Physiological Response of Spotted Seabass (Lateolabrax maculatus) to Different Dietary Available Phosphorus Levels and Water Temperature: Changes in Growth, Lipid Metabolism, Antioxidant Status and Intestinal Microbiota
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diets and Feeding Experiment
2.2. Sample Collection
2.3. Biochemical Parameter Measurements
2.4. Proximate and Histological Analysis
2.5. Real-Time Quantitative PCR
2.6. Analysis of Intestinal Microbiota
2.7. Statistical Analysis
3. Results
3.1. Growth Performance and Feed Utilization
3.2. Morphological Parameters and Body Compositions
3.3. P absorption and Metabolism
3.4. Lipid Metabolism and Liver Health Indices
3.5. Serum Antioxidant Status
3.6. Intestinal Microbiota Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Michigami, T.; Kawai, M.; Yamazaki, M.; Ozono, K. Phosphate as a Signaling Molecule and Its Sensing Mechanism. Physiol. Rev. 2018, 98, 2317–2348. [Google Scholar] [CrossRef]
- Takeda, E.; Yamamoto, H.; Nashiki, K.; Sato, T.; Arai, H.; Taketani, Y. Inorganic Phosphate Homeostasis and the Role of Dietary Phosphorus. J. Cell. Mol. Med. 2004, 8, 191–200. [Google Scholar] [CrossRef]
- Lake, J.; Gravel, C.; Koko, G.K.D.; Robert, C.; Vandenberg, G.W. Combining Suppressive Subtractive Hybridization and Cdna Microarrays to Identify Dietary Phosphorus-Responsive Genes of the Rainbow Trout (Oncorhynchus mykiss) Kidney. Comp. Biochem. Physiol. D Genom. Proteom. 2010, 5, 24–35. [Google Scholar] [CrossRef]
- Choi, S.M.; Kim, K.W.; Kang, Y.J.; Wang, X.J.; Kim, J.W.; Yoo, G.Y.; Bai, S.C. Reevaluation of the Phosphorus Requirement of Juvenile Olive Flounder Paralichthys olivaceus and the Bioavailability of Various Inorganic Phosphorus Sources. J. World Aquac. Soc. 2005, 36, 217–222. [Google Scholar] [CrossRef]
- Zhou, Q.C.; Liu, Y.J.; Mai, K.S.; Tian, L.X. Effect of Dietary Phosphorus Levels on Growth, Body Composition, Muscle and Bone Mineral Concentrations for Orange-Spotted Grouper Epinephelus coioides Reared in Floating Cages. J. World Aquac. Soc. 2004, 35, 427–435. [Google Scholar] [CrossRef]
- Green, J.; Hardy, R.; Brannon, E.J. Effects of Dietary Phosphorus and Lipid Levels on Utilization and Excretion of Phosphorus and Nitrogen by Rainbow Trout (Oncorhynchus mykiss). Aquac. Nutr. 2002, 8, 279–290. [Google Scholar] [CrossRef]
- Uyan, O.; Koshio, S.; Ishikawa, M.; Uyan, S.; Ren, T.; Yokoyama, S.; Komilus, C.F.; Michael, F.R. Effects of Dietary Phosphorus and Phospholipid Level on Growth, and Phosphorus Deficiency Signs in Juvenile Japanese Flounder, Paralichthys olivaceus. Aquaculture 2007, 267, 44–54. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.-N.; Tian, X.-C.; Liu, H.-P.; Wen, B.; Wang, N.; Gao, J.-Z.; Chen, Z.-Z. Growth and Tissue Calcium and Phosphorus Deposition of Juvenile Discus Fish (Symphysodon haraldi) Fed with Graded Levels of Calcium and Phosphorus. Aquaculture 2021, 541, 736755. [Google Scholar] [CrossRef]
- Auer, M.T.; Kieser, M.S.; Canale, R.P. Identification of Critical Nutrient Levels through Field Verification of Models for Phosphorus and Phytoplankton Growth. Can. J. Fish. Aquat. Sci. 1986, 43, 379–388. [Google Scholar] [CrossRef]
- Azra, M.N.; Mohamad, A.; Hidir, A.; Taufik, M.; Abol-Munafi, A.B.; Ikhwanuddin, M. Critical Thermal Maxima of Two Species of Intertidal Crabs, Scylla olivacea and Thalamita crenata at Different Acclimation Temperatures. Aquac. Rep. 2020, 17, 100301. [Google Scholar] [CrossRef]
- Huang, Z.-H.; Ma, A.-J.; Wang, X.-A. The Immune Response of Turbot, Scophthalmus maximus (L.), Skin to High Water Temperature. J. Fish Dis. 2011, 34, 619–627. [Google Scholar] [CrossRef]
- Imsland, A.K.; Foss, A.; Sparboe, L.O.; Sigurdsson, S. The Effect of Temperature and Fish Size on Growth and Feed Efficiency Ratio of Juvenile Spotted Wolffish Anarhichas Minor. J. Fish Biol. 2006, 68, 1107–1122. [Google Scholar] [CrossRef]
- Zeng, N.-N.; Jiang, M.; Wen, H.; Liu, W.; Wu, F.; Tian, J.; Yu, L.-J.; Lu, X.; Guo, Z.-B. Effects of Water Temperatures and Dietary Protein Levels on Growth, Body Composition and Blood Biochemistry of Juvenile Gift Tilapia (Oreochromis niloticus). Aquac. Nutr. 2021, 27, 240–251. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Lu, K.; Wang, L.; Ma, X.; Song, K.; Zhang, C. Effects of Dietary Iron Levels on Growth Performance, Iron Metabolism and Antioxidant Status in Spotted Seabass (Lateolabrax maculatus) Reared at Two Temperatures. Aquaculture 2023, 562, 738717. [Google Scholar] [CrossRef]
