Exploring the Chemical Composition of Female Zucchini Flowers for Their Possible Use as Nutraceutical Ingredient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sampling
2.3. Polyphenolic Extraction
2.4. Advanced Analytical Techniques: Combining UHPLC with Orbitrap HRMS for Accurate Compound Identification
2.5. Simulated Gastrointestinal Digestion
2.6. Quantification of Antioxidant Capacity of the Nutraceutical Formulation Enriched with Female Zucchini Flower Extract Subjected to Gastrointestinal Digestion
2.6.1. ABTS Test
2.6.2. DPPH Test
2.7. Total Phenolic Content
2.8. Statistical Analysis
3. Results
3.1. Identification of Polyphenolic Compounds by UHPLC Coupled with Orbitrap HRMS Analysis
3.2. Quantifying Polyphenolic Compounds in Aqueous Extract of Female Zucchini Flowers via UHPLC-Q-Orbitrap HRMS
3.3. Evaluating Polyphenol Release in Nutraceutical Formulations with Aqueous Extract of Zucchini Flowers
3.4. Evaluating Antioxidant Capacity of Zucchini Flower Aqueous Extracts in AcR and NAcR Capsules
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Takahashi, J.A.; Rezende, F.A.G.G.; Moura, M.A.F.; Dominguete, L.C.B.; Sande, D. Edible flowers: Bioactive profile and its potential to be used in food development. Food Res. Int. 2020, 129, 108868. [Google Scholar] [CrossRef]
- Rodrigues, H.; Cielo, D.; Goméz-Corona, C.; Silveira, A.; Marchesan, T.; Galmarini, M.; Richards, N. Eating flowers? Exploring attitudes and consumers’ representation of edible flowers. Food Res. Int. 2017, 100, 227–234. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E. Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. J. Food Compos. Anal. 2017, 60, 38–50. [Google Scholar] [CrossRef]
- Brewer, M. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef]
- Dimitrios, B. Sources of natural phenolic antioxidants. Trends Food Sci. Technol. 2006, 17, 505–512. [Google Scholar] [CrossRef]
- Joana Gil-Chávez, G.; Villa, J.A.; Fernando Ayala-Zavala, J.; Basilio Heredia, J.; Sepulveda, D.; Yahia, E.M.; González-Aguilar, G.A. Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: An overview. Compr. Rev. Food Sci. Food Saf. 2013, 12, 5–23. [Google Scholar] [CrossRef]
- Varzakas, T.; Zakynthinos, G.; Verpoort, F. Plant food residues as a source of nutraceuticals and functional foods. Foods 2016, 5, 88. [Google Scholar] [CrossRef] [PubMed]
- Maqsood, S.; Adiamo, O.; Ahmad, M.; Mudgil, P. Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients. Food Chem. 2020, 308, 125522. [Google Scholar] [CrossRef] [PubMed]
- Zuin, V.G.; Ramin, L.Z.; Segatto, M.L.; Stahl, A.M.; Zanotti, K.; Forim, M.R.; da Silva, M.F.d.G.F.; Fernandes, J.B. To separate or not to separate: What is necessary and enough for a green and sustainable extraction of bioactive compounds from Brazilian citrus waste. Pure Appl. Chem. 2021, 93, 13–27. [Google Scholar] [CrossRef]
- da Silva, R.F.; Carneiro, C.N.; de Sousa, C.B.d.C.; Gomez, F.J.; Espino, M.; Boiteux, J.; Fernández, M.d.l.Á.; Silva, M.F.; Dias, F.d.S. Sustainable extraction bioactive compounds procedures in medicinal plants based on the principles of green analytical chemistry: A review. Microchem. J. 2022, 175, 107184. [Google Scholar] [CrossRef]
- Castaldo, L.; Izzo, L.; De Pascale, S.; Narváez, A.; Rodriguez-Carrasco, Y.; Ritieni, A. Chemical composition, in vitro bioaccessibility and antioxidant activity of polyphenolic compounds from nutraceutical fennel waste extract. Molecules 2021, 26, 1968. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Rutkowska, M.; Owczarek, K.; Tobiszewski, M.; Namieśnik, J. Extraction with environmentally friendly solvents. TrAC Trends Anal. Chem. 2017, 91, 12–25. [Google Scholar] [CrossRef]
- Krimer-Malešević, V. Pumpkin seeds: Phenolic acids in pumpkin seed (Cucurbita pepo L.). In Nuts and Seeds in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2020; pp. 533–542. [Google Scholar]
- Adnan, M.; Gul, S.; Batool, S.; Fatima, B.; Rehman, A.; Yaqoob, S.; Shabir, H.; Yousaf, T.; Mussarat, S.; Ali, N. A review on the ethnobotany, phytochemistry, pharmacology and nutritional composition of Cucurbita pepo L. J. Phytopharm. 2017, 6, 133–139. [Google Scholar] [CrossRef]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural polyphenols: An overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism(s) of action. J. Front. Pharmacol. 2022, 13, 283. [Google Scholar] [CrossRef]
