; Zhang, J.; Mei, L.J.; Liu, Z.G.; Tao, Y.D.; Shao, Y. Preparative isolation of 1,1-diphenyl-2-picrylhydrazy inhibitors from Ribes himalense using medium-pressure and two-dimensional reversed-phase/reversed-phase liquid chromatography guided by an online HPLC-1, 1-diphenyl-2-picrylhydrazyl assay. J. Sep. Sci. 2021, 44, 1345–1352. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.M.; Wu, Y.T.; He, D.J.; Zhu, X.Q.; Li, H.B.; Liu, H.F.; Liu, H.L. Anti-aging effects of Ribes meyeri anthocyanins on neural stem cells and aging mice. Aging 2020, 12, 17738–17753. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Wang, N.; Xu, W.H.; Zhu, H.K. Ribes himalense as potential source of natural bioactive compounds: Nutritional, phytochemical, and antioxidant properties. Food Sci. Nutr. 2021, 9, 2968–2984. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lei, Y.Q.; Li, G.; Yuan, C.; Lv, Y.; Yu, S.; Shao, Y.; Dang, J. Three new dihydroflavonols with free radical scavenging activity from Ribes himalense Royle ex Decne. Nat. Prod. Res. 2021, 36, 5490–5498. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.J.; Zhang, J.Q.; Yao, C.L.; Bauer, R.; Khan, I.A.; Wu, W.Y.; Guo, D.A. Deeper Chemical Perceptions for Better Traditional Chinese Medicine Standards. Engineering 2019, 5, 83–97. [Google Scholar] [CrossRef]
- Xiang, L.; Disase, D.; Liu, Y.; Fujii, R.; Yang, M.; Wu, E.; Matsuura, A.; Qi, J.H. Gentirigeoside B from Gentiana rigescens Franch Prolongs Yeast Lifespan via Inhibition of TORC1/Sch9/Rim15/Msn Signaling Pathway and Modification of Oxidative Stress and Autophagy. Antioxidants 2022, 11, 2373. [Google Scholar] [CrossRef]
- Liu, L.S.; Li, H.P.; Tan, G.S.; Ma, Z.J. Traditional Chinese herbal medicine in treating amenorrhea caused by antipsychotic drugs: Meta-analysis and systematic review. J. Ethnopharmacol. 2022, 289, 115044. [Google Scholar] [CrossRef]
- Xu, Y.; Bi, S.; Niu, X.Y.; Chen, Y.M.; Liu, Y.; Zhou, Q. Comparison of aroma active compounds in cold- and hot-pressed walnut oil by comprehensive two-dimensional gas chromatography-olfactory-mass spectrometry and headspace-gas chromatography-ion mobility spectrometry. Food Res. Int. 2022, 163, 112208. [Google Scholar] [CrossRef]
- Gong, Y.; Huang, X.Y.; Pei, D.; Duan, W.D.; Zhang, X.; Sun, X.; Di, D.L. The applicability of high-speed counter current chromatography to the separation of natural antioxidants. J. Chromatogr. A 2020, 1623, 461150. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zuo, Y.G.; Deng, Y.W. Separation and determination of flavonoids and other phenolic compounds in cranberry juice by high-performance liquid chromatography. J. Chromatogr. A 2001, 913, 387–395. [Google Scholar] [CrossRef]
- Ma, X.B.; Lin, H.L.; Yong, Y.H.; Ju, X.H.; Li, Y.Q.; Liu, X.X.; Yu, Z.C.; Wujin, C.M.; She, Y.X.; Zhang, J.Y.; et al. Molecularly imprinted polymer-specific solid-phase extraction for the determination of 4-hydroxy-2(3H) benzoxazolone isolated from Acanthus ilicifolius Linnaeus using high-performance liquid chromatography-tandem mass spectrometry. Front. Nutr. 2022, 9, 950044. [Google Scholar] [CrossRef] [PubMed]
- Dawa, Y.; Du, Y.R.; Wang, Q.; Chen, C.B.; Zou, D.L.; Qi, D.S.; Ma, J.B.; Dang, J. Targeted isolation of 1, 1-diphenyl-2-picrylhydrazyl inhibitors from Saxifraga atrata using medium-and high-pressure liquid chromatography combined with online high performance liquid chromatography-1,1-diphenyl-2-picrylhydrazyl detection. J. Chromatogr. A 2021, 1635, 461690. [Google Scholar] [CrossRef] [PubMed]