- Crozier, L.G.; Hutchings, J.A. Plastic and Evolutionary Responses to Climate Change in Fish. Evol. Appl. 2014, 7, 68–87. [Google Scholar] [CrossRef]
- Kleerebezem, M.; Bachmann, H.; van Pelt-KleinJan, E.; Douwenga, S.; Smid, E.J.; Teusink, B.; van Mastrigt, O.J. Lifestyle, Metabolism and Environmental Adaptation in Lactococcus lactis. FEMS Microbiol. Rev. 2020, 44, 804–820. [Google Scholar] [CrossRef]
- Wu, T.; Wang, G.; Xiong, Z.; Xia, Y.; Song, X.; Zhang, H.; Wu, Y.; Ai, L. Probiotics Interact with Lipids Metabolism and Affect Gut Health. Front. Nutr. 2022, 9, 917043. [Google Scholar] [CrossRef]
- Yukgehnaish, K.; Kumar, P.; Sivachandran, P.; Marimuthu, K.; Arshad, A.; Paray, B.A.; Arockiaraj, J. Gut Microbiota Metagenomics in Aquaculture: Factors Influencing Gut Microbiome and Its Physiological Role in Fish. Rev. Aquac. 2020, 12, 1903–1927. [Google Scholar] [CrossRef]
- Xie, F.; Ai, Q.; Mai, K.; Xu, W.; Ma, H. The Optimal Feeding Frequency of Large Yellow Croaker (Pseudosciaena crocea, Richardson) Larvae. Aquaculture 2011, 311, 162–167. [Google Scholar] [CrossRef]
- Heyer, C.M.; Weiss, E.; Schmucker, S.; Rodehutscord, M.; Hoelzle, L.E.; Mosenthin, R.; Stefanski, V.J.N.R.R. The Impact of Phosphorus on the Immune System and the Intestinal Microbiota with Special Focus on the Pig. Nutr. Res. Rev. 2015, 28, 67–82. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, J.; Xia, Y.; Li, X.; Liu, Y.; Liu, P.-f. Response Mechanism of Gut Microbiome and Metabolism of European Seabass (Dicentrarchus labrax) to Temperature Stress. Sci. Total Environ. 2022, 813, 151786. [Google Scholar] [CrossRef]
- Zhao, R.; Symonds, J.E.; Walker, S.P.; Steiner, K.; Carter, C.G.; Bowman, J.P.; Nowak, B.F. Salinity and Fish Age Affect the Gut Microbiota of Farmed Chinook Salmon (Oncorhynchus tshawytscha). Aquaculture 2020, 528, 735539. [Google Scholar] [CrossRef]
- Lu, K.-L.; Cai, L.-S.; Wang, L.; Song, K.; Zhang, C.-X.; Rahimnejad, S. Effects of Dietary Protein/Energy Ratio and Water Temperature on Growth Performance, Digestive Enzymes Activity and Non-Specific Immune Response of Spotted Seabass (Lateolabrax maculatus). Aquac. Nutr. 2020, 26, 2023–2031. [Google Scholar] [CrossRef]
- Zhang, C.; Rahimnejad, S.; Wang, Y.-r.; Lu, K.; Song, K.; Wang, L.; Mai, K. Substituting Fish Meal with Soybean Meal in Diets for Japanese Seabass (Lateolabrax japonicus): Effects on Growth, Digestive Enzymes Activity, Gut Histology, and Expression of Gut Inflammatory and Transporter Genes. Aquaculture 2018, 483, 173–182. [Google Scholar] [CrossRef]
- Jobling, M. National Research Council (Nrc): Nutrient Requirements of Fish and Shrimp. Aquac. Int. 2012, 20, 601–602. [Google Scholar] [CrossRef]
- Qiang, J.; Tao, Y.F.; Bao, J.W.; Chen, D.J.; Li, H.X.; He, J.; Xu, P. High Fat Diet-Induced Mir-122 Regulates Lipid Metabolism and Fat Deposition in Genetically Improved Farmed Tilapia (Gift, Oreochromis niloticus) Liver. Front. Physiol. 2018, 9, 01422. [Google Scholar] [CrossRef]
- Li, X.; Sun, J.; Wang, L.; Song, K.; Lu, K.; Zhang, L.; Ma, X.; Zhang, C. Effects of Dietary Vitamin E Levels on Growth, Antioxidant Capacity and Immune Response of Spotted Seabass (Lateolabrax maculatus) Reared at Different Water Temperatures. Aquaculture 2023, 565, 739141. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative Pcr and the 2−Δδct Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Zeitoun, I.H.; Ullrey, D.E.; Magee, W.T.; Gill, J.L.; Bergen, W.G. Quantifying Nutrient Requirements of Fish. J. Fish. Res. Board Can. 1976, 33, 167–172. [Google Scholar] [CrossRef]
- Sun, Y.; Li, B.; Zhang, X.; Chen, M.; Tang, H.; Yu, X. Dietary Available Phosphorus Requirement of Crucian Carp, Carassius auratus. Aquac. Nutr. 2018, 24, 1494–1501. [Google Scholar] [CrossRef]
- Liang, J.-J.; Liu, Y.-J.; Tian, L.-X.; Yang, H.-J.; Liang, G.-Y. Dietary Available Phosphorus Requirement of Juvenile Grass Carp (Ctenopharyngodon idella). Aquac. Nutr. 2012, 18, 181–188. [Google Scholar] [CrossRef]
- Morales, G.A.; Azcuy, R.L.; Casaretto, M.E.; Márquez, L.; Hernández, A.J.; Gómez, F.; Koppe, W.; Mereu, A. Effect of Different Inorganic Phosphorus Sources on Growth Performance, Digestibility, Retention Efficiency and Discharge of Nutrients in Rainbow Trout (Oncorhynchus mykiss). Aquaculture 2018, 495, 568–574. [Google Scholar] [CrossRef]