- Shahidi, F.; Yeo, J. Bioactivities of phenolics by focusing on suppression of chronic diseases: A review. Int. J. Mol. Sci. 2018, 19, 1573. [Google Scholar] [CrossRef]
- Kumar Singh, A.; Cabral, C.; Kumar, R.; Ganguly, R.; Kumar Rana, H.; Gupta, A.; Rosaria Lauro, M.; Carbone, C.; Reis, F.; Pandey, A.K. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients 2019, 11, 2216. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols—A non-systematic review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef]
- Hervert-Hernández, D.; Goñi, I. Dietary polyphenols and human gut microbiota: A review. Food Rev. Int. 2011, 27, 154–169. [Google Scholar] [CrossRef]
- Saura-Calixto, F.; Serrano, J.; Goñi, I. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem. 2007, 101, 492–501. [Google Scholar] [CrossRef]
- Dou, Z.; Chen, C.; Fu, X. Bioaccessibility, antioxidant activity and modulation effect on gut microbiota of bioactive compounds from Moringa oleifera Lam. leaves during digestion and fermentation in vitro. Food Funct. 2019, 10, 5070–5079. [Google Scholar] [CrossRef]
- Munin, A.; Edwards-Lévy, F. Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics 2011, 3, 793–829. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Bhandari, B. Encapsulation of polyphenols–a review. Trends Food Sci. Technol. 2010, 21, 510–523. [Google Scholar] [CrossRef]
- Lopez-Agama, I.; Ramos-Garcia, M.d.L.; Zamilpa, A.; Bautista-Baños, S.; Ventura-Aguilar, R.I. Comparative analysis of the antioxidant compounds of raw edible flowers and ethanolic extracts of Cucurbita pepo, Tagetes erecta, and Erythrina americana during storage. J. Food Process. Preserv. 2021, 45, e15842. [Google Scholar] [CrossRef]
- Dujmović, M.; Radman, S.; Opačić, N.; Fabek Uher, S.; Mikuličin, V.; Voća, S.; Šic Žlabur, J. Edible Flower Species as a Promising Source of Specialized Metabolites. Plants 2022, 11, 2529. [Google Scholar] [CrossRef] [PubMed]
- Fekete, S.; Schappler, J.; Veuthey, J.-L.; Guillarme, D. Current and future trends in UHPLC. TrAC Trends Anal. Chem. 2014, 63, 2–13. [Google Scholar] [CrossRef]
- Chiriac, E.R.; Chiţescu, C.L.; Geană, E.-I.; Gird, C.E.; Socoteanu, R.P.; Boscencu, R.J.S. Advanced analytical approaches for the analysis of polyphenols in plants matrices—A review. Separations 2021, 8, 65. [Google Scholar] [CrossRef]
- Castaldo, L.; Izzo, L.; Narváez, A.; Rodríguez-Carrasco, Y.; Grosso, M.; Ritieni, A. Colon Bioaccessibility under In Vitro Gastrointestinal Digestion of Different Coffee Brews Chemically Profiled through UHPLC-Q-Orbitrap HRMS. Foods 2021, 10, 179. [Google Scholar] [CrossRef]
- Piccolella, S.; Crescente, G.; Candela, L.; Pacifico, S. Nutraceutical polyphenols: New analytical challenges and opportunities. J. Pharm. Biomed. Anal. 2019, 175, 112774. [Google Scholar] [CrossRef]
- Yang, D.-J.; Chang, Y.-Y.; Hsu, C.-L.; Liu, C.-W.; Lin, Y.-L.; Lin, Y.-H.; Liu, K.-C.; Chen, Y.-C. Antiobesity and hypolipidemic effects of polyphenol-rich longan (Dimocarpus longans Lour.) flower water extract in hypercaloric-dietary rats. J. Agric. Food Chem. 2010, 58, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carriere, F.; Boutrou, R.; Corredig, M.; Dupont, D. A standardised static in vitro digestion method suitable for food–an international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Castaldo, L.; Toriello, M.; Sessa, R.; Izzo, L.; Lombardi, S.; Narváez, A.; Ritieni, A.; Grosso, M. Antioxidant and anti-inflammatory activity of coffee brew evaluated after simulated gastrointestinal digestion. Nutrients 2021, 13, 4368. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Schaich, K. Re-evaluation of the 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity. J. Agric. Food Chem. 2014, 62, 4251–4260. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.-R.; Xu, Q.-D.; He, Q.; Sun, Q.; Zeng, W.-C. A theoretical and experimental study: The influence of different standards on the determination of total phenol content in the Folin–Ciocalteu assay. J. Food Meas. Charact. 2019, 13, 1349–1356. [Google Scholar] [CrossRef]