- Ji, D.J.; Wang, Q.; Wang, H.; Ma, Q.; Wang, M.; Lu, Y.C. Preparative separation of gallic acid from Fallopia aubertii using middle-pressure chromatogram isolated gel coupled with reversed-phase chromatography with hydrophilic groups. RSC Adv. 2021, 11, 27276–27282. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.C.; Lin, C.J. The regulation of drug-metabolizing enzymes and membrane transporters by inflammation: Evidences in inflammatory diseases and age-related disorders. J. Food Drug Anal. 2019, 27, 48–59. [Google Scholar] [CrossRef] [Green Version]
- DeMelo, L.G.P.; Nunes, S.O.V.; Anderson, G.; Vargas, H.O.; Barbosa, D.S.; Galecki, P.; Carvalho, A.F.; Maes, M. Shared metabolic and immune-inflammatory, oxidative and nitrosative stress pathways in the metabolic syndrome and mood disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 78, 34–50. [Google Scholar] [CrossRef]
- Aboelella, N.S.; Brandle, C.; Kim, T.; Ding, Z.C.; Zhou, G. Oxidative Stress in the Tumor Microenvironment and Its Relevance to Cancer Immunotherapy. Cancers 2021, 13, 986. [Google Scholar] [CrossRef]
- Yan, R.Y.; Cao, Y.Y.; Yang, B. HPLC-DPPH Screening Method for Evaluation of Antioxidant Compounds Extracted from Semen Oroxyli. Molecules 2014, 19, 4409–4417. [Google Scholar] [CrossRef] [Green Version]
- Braham, F.; Carvalho, D.O.; Almeida, C.M.R.; Zaidi, F.; Magalhães, J.M.C.S.; Guido, L.F.; Gonçalves, M.P. Online HPLC-DPPH screening method for evaluation of radical scavenging phenols extracted from Moringa oleifera leaves. S. Afr. J. Bot. 2020, 129, 146–154. [Google Scholar] [CrossRef]
- Pedan, V.; Fischer, N.; Rohn, S. An online NP-HPLC-DPPH method for the determination of the antioxidant activity of condensed polyphenols in cocoa. Food Res. Int. 2016, 89, 890–900. [Google Scholar] [CrossRef] [Green Version]
- Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci. 2019, 20, 4331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajammal, A.; Siddiqa, A.; Irfan, A.; Azam, M.; Hafeez, H.; Munawar, M.A.; Basra, M.A.R. Antioxidant, molecular docking and computational investigation of new flavonoid. J. Mol. Struct. 2022, 1254, 132189. [Google Scholar] [CrossRef]
- Singh, R.; Poke, A.V.; Ghosh, P.; Ganeshpurkar, A.; Swetha, R.; Singh, S.K.; Kumar, A. Pharmacophore-based virtual screening, molecular docking and molecular dynamics simulations study for the identification of LIM kinase-1 inhibitors. J. Biomol. Struct. Dyn. 2022, 21, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Crampon, K.; Giorkallos, A.; Deldossi, M.; Baud, S.; Steffenel, L.A. Machine-learning methods for ligand–protein molecular docking. Drug Discov. Today 2022, 27, 151–164. [Google Scholar] [CrossRef]
- Dang, J.; Chen, C.B.; Ma, J.B.; Dawa, Y.; Wang, Q.; Tao, Y.D.; Wang, Q.L.; Ji, T.F. Preparative isolation of highly polar free radical inhibitor from Floccularia luteovirens using hydrophilic interaction chromatography directed by on-line HPLC-DPPH assay. J. Chromatogr. B 2020, 1142, 122043. [Google Scholar] [CrossRef]
- Yan, G.L.; Zhou, Y.Z.; Hu, Y.H.; Zhao, L.Q.; Wang, W. Rapid screening and isolation of antioxidants from Eupatorium lindleyanum DC. using CCC target-guided by on-line HPLC-DPPH assay. Prep. Biochem. Biotechnol. 2020, 51, 530–535. [Google Scholar] [CrossRef]
- Dang, J.; Lv, Y.; Li, C.Z.; Fang, Y.; Li, G.; Wang, Q.L. Integrated chromatographic approach for the discovery of gingerol antioxidants from Dracocephalum heterophyllum and their potential targets. Anal. Methods 2022, 14, 4133–4145. [Google Scholar] [CrossRef]
- Ma, Y.M.; Yang, X.; Chen, J.L.; Zhao, J.Y.; Yang, L.; Yan, S.P.; Li, H.M.; Cheng, S.; Wei, Y.F.; Wang, S.; et al. Separation of five flavonoids with similar polarity from Caragana korshinskii Kom. by preparative high speed counter-current chromatography with recycling and heart cut mode. J. Sep. Sci. 2020, 43, 3748–3755. [Google Scholar] [CrossRef]