- Fan, Z.; Wu, D.; Li, J.; Li, C.; Zheng, X.; Wang, L. Phosphorus Nutrition in Songpu Mirror Carp (Cyprinus carpio songpu) During Chronic Carbonate Alkalinity Stress: Effects on Growth, Intestinal Immunity, Physical Barrier Function, and Intestinal Microflora. Front. Immunol. 2022, 13, 900793. [Google Scholar] [CrossRef]
- Yang, S.-D.; Lin, T.-S.; Liu, F.-G.; Liou, C.-H. Influence of Dietary Phosphorus Levels on Growth, Metabolic Response and Body Composition of Juvenile Silver Perch (Bidyanus bidyanus). Aquaculture 2006, 253, 592–601. [Google Scholar] [CrossRef]
- Neuheimer, A.B.; Thresher, R.E.; Lyle, J.M.; Semmens, J.M. Tolerance Limit for Fish Growth Exceeded by Warming Waters. Nat. Clim. Change 2011, 1, 110–113. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, X.; Wang, L.; Lu, K.; Song, K.; Ai, Q.; Mai, K.; Zhang, C. Effects of Dietary Arginine Levels on Growth, Immune Function of Physical Barriers and Serum Parameters of Spotted Seabass (Lateolabrax maculatus) Reared at Different Water Temperatures. Aquaculture 2021, 541, 736812. [Google Scholar] [CrossRef]
- Rossi, A.; Bacchetta, C.; Cazenave, J. Effect of Thermal Stress on Metabolic and Oxidative Stress Biomarkers of Hoplosternum littorale (Teleostei, Callichthyidae). Ecol. Indic. 2017, 79, 361–370. [Google Scholar] [CrossRef]
- Azaza, M.S.; Dhraïef, M.N.; Kraïem, M.M. Effects of Water Temperature on Growth and Sex Ratio of Juvenile Nile Tilapia Oreochromis niloticus (Linnaeus) Reared in Geothermal Waters in Southern Tunisia. J. Therm. Biol 2008, 33, 98–105. [Google Scholar] [CrossRef]
- Kim, J.-H.; Park, H.-J.; Kim, K.-W.; Hwang, I.-K.; Kim, D.-H.; Oh, C.W.; Lee, J.S.; Kang, J.-C. Growth Performance, Oxidative Stress, and Non-Specific Immune Responses in Juvenile Sablefish, Anoplopoma fimbria, by Changes of Water Temperature and Salinity. Fish Physiol. Biochem. 2017, 43, 1421–1431. [Google Scholar] [CrossRef]
- Sakamoto, S.; Yone, Y.; Sakamoto, S.; Sakamoto, S. A Principal Source of Deposited Lipid in Phosphorus Deficient Red Sea Bream. Fish Sci. 1980, 46, 1227–1230. [Google Scholar] [CrossRef]
- Fjelldal, P.G.; Hansen, T.; Albrektsen, S. Inadequate Phosphorus Nutrition in Juvenile Atlantic Salmon Has a Negative Effect on Long-Term Bone Health. Aquaculture 2012, 334-337, 117–123. [Google Scholar] [CrossRef]
- Siller, A.F.; Whyte, M.P. Alkaline Phosphatase: Discovery and Naming of Our Favorite Enzyme. J. Bone Miner. Res. 2018, 33, 362–364. [Google Scholar] [CrossRef]
- Sousa, C.P.; de Azevedo, J.T.; Reis, R.L.; Gomes, M.E.; Dias, I.R. Short-Term Variability in Biomarkers of Bone Metabolism in Sheep. Lab Anim. 2014, 43, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Sarker, P.K.; Fournier, J.; Boucher, E.; Proulx, E.; de la Noüe, J.; Vandenberg, G.W. Effects of Low Phosphorus Ingredient Combinations on Weight Gain, Apparent Digestibility Coefficients, Non-Fecal Phosphorus Excretion, Phosphorus Retention and Loading of Large Rainbow Trout (Oncorhynchus mykiss). Anim. Feed Sci. Technol. 2011, 168, 241–249. [Google Scholar] [CrossRef]
- Forster, I.C.; Hernando, N.; Biber, J.; Murer, H. Phosphate Transporters of the Slc20 and Slc34 Families. Mol. Asp. Med. 2013, 34, 386–395. [Google Scholar] [CrossRef]
- Behrens, J.L.; Schnepel, N.; Hansen, K.; Hustedt, K.; Burmester, M.; Klinger, S.; Breves, G.; Muscher-Banse, A.S. Modulation of Intestinal Phosphate Transport in Young Goats Fed a Low Phosphorus Diet. Int. J. Mol. Sci. 2021, 22, 866. [Google Scholar] [CrossRef]
- Liu, F.; Qu, Y.-K.; Wang, A.-M.; Yu, Y.-B.; Yang, W.-P.; Lv, F.; Nie, Q. Effects of Carotenoids on the Growth Performance, Biochemical Parameters, Immune Responses and Disease Resistance of Yellow Catfish (Pelteobagrus fulvidraco) under High-Temperature Stress. Aquaculture 2019, 503, 293–303. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of Heat Stress on Animal Physiology, Metabolism, and Meat Quality: A Review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef]
- Sidell, B.D.; Hazel, J.R. Temperature Affects the Diffusion of Small Molecules through Cytosol of Fish Muscle. J. Exp. Biol. 1987, 129, 191–203. [Google Scholar] [CrossRef]
- Lall, S.P.; Kaushik, S.J. Nutrition and Metabolism of Minerals in Fish. Animals 2021, 11, 2711. [Google Scholar] [CrossRef]