- Castaldo, L.; Izzo, L.; Lombardi, S.; Gaspari, A.; De Pascale, S.; Grosso, M.; Ritieni, A. Analysis of Polyphenolic Compounds in Water-Based Extracts of Vicia faba L.: A Potential Innovative Source of Nutraceutical Ingredients. Antioxidants 2022, 11, 2453. [Google Scholar] [CrossRef]
- Meydani, M.; Hasan, S.T. Dietary polyphenols and obesity. Nutrients 2010, 2, 737–751. [Google Scholar] [CrossRef]
- Anhê, F.F.; Desjardins, Y.; Pilon, G.; Dudonné, S.; Genovese, M.I.; Lajolo, F.M.; Marette, A. Polyphenols and type 2 diabetes: A prospective review. PharmaNutrition 2013, 1, 105–114. [Google Scholar] [CrossRef]
- Tlais, A.Z.A.; Fiorino, G.M.; Polo, A.; Filannino, P.; Di Cagno, R. High-value compounds in fruit, vegetable and cereal byproducts: An overview of potential sustainable reuse and exploitation. Molecules 2020, 25, 2987. [Google Scholar] [CrossRef]
- Kalogerakis, N.; Politi, M.; Foteinis, S.; Chatzisymeon, E.; Mantzavinos, D. Recovery of antioxidants from olive mill wastewaters: A viable solution that promotes their overall sustainable management. J. Environ. Manag. 2013, 128, 749–758. [Google Scholar] [CrossRef]
- Castaldo, L.; Lombardi, S.; Gaspari, A.; Rubino, M.; Izzo, L.; Narváez, A.; Ritieni, A.; Grosso, M. In vitro bioaccessibility and antioxidant activity of polyphenolic compounds from spent coffee grounds-enriched cookies. Foods 2021, 10, 1837. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Reig, M.; Vecino, X.; Cortina, J.L.; Saurina, J.; Granados, M. Recovery of polyphenols from agri-food by-products: The olive oil and winery industries cases. Foods 2022, 11, 362. [Google Scholar] [CrossRef] [PubMed]
- Anunciato, T.P.; da Rocha Filho, P.A. Carotenoids and polyphenols in nutricosmetics, nutraceuticals, and cosmeceuticals. J. Cosmet. Dermatol. 2012, 11, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, G.; Ibrahim, S.; Sayed, H. Phenolic Constituents of Cucurbita pepo L. cv Eskandrani (Summer Squash) Flowers. Bull. Pharm. Sci. Assiut 2009, 32, 311–319. [Google Scholar] [CrossRef]
- Morittu, V.M.; Musco, N.; Mastellone, V.; Bonesi, M.; Britti, D.; Infascelli, F.; Loizzo, M.R.; Tundis, R.; Sicari, V.; Tudisco, R. In vitro and in vivo studies of Cucurbita pepo L. flowers: Chemical profile and bioactivity. Nat. Prod. Res. 2021, 35, 2905–2909. [Google Scholar] [CrossRef] [PubMed]
- González, L. Efecto de Diferentes Métodos de Cocción Sobre el Contenido y Capacidad Antioxidante de la Flor de Calabaza (Cucurbita pepo L.). Ph.D. Dissertation, Universidad Autónoma de Querétaro, Querétaro, México, 2018. [Google Scholar]
- Aquino-Bolaños, E.; Urrutia-Hernández, T.; López Del Castillo-Lozano, M.; Chavéz-Servia, J.L.; Verdalet-Guzmán, I. Physicochemical Parameters and Antioxidant Compounds in Edible Squash (Cucurbita pepo) Flower Stored under Controlled Atmospheres. J. Food Qual. 2013, 36, 302–308. [Google Scholar] [CrossRef]
- Ed Nignpense, B.; Francis, N.; Blanchard, C.; Santhakumar, A.B. Bioaccessibility and bioactivity of cereal polyphenols: A review. Foods 2021, 10, 1595. [Google Scholar] [CrossRef]
- Nedovic, V.; Kalusevic, A.; Manojlovic, V.; Levic, S.; Bugarski, B. An overview of encapsulation technologies for food applications. Procedia Food Sci. 2011, 1, 1806–1815. [Google Scholar] [CrossRef]
- Chait, Y.A.; Gunenc, A.; Bendali, F.; Hosseinian, F. Simulated gastrointestinal digestion and in vitro colonic fermentation of carob polyphenols: Bioaccessibility and bioactivity. LWT 2020, 117, 108623. [Google Scholar] [CrossRef]
- Annunziata, G.; Maisto, M.; Schisano, C.; Ciampaglia, R.; Daliu, P.; Narciso, V.; Tenore, G.C.; Novellino, E. Colon bioaccessibility and antioxidant activity of white, green and black tea polyphenols extract after in vitro simulated gastrointestinal digestion. Nutrients 2018, 10, 1711. [Google Scholar] [CrossRef] [PubMed]
- Fogliano, V.; Corollaro, M.L.; Vitaglione, P.; Napolitano, A.; Ferracane, R.; Travaglia, F.; Arlorio, M.; Costabile, A.; Klinder, A.; Gibson, G. In vitro bioaccessibility and gut biotransformation