- Shi, Q.; Chen, K.; Li, L.P.; Chang, J.J.; Autry, C.; Kozuka, M.; Konoshima, T.; Estes, J.R.; Lin, C.M.; Hamel, E.; et al. Erratum: Antitumor agents, 154. Cytotoxic and antimitotic flavonols from Polanisia dodecandra. J. Nat. Prod. 1995, 58, 475–482. [Google Scholar] [CrossRef]
- Kuo, J.C.L.; Zhang, L.J.; Huang, H.T.; Liaw, C.C.; Lin, Z.H.; Liu, M.; Kuo, Y.H. Bioactive Flavonoid Glycosides and HPLC and UPLC Quantification of Commercial Astragali Complanati Semen. Molecules 2020, 25, 4762. [Google Scholar] [CrossRef] [PubMed]
- Pistelli, L.; Noccioli, C.; Bertoli, A.; Scapecchi, G.; Potenza, D. Chemical composition and volatile constituents of Anthyllis barba-jovis. Nat. Prod. Res. 2007, 21, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Mandić, M.R.; Oalđe, M.M.; Lunić, T.M.; Sabovljević, A.D.; Sabovljević, M.S.; Gašić, U.M.; Duletić-Laušević, S.N.; Božić, B.D.; Božić Nedeljković, B.D. Chemical characterization and in vitro immunomodulatory effects of different extracts of moss Hedwigia ciliata (Hedw.) P. Beauv. from the Vršačke Planine Mts., Serbia. PLoS ONE 2021, 16, e0246810. [Google Scholar] [CrossRef] [PubMed]
Protein | PDB ID | Number of Points | Center Grid Box | Spacing | GA Runs |
---|---|---|---|---|---|
AChE | 1OCE | X_dimension = 50 Y_dimension = 52 Z_dimension = 46 | X_center = 3.569 Y_center = 63.317 Z_center = 63.91 | 0.375 | 100 |
CYP2C9 | 1OG5 | X_dimension = 70 Y_dimension = 62 Z_dimension = 92 | X_center = −51.194 Y_center = 50.676 Z_center = 24.829 | 0.375 | 100 |
iNOS | 1M8D | X_dimension = 80 Y_dimension = 66 Z_dimension = 64 | X_center = 125.463 Y_center = 105.408 Z_center = 36.29 | 0.375 | 100 |
NADPH-oxidase | 2CDU | X_dimension = 98 Y_dimension = 60 Z_dimension = 58 | X_center = 15.786 Y_center = 8.025 Z_center = 50.432 | 0.375 | 100 |
Nrf2 | 4IQK | X_dimension = 30 Y_dimension = 44 Z_dimension = 48 | X_center = −44.568 Y_center = 1.471 Z_center = -16.41 | 0.375 | 100 |
SOD | 1CBJ | X_dimension = 90 Y_dimension = 94 Z_dimension = 82 | X_center = 8.655 Y_center = 24.873 Z_center = 42.192 | 0.375 | 100 |
TNF-α | 2AZ5 | X_dimension = 38 Y_dimension = 52 Z_dimension = 44 | X_center = −23.465 Y_center = 71.695 Z_center = 35.798 | 0.469 | 100 |
XOD | 3NRZ | X_dimension = 78 Y_dimension = 126 Z_dimension = 150 | X_center = 89.328 Y_center = 0.287 Z_center = 39.243 | 0.375 | 100 |
α-glucosidase | 3A4A | X_dimension = 72 Y_dimension = 50 Z_dimension = 78 | X_center = 21.891 Y_center = −8.54 Z_center = 18.132 | 0.375 | 100 |
Ligand | Fr3-1-1 | Fr3-1-2 | Fr3-1-3 | Fr3-1-4 | |
---|---|---|---|---|---|
Protein | Binding Free Energy kcal/mol | ||||
AChE | −9.22 | −8.94 | −8.21 | −8.16 | |
CYP2C9 | −6.03 | −6.88 | −6.15 | −6.77 | |
iNOS | −7.75 | −8.24 | −7.3 | −7.9 | |
NADPH-oxidase | −9.6 | −8.25 | −8.67 | −8.25 | |
Nrf2 | −5.21 | −5.36 | −4.76 | −4.85 | |
SOD | −5.91 | −8.08 | −6.18 | −6.08 | |
TNF-α | −5.81 | −5.15 | −5.55 | −5.94 | |
XOD | −8.36 | −6.28 | −8.14 | −8.56 | |
α-glucosidase | −7.69 | −7.76 | −7.19 | −7.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Lei, Y.; Liu, Y.; Guo, J.; Chen, X.; Tang, Y.; Dang, J.; Wu, M. An Integrated Strategy for Investigating Antioxidants from Ribes himalense Royle ex Decne and Their Potential Target Proteins. Antioxidants 2023, 12, 835. https://doi.org/10.3390/antiox12040835
Liu C, Lei Y, Liu Y, Guo J, Chen X, Tang Y, Dang J, Wu M. An Integrated Strategy for Investigating Antioxidants from Ribes himalense Royle ex Decne and Their Potential Target Proteins. Antioxidants. 2023; 12(4):835. https://doi.org/10.3390/antiox12040835
Chicago/Turabian StyleLiu, Chuang, Yuqing Lei, Youyi Liu, Jingrou Guo, Xingyi Chen, Yifei Tang, Jun Dang, and Minchen Wu. 2023. "An Integrated Strategy for Investigating Antioxidants from Ribes himalense Royle ex Decne and Their Potential Target Proteins" Antioxidants 12, no. 4: 835. https://doi.org/10.3390/antiox12040835