- Avila, E.M.; Tu, H.; Basantes, S.; Ferraris, R.P. Dietary Phosphorus Regulates Intestinal Transport and Plasma Concentrations of Phosphate in Rainbow Trout. J. Comp. Physiol. B 2000, 170, 201–209. [Google Scholar] [CrossRef]
- Schlaepfer, I.R.; Joshi, M. Cpt1a-Mediated Fat Oxidation, Mechanisms, and Therapeutic Potential. Endocrinology 2020, 161. [Google Scholar] [CrossRef]
- Li, T.; Guo, W.; Zhou, Z. Adipose Triglyceride Lipase in Hepatic Physiology and Pathophysiology. Biomolecules 2022, 12, 57. [Google Scholar] [CrossRef]
- Tian, S.; Li, B.; Lei, P.; Yang, X.; Zhang, X.; Bao, Y.; Shan, Y. Sulforaphane Improves Abnormal Lipid Metabolism Via Both Ers-Dependent Xbp1/Acc &Scd1 and Ers-Independent Srebp/Fas Pathways. Mol. Nutr. Food Res. 2018, 62, 1700737. [Google Scholar]
- Wueest, S.; Rapold, R.A.; Schumann, D.M.; Rytka, J.M.; Schildknecht, A.; Nov, O.; Chervonsky, A.V.; Rudich, A.; Schoenle, E.J.; Donath, M.Y.; et al. Deletion of Fas in Adipocytes Relieves Adipose Tissue Inflammation and Hepatic Manifestations of Obesity in Mice. J. Clin. Investig. 2010, 120, 191–202. [Google Scholar] [CrossRef]
- Balbuena-Pecino, S.; Riera-Heredia, N.; Vélez, E.J.; Gutiérrez, J.; Navarro, I.; Riera-Codina, M.; Capilla, E. Temperature Affects Musculoskeletal Development and Muscle Lipid Metabolism of Gilthead Sea Bream (Sparus aurata). Front. Endocrinol. 2019, 10, 173. [Google Scholar] [CrossRef]
- De Antonio, J.; Fernandez-Alarcon, M.F.; Lunedo, R.; Squassoni, G.H.; Ferraz, A.L.J.; Macari, M.; Furlan, R.L.; Furlan, L.R. Chronic Heat Stress and Feed Restriction Affects Carcass Composition and the Expression of Genes Involved in the Control of Fat Deposition in Broilers. J. Agric. Sci. 2017, 155, 1487–1496. [Google Scholar] [CrossRef]
- Zhao, T.; Ma, A.; Yang, S.; Huang, Z. Integrated Metabolome and Transcriptome Analyses Revealing the Effects of Thermal Stress on Lipid Metabolism in Juvenile Turbot Scophthalmus maximus. J. Therm. Biol. 2021, 99, 102937. [Google Scholar] [CrossRef]
- Hevrøy, E.M.; Waagbø, R.; Torstensen, B.E.; Takle, H.; Stubhaug, I.; Jørgensen, S.M.; Torgersen, T.; Tvenning, L.; Susort, S.; Breck, O.; et al. Ghrelin Is Involved in Voluntary Anorexia in Atlantic Salmon Raised at Elevated Sea Temperatures. Gen. Comp. Endocrinol. 2012, 175, 118–134. [Google Scholar] [CrossRef]
- Pinto, D.; Pellegrin, L.; Nitz, L.F.; Monserrat, J.M.; Garcia, L. Influence of Temperature on Growth, Feed Consumption and Chemical Composition in the Muscle of Pacu Piaractus mesopotamicus. Aquac. Res. 2020, 51, 3760–3767. [Google Scholar] [CrossRef]
- Shen, H.-M.; Chen, X.-R.; Chen, W.-Y.; Lin, S.-M.; Chen, Y.-J.; Zhang, L.; Luo, L. Influence of Dietary Phosphorus Levels on Growth, Body Composition, Metabolic Response and Antioxidant Capacity of Juvenile Snakehead (Channa argus × Channa maculata). Aquac. Nutr. 2017, 23, 662–670. [Google Scholar] [CrossRef]
- Wen, J.; Jiang, W.; Feng, L.; Kuang, S.; Jiang, J.; Tang, L.; Zhou, X.; Liu, Y. The Influence of Graded Levels of Available Phosphorus on Growth Performance, Muscle Antioxidant and Flesh Quality of Young Grass Carp (Ctenopharyngodon idella). Anim. Nutr. 2015, 1, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Jiang, W.-D.; Wu, P.; Liu, Y.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; Zhou, X.-Q.; Feng, L. Effect of Dietary Phosphorus Deficiency on the Growth, Immune Function and Structural Integrity of Head Kidney, Spleen and Skin in Young Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2017, 63, 103–126. [Google Scholar] [CrossRef] [PubMed]
- Wassmann, S.; Wassmann, K.; Nickenig, G. Modulation of Oxidant and Antioxidant Enzyme Expression and Function in Vascular Cells. Hypertension 2004, 44, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Jîtcă, G.; Ősz, B.E.; Tero-Vescan, A.; Miklos, A.P.; Rusz, C.-M.; Bătrînu, M.-G.; Vari, C.E. Positive Aspects of Oxidative Stress at Different Levels of the Human Body: A Review. Antioxidants 2022, 11, 572. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.-Z.; Yang, S.; Wu, G. Free Radicals, Antioxidants, and Nutrition. Nutrition 2002, 18, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Xilan, Y.; Gang, L.; Chungen, W.; Baoqing, H.; Lirong, D.; Pengzu, P.; Yanhai, X. A Catalase from the Freshwater Mussel Cristaria Plicata with Cloning, Identification and Protein Characterization. Fish Shellfish Immunol. 2011, 31, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.-B.; Zou, W.-G.; Ai, C.-X.; You, W.-W.; Liu, S.-T.; Luo, X.; Ke, C.-H. Evaluation of Optimal Dietary Protein Levels for Juvenile Hybrid Abalone under Three Temperatures: Growth Performance, Body Composition, Biochemical Responses, and Antioxidant Capacity. Aquac. Nutr. 2022, 2022, 7008746. [Google Scholar] [CrossRef]
- Ciji, A.; Akhtar, M.S. Stress Management in Aquaculture: A Review of Dietary Interventions. Rev. Aquac. 2021, 13, 2190–2247. [Google Scholar] [CrossRef]
- Shabalala, S.C.; Johnson, R.; Basson, A.K.; Ziqubu, K.; Hlengwa, N.; Mthembu, S.X.H.; Mabhida, S.E.; Mazibuko-Mbeje, S.E.; Hanser, S.; Cirilli, I.; et al. Detrimental Effects of Lipid Peroxidation in Type 2 Diabetes: Exploring the Neutralizing Influence of Antioxidants. Antioxidants 2022, 11, 2071. [Google Scholar] [CrossRef]
- Xu, Y.-H.; Wei, X.-L.; Xu, Y.-C.; Zhang, D.-G.; Zhao, T.; Zheng, H.; Luo, Z. Waterborne Enrofloxacin Exposure Activated Oxidative Stress and Mapk Pathway, Induced Apoptosis and Resulted in Immune Dysfunction in the Gills of Yellow Catfish Pelteobagrus fulvidraco. Aquaculture 2022, 547, 737541. [Google Scholar] [CrossRef]
- Prabu, D.L.; Kalidas, C.; Ranjith, L.; Ebeneezar, S.; Kavitha, M.; Zacharia, P.U.; Vijayagopal, P.; Babu, A.M.; Muniswaran, B.R. Effect of Water Temperature on Growth, Blood Biochemistry, Digestive, Metabolic Enzymology, and Antioxidant Defences of Trachinotus blochii Juveniles. Aquac. Int. 2022, 22, 8. [Google Scholar] [CrossRef]
- Ghanbari, M.; Kneifel, W.; Domig, K.J. A New View of the Fish Gut Microbiome: Advances from Next-Generation Sequencing. Aquaculture 2015, 448, 464–475. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, C.; Lu, K.; Song, K.; Li, X.; Wang, L.; Rahimnejad, S. Effects of Supplementing Intestinal Autochthonous Bacteria in Plant-Based Diets on Growth, Nutrient Digestibility, and Gut Health of Bullfrogs (Lithobates catesbeianus). Front. Microbiol. 2021, 12, 739572. [Google Scholar] [CrossRef] [PubMed]
- Labaw, L.W.; Mosley, V.M.; Wyckoff, R.W.G. Radioactive Studies of the Phosphorus Metabolism of Escherichia coli. J. Bacteriol. 1950, 59, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Bryant, M.P.; Robinson, I.M.; Chu, H. Observations on the Nutrition of Bacteroides Succinogenes—A Ruminal Cellulolytic Bacterium. J. Dairy Sci. 1959, 42, 1831–1847. [Google Scholar] [CrossRef]
- Bovee-Oudenhoven, I.M.; Wissink, M.L.; Wouters, J.T.; Van der Meer, R. Dietary Calcium Phosphate Stimulates Intestinal Lactobacilli and Decreases the Severity of a Salmonella Infection in Rats. J. Nutr. 1999, 129, 607–612. [Google Scholar] [CrossRef]
- Gómez, G.D.; Balcázar, J.L.J.F.I.; Microbiology, M. A Review on the Interactions between Gut Microbiota and Innate Immunity of Fish. FEMS Immunol. Med. Microbiol. 2008, 52, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, Z.-B.; Zhang, Z.; Zha, J.-W.; Qu, S.-Y.; Qi, X.-Z.; Wang, G.-X.; Ling, F. Effects of Potential Probiotic Bacillus Velezensis K2 on Growth, Immunity and Resistance to Vibrio Harveyi Infection of Hybrid Grouper (Epinephelus lanceolatus♂ × E. fuscoguttatus♀). Fish Shellfish Immunol. 2019, 93, 1047–1055. [Google Scholar] [CrossRef]
- Yu, D.; Xia, Y.; Ge, L.; Tan, B.; Chen, S. Effects of Lactococcus Lactis on the Intestinal Functions in Weaning Piglets. Front. Nutr. 2021, 8, 713256. [Google Scholar] [CrossRef]
- Naudin, C.R.; Maner-Smith, K.; Owens, J.A.; Wynn, G.M.; Robinson, B.S.; Matthews, J.D.; Reedy, A.R.; Luo, L.; Wolfarth, A.A.; Darby, T.M.; et al. Lactococcus lactis Subspecies Cremoris Elicits Protection against Metabolic Changes Induced by a Western-Style Diet. Gastroenterology 2020, 639–651. [Google Scholar] [CrossRef]
- Nicholson, J.K.; Holmes, E.; Kinross, J.; Burcelin, R.; Gibson, G.; Jia, W.; Pettersson, S. Host-Gut Microbiota Metabolic Interactions. Science 2012, 336, 1262–1267. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, B.; Xu, H.; Tang, L.; Li, Y.; Gong, L.; Wang, Y.; Li, W. Probiotic Bacillus Attenuates Oxidative Stress- Induced Intestinal Injury Via P38-Mediated Autophagy. Front. Microbiol. 2019, 10, 02185. [Google Scholar] [CrossRef]
- Robinson, C.D.; Klein, H.S.; Murphy, K.D.; Parthasarathy, R.; Guillemin, K.; Bohannan, B.J.M. Experimental Bacterial Adaptation to the Zebrafish Gut Reveals a Primary Role for Immigration. PLoS Biol. 2018, 16, e2006893. [Google Scholar] [CrossRef]
- Kokou, F.; Sasson, G.; Nitzan, T.; Doron-Faigenboim, A.; Harpaz, S.; Cnaani, A.; Mizrahi, I. Host Genetic Selection for Cold Tolerance Shapes Microbiome Composition and Modulates Its Response to Temperature. eLife 2018, 7, e36398. [Google Scholar] [CrossRef]
- Neuman, C.; Hatje, E.; Zarkasi, K.Z.; Smullen, R.; Bowman, J.P.; Katouli, M. The Effect of Diet and Environmental Temperature on the Faecal Microbiota of Farmed Tasmanian Atlantic Salmon (Salmo salar L.). Aquac. Res. 2016, 47, 660–672. [Google Scholar] [CrossRef]
- Soriano, E.L.; Ramírez, D.T.; Araujo, D.R.; Gómez-Gil, B.; Castro, L.I.; Sánchez, C.G. Effect of Temperature and Dietary Lipid Proportion on Gut Microbiota in Yellowtail Kingfish Seriola lalandi Juveniles. Aquaculture 2018, 497, 269–277. [Google Scholar] [CrossRef]
- Mao, N.; Cubillos-Ruiz, A.; Cameron, D.E.; Collins, J.J. Probiotic Strains Detect and Suppress Cholera in Mice. Sci. Transl. Med. 2018, 10, eaao2586. [Google Scholar] [CrossRef]
- Candela, M.; Biagi, E.; Maccaferri, S.; Turroni, S.; Brigidi, P. Intestinal Microbiota Is a Plastic Factor Responding to Environmental Changes. Trends Microbiol. 2012, 20, 385–391. [Google Scholar] [CrossRef]
- Wen, C.; Wei, S.; Zong, X.; Wang, Y.; Jin, M. Microbiota-Gut-Brain Axis and Nutritional Strategy under Heat Stress. Anim. Nutr. 2021, 7, 1329–1336. [Google Scholar] [CrossRef]
- Moore, T.; Globa, L.; Pustovyy, O.; Vodyanoy, V.; Sorokulova, I. Oral Administration of Bacillus Subtilis Strain Bsb3 Can Prevent Heat Stress-Related Adverse Effects in Rats. J. Appl. Microbiol. 2014, 117, 1463–1471. [Google Scholar] [CrossRef]
FBW a | WG b | SR c | FR d | FCR e | ||
---|---|---|---|---|---|---|
27 °C | 0.35% | 38.50 ± 0.66 A | 972.42 ± 16.01 A | 91.11 ± 5.09 | 2.64 ± 0.29 | 1.29 ± 0.03 |
0.55% | 56.10 ± 1.23 BC | 1489.44 ± 38.15 BC | 96.67 ± 0.00 | 2.60 ± 0.42 | 1.22 ± 0.04 | |
0.71% | 69.78 ± 2.29 E | 1883.95 ± 25.27 E | 96.67 ± 0.00 | 2.49 ± 0.28 | 0.93 ± 0.11 | |
0.82% | 66.13 ± 1.29 DE | 1782.44 ± 49.27 DE | 96.67 ± 0.00 | 2.55 ± 0.36 | 1.03 ± 0.05 | |
0.92% | 52.65 ± 0.19 BC | 1405.81 ± 1.53 BC | 100.00 ± 0.00 | 2.71 ± 0.18 | 1.06 ± 0.11 | |
33 °C | 0.35% | 38.16 ± 1.35 A | 969.92 ± 31.01 A | 85.56 ± 8.39 | 3.02 ± 0.10 | 1.46 ± 0.11 |
0.55% | 51.78 ± 1.49 B | 1376.43 ± 32.69 B | 100.00 ± 0.00 | 2.88 ± 0.40 | 1.30 ± 0.02 | |
0.71% | 64.02 ± 0.91 D | 1727.49 ± 37.09 D | 98.89 ± 1.92 | 2.50 ± 0.14 | 1.07 ± 0.04 | |
0.82% | 65.63 ± 2.53 DE | 1759.04 ± 64.23 D | 100.00 ± 0.00 | 2.62 ± 0.10 | 1.08 ± 0.06 | |
0.92% | 54.63 ± 2.56 C | 1515.15 ± 68.19 C | 100.00 ± 0.00 | 3.12 ± 0.14 | 1.31 ± 0.06 | |
Temperature | ||||||
27 °C | 56.63±11.47 * | 1506.81 ± 332.99 * | 96.22 ± 3.53 | 2.60 ± 0.26 | 1.11 ± 0.15 | |
33 °C | 54.49±10.32 | 1452.74 ± 288.55 | 96.89 ± 6.72 | 2.83 ± 0.31 * | 1.24 ± 0.16 * | |
Phosphorus | ||||||
0.35% | 38.33±0.97 a | 971.17 ± 22.12 a | 88.34 ± 6.91 a | 2.83 ± 0.29 | 1.38 ± 0.11 c | |
0.55% | 53.94±2.67 b | 1432.94 ± 69.58 b | 98.33 ± 1.82 b | 2.74 ± 0.39 | 1.26 ± 0.05 bc | |
0.71% | 66.89±3.52 c | 1805.72 ± 90.27 c | 97.78 ± 1.7 b | 2.50 ± 0.19 | 1.00 ± 0.10 a | |
0.82% | 65.93±1.58 c | 1773.08 ± 49.09 c | 98.34 ± 1.82 b | 2.58 ± 0.24 | 1.06 ± 0.05 a | |
0.92% | 54.62±2.69 b | 1460.48 ± 73.81 b | 100.00 ± 0.00 b | 2.92 ± 0.26 | 1.18 ± 0.15 b | |
p value | ||||||
Temperature | 0.025 | 0.023 | 0.572 | 0.032 | <0.001 | |
Phosphorus | <0.001 | <0.001 | <0.001 | 0.078 | <0.001 | |
Interaction | 0.010 | 0.007 | 0.120 | 0.618 | 0.141 |
HSI a | VSI b | CF c | IFR d | ||
---|---|---|---|---|---|
27 °C | 0.35% | 1.86 ± 0.31 | 12.57 ± 0.51 | 2.05 ± 0.09 | 6.35 ± 0.41 A |
0.55% | 1.87 ± 0.23 | 12.23 ± 0.79 | 2.01 ± 0.07 | 6.35 ± 0.35 A | |
0.71% | 1.74 ± 0.17 | 12.72 ± 1.11 | 1.93 ± 0.09 | 6.24 ± 0.31 A | |
0.82% | 1.78 ± 0.19 | 11.64 ± 0.33 | 1.89 ± 0.07 | 6.24 ± 0.28 A | |
0.92% | 1.92 ± 0.16 | 13.06 ± 0.22 | 1.81 ± 0.06 | 6.53 ± 0.09 A | |
33 °C | 0.35% | 2.68 ± 0.28 | 15.96 ± 1.40 | 2.32 ± 0.02 | 8.81 ± 0.17 C |
0.55% | 1.94 ± 0.20 | 15.52 ± 0.32 | 2.10 ± 0.05 | 8.76 ± 0.14 C | |
0.71% | 1.95 ± 0.22 | 16.03 ± 0.79 | 1.99 ± 0.11 | 7.86 ± 0.08 B | |
0.82% | 2.01 ± 0.20 | 15.79 ± 0.89 | 2.02 ± 0.06 | 8.82 ± 0.16 C | |
0.92% | 1.99 ± 0.05 | 15.56 ± 0.43 | 2.04 ± 0.05 | 8.06 ± 0.17 BC | |
Temperature | |||||
27 °C | 1.83 ± 0.19 | 12.44 ± 0.76 | 1.94 ± 0.11 | 6.34 ± 0.28 | |
33 °C | 2.11 ± 0.33 * | 15.77 ± 0.75 * | 2.09 ± 0.14 * | 8.46 ± 0.49 * | |
Phosphorus | |||||
0.35% | 2.27 ± 0.52 b | 14.26 ± 2.08 | 2.19 ± 0.16 c | 7.58 ± 1.02 b | |
0.55% | 1.90 ± 0.19 a | 13.88 ± 1.88 | 2.06 ± 0.07 b | 7.55 ± 0.86 b | |
0.71% | 1.84 ± 0.20 a | 14.37 ± 2.01 | 1.96 ± 0.09 ab | 7.05 ± 1.39 a | |
0.82% | 1.90 ± 0.22 a | 13.71 ± 2.35 | 1.95 ± 0.09 ab | 7.53 ± 1.43 ab | |
0.92% | 2.01 ± 0.11 ab | 14.31 ± 1.40 | 1.92 ± 0.13 a | 7.29 ± 1.26 ab | |
p value | |||||
Temperature | 0.002 | <0.001 | <0.001 | <0.001 | |
Phosphorus | 0.034 | 0.500 | <0.001 | 0.021 | |
Interaction | 0.217 | 0.505 | 0.060 | 0.009 |
Moisture | Ash | Lipid | Protein | ||
---|---|---|---|---|---|
27 °C | 0.35% | 68.76 ± 0.54 | 2.38 ± 0.06 | 11.17 ± 0.32 | 15.90 ± 0.30 |
0.55% | 67.96 ± 0.34 | 3.16 ± 0.08 | 10.35 ± 0.30 | 16.51 ± 0.37 | |
0.71% | 67.28 ± 0.79 | 3.70 ± 0.28 | 9.85 ± 0.89 | 17.67 ± 1.15 | |
0.82% | 67.54 ± 0.84 | 3.71 ± 0.17 | 9.91 ± 0.69 | 17.04 ± 1.02 | |
0.92% | 66.92 ± 0.24 | 4.05 ± 0.17 | 10.74 ± 0.66 | 16.92 ± 0.78 | |
33 °C | 0.35% | 69.55 ± 0.23 | 2.49 ± 0.12 | 12.18 ± 0.36 | 14.41 ± 0.49 |
0.55% | 69.17 ± 0.77 | 3.57 ± 0.27 | 11.77 ± 0.59 | 14.66 ± 0.44 | |
0.71% | 68.41 ± 0.31 | 3.74 ± 0.28 | 11.51 ± 0.91 | 15.75 ± 1.07 | |
0.82% | 68.09 ± 0.36 | 3.94 ± 0.40 | 11.50 ± 0.66 | 15.44 ± 0.77 | |
0.92% | 67.13 ± 0.86 | 4.47 ± 0.25 | 12.05 ± 0.67 | 15.22 ± 0.95 | |
Temperature | |||||
27 °C | 67.69 ± 0.83 | 3.40 ± 0.62 | 10.41 ± 0.73 | 16.81 ± 0.91 * | |
33 °C | 68.47 ± 1.01 * | 3.64 ± 0.71 * | 11.80 ± 0.63 * | 15.10 ± 0.84 | |
Phosphorus | |||||
0.35% | 69.16 ± 0.57 c | 2.43 ± 0.11 a | 11.67 ± 0.63 b | 15.16 ± 0.75 a | |
0.55% | 68.57 ± 0.85 bc | 3.36 ± 0.29 b | 11.06 ± 0.88 ab | 15.59 ± 1.21 ab | |
0.71% | 67.85 ± 0.82 ab | 3.72 ± 0.25 bc | 10.68 ± 1.21 a | 16.71 ± 1.44 b | |
0.82% | 67.82 ± 0.65 ab | 3.83 ± 0.30 c | 10.71 ± 1.06 a | 16.24 ± 1.16 b | |
0.92% | 67.03 ± 0.58 a | 4.26 ± 0.29 d | 11.39 ± 0.93 ab | 16.07 ± 1.24 ab | |
p value | |||||
Temperature | 0.002 | 0.010 | <0.001 | <0.001 | |
Phosphorus | <0.001 | <0.001 | 0.039 | 0.033 | |
Interaction | 0.564 | 0.538 | 0.909 | 0.984 |
Lipogenesis | Lipolysis | |||||
---|---|---|---|---|---|---|
fas | srebp-1 | cpt-1 | pgc-1 | atgl | ||
27 °C | 0.35% | 1.00 ± 0.17 | 1.00 ± 0.10 CD | 1.00 ± 0.42 | 1.00 ± 0.30 | 1.00 ± 0.29 |
0.55% | 0.88 ± 0.09 | 0.85 ± 0.05 ABC | 1.77 ± 0.37 | 1.54 ± 0.47 | 1.14 ± 0.25 | |
0.71% | 0.66 ± 0.14 | 0.61 ± 0.03 A | 2.52 ± 0.32 | 1.82 ± 0.53 | 2.07 ± 0.47 | |
0.82% | 0.85 ± 0.07 | 0.75 ± 0.02 ABC | 2.03 ± 0.29 | 1.74 ± 0.24 | 1.87 ± 0.73 | |
0.92% | 0.92 ± 0.13 | 0.81 ± 0.01 ABC | 1.78 ± 0.10 | 1.46 ± 0.47 | 1.79 ± 0.57 | |
33 °C | 0.35% | 1.41 ± 0.14 | 1.41 ± 0.06 E | 0.95 ± 0.09 | 1.09 ± 0.12 | 0.93 ± 0.08 |
0.55% | 1.09 ± 0.10 | 1.16 ± 0.06 DE | 1.72 ± 0.07 | 1.56 ± 0.42 | 0.96 ± 0.22 | |
0.71% | 0.78 ± 0.06 | 0.72 ± 0.14 AB | 2.24 ± 0.37 | 1.66 ± 0.52 | 1.59 ± 0.18 | |
0.82% | 0.93 ± 0.06 | 0.85 ± 0.15 ABC | 1.99 ± 0.18 | 1.44 ± 0.27 | 1.28 ± 0.12 | |
0.92% | 1.03 ± 0.14 | 0.90 ± 0.09 BC | 1.61 ± 0.22 | 1.35 ± 0.31 | 1.07 ± 0.13 | |
Temperature | ||||||
27 °C | 0.86 ± 0.15 | 0.81 ± 0.13 | 1.82 ± 0.58 | 1.51 ± 0.46 | 1.57 ± 0.60 * | |
33 °C | 1.05 ± 0.23 * | 1.01 ± 0.26 * | 1.70 ± 0.48 | 1.42 ± 0.36 | 1.17 ± 0.28 | |
Phosphorus | ||||||
0.35% | 1.20 ± 0.26 c | 1.20 ± 0.23 d | 0.97 ± 0.27 a | 1.04 ± 0.21 | 0.96 ± 0.19 a | |
0.55% | 0.98 ± 0.14 b | 1.00 ± 0.17 c | 1.75 ± 0.24 b | 1.55 ± 0.40 | 1.05 ± 0.23 a | |
0.71% | 0.72 ± 0.11 a | 0.67 ± 0.11 a | 2.38 ± 0.34 c | 1.74 ± 0.48 | 1.83 ± 0.41 b | |
0.82% | 0.89 ± 0.07 ab | 0.81 ± 0.11 ab | 2.01 ± 0.22 bc | 1.59 ± 0.28 | 1.58 ± 0.56 ab | |
0.92% | 0.98 ± 0.13 b | 0.85 ± 0.08 bc | 1.70 ± 0.18 b | 1.40 ± 0.36 | 1.43 ± 0.54 ab | |
p value | ||||||
Temperature | <0.001 | <0.001 | 0.261 | 0.513 | 0.007 | |
Phosphorus | <0.001 | <0.001 | <0.001 | 0.058 | 0.003 | |
Interaction | 0.136 | 0.076 | 0.925 | 0.913 | 0.514 |
CAT a | SOD b | MDA c | GSH-PX d | T-AOC e | ||
---|---|---|---|---|---|---|
27 °C | 0.35% | 3.58 ± 025 | 14.93 ± 1.39 | 23.16 ± 0.87 | 271.04 ± 87.35 | 0.84 ± 0.04 |
0.55% | 4.20 ± 0.41 | 21.38 ± 1.17 | 18.06 ± 0.37 | 435.93 ± 113.12 | 0.93 ± 0.02 | |
0.71% | 4.61 ± 0.20 | 25.73 ± 1.98 | 12.59 ± 0.98 | 525.79 ± 14.09 | 1.03 ± 0.02 | |
0.82% | 4.40 ± 0.79 | 25.87 ± 2.73 | 13.88 ± 0.97 | 524.80 ± 49.35 | 0.97 ± 0.03 | |
0.92% | 4.40 ± 0.66 | 21.71 ± 2.04 | 16.08 ± 0.32 | 457.86 ± 15.83 | 0.93 ± 0.01 | |
33 °C | 0.35% | 5.10 ± 0.54 | 18.15 ± 1.48 | 26.54 ± 1.42 | 363.73 ± 142.44 | 0.97 ± 0.02 |
0.55% | 5.29 ± 0.54 | 24.21 ± 1.57 | 21.07 ± 1.00 | 577.06 ± 123.58 | 1.00 ± 0.03 | |
0.71% | 5.98 ± 0.73 | 30.59 ± 2.19 | 16.84 ± 1.77 | 672.30 ± 27.26 | 1.11 ± 0.03 | |
0.82% | 5.63 ± 1.02 | 27.33 ± 111 | 17.98 ± 0.22 | 639.66 ± 39.76 | 1.10 ± 0.03 | |
0.92% | 5.58 ± 1.91 | 20.44 ± 0.61 | 18.81 ± 1.82 | 598.08 ± 23.79 | 0.99 ± 0.02 | |
Temperature | ||||||
27 °C | 4.24 ± 0.57 | 21.92 ± 4.44 | 16.75 ± 3.89 | 443.09 ± 112.37 | 0.94 ± 0.07 | |
33 °C | 5.52 ± 0.97 * | 24.14 ± 4.83 * | 20.25 ± 3.74 * | 570.16 ± 134.43 * | 1.02 ± 0.06 * | |
Phosphorus | ||||||
0.35% | 4.34 ± 0.92 | 16.54 ± 2.18 a | 24.85 ± 2.13 d | 317.38 ± 117.23 a | 0.91 ± 0.07 a | |
0.55% | 4.74 ± 0.73 | 22.79 ± 1.98 b | 19.56 ± 1.78 c | 506.49 ± 131.16 b | 0.96 ± 0.04 bc | |
0.71% | 5.30 ± 0.89 | 28.16 ± 3.25 c | 14.71 ± 2.66 a | 599.05 ± 82.56 b | 1.07 ± 0.04 d | |
0.82% | 5.01 ± 1.06 | 26.59 ± 2.03 c | 15.93 ± 2.34 ab | 582.23 ± 74.59 b | 1.00 ± 0.05 c | |
0.92% | 4.99 ± 1.44 | 21.07 ± 1.52 b | 17.44 ± 1.90 b | 527.97 ± 78.90 b | 0.96 ± 0.03 b | |
p value | ||||||
Temperature | 0.001 | 0.002 | <0.001 | <0.001 | <0.001 | |
Phosphorus | 0.393 | <0.001 | <0.001 | <0.001 | <0.001 | |
Interaction | 0.992 | 0.067 | 0.709 | 0.971 | 0.225 |
Phylum | Genus | |||||
---|---|---|---|---|---|---|
Proteobacteria | Firmicutes | Plesiomonas | Bacillus | Lactococcus | ||
27 °C | 0.35% | 91.68 ± 1.36 | 7.93 ± 1.50 | 78.05 ± 5.10 | 5.46 ± 1.48 A | 2.45 ± 0.59 A |
0.71% | 65.40 ± 5.10 | 32.83 ± 9.71 | 47.87 ± 3.10 | 7.32 ± 0.90 A | 26.02 ± 6.90 B | |
0.92% | 71.11 ± 9.20 | 28.67 ± 6.16 | 42.61 ± 5.35 | 7.60 ± 2.40 A | 18.00 ± 3.10 B | |
33 °C | 0.35% | 84.75 ± 1.18 | 12.01 ± 1.39 | 76.53 ± 5.35 | 6.40 ± 1.10 A | 2.40 ± 0.19 A |
0.71% | 56.78 ± 10.49 | 43.01 ± 10.52 | 42.58 ± 6.62 | 20.51 ± 3.80 B | 4.69 ± 0.59 A | |
0.92% | 72.32 ± 11.22 | 27.04 ± 10.79 | 51.96 ± 6.75 | 27.64 ± 5.49 B | 3.50 ± 0.61 A | |
Temperature | ||||||
27 °C | 70.06 ± 13.09 | 23.14 ± 12.92 | 56.17 ± 17.04 | 6.79 ± 1.79 | 15.49 ± 11.04 * | |
33 °C | 72.28 ± 15.46 | 27.34 ± 15.41 | 57.02 ± 16.12 | 18.18 ± 9.95 * | 3.52 ± 1.08 | |
Phosphorus | ||||||
0.35% | 89.71 ± 2.43 b | 9.97 ± 2.58 a | 77.29 ± 4.75 b | 5.93 ± 1.27 a | 2.43 ± 0.40 a | |
0.71% | 61.09 ± 8.76 a | 37.91 ± 10.63 b | 45.22 ± 5.45 a | 13.92 ± 7.63 b | 15.36 ± 12.47 b | |
0.92% | 71.72 ± 9.20 a | 27.84 ± 7.91 b | 47.29 ± 7.48 a | 17.62 ± 11.61 b | 10.75 ± 8.18 b | |
p value | ||||||
Temperature | 0.314 | 0.275 | 0.750 | <0.001 | <0.001 | |
Phosphorus | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Interaction | 0.554 | 0.445 | 0.097 | <0.001 | 0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Wang, L.; Song, K.; Lu, K.; Li, X.; Zhang, C. Physiological Response of Spotted Seabass (Lateolabrax maculatus) to Different Dietary Available Phosphorus Levels and Water Temperature: Changes in Growth, Lipid Metabolism, Antioxidant Status and Intestinal Microbiota. Antioxidants 2023, 12, 2128. https://doi.org/10.3390/antiox12122128
Guo J, Wang L, Song K, Lu K, Li X, Zhang C. Physiological Response of Spotted Seabass (Lateolabrax maculatus) to Different Dietary Available Phosphorus Levels and Water Temperature: Changes in Growth, Lipid Metabolism, Antioxidant Status and Intestinal Microbiota. Antioxidants. 2023; 12(12):2128. https://doi.org/10.3390/antiox12122128
Chicago/Turabian StyleGuo, Jiarong, Ling Wang, Kai Song, Kangle Lu, Xueshan Li, and Chunxiao Zhang. 2023. "Physiological Response of Spotted Seabass (Lateolabrax maculatus) to Different Dietary Available Phosphorus Levels and Water Temperature: Changes in Growth, Lipid Metabolism, Antioxidant Status and Intestinal Microbiota" Antioxidants 12, no. 12: 2128. https://doi.org/10.3390/antiox12122128
APA StyleGuo, J., Wang, L., Song, K., Lu, K., Li, X., & Zhang, C. (2023). Physiological Response of Spotted Seabass (Lateolabrax maculatus) to Different Dietary Available Phosphorus Levels and Water Temperature: Changes in Growth, Lipid Metabolism, Antioxidant Status and Intestinal Microbiota. Antioxidants, 12(12), 2128. https://doi.org/10.3390/antiox12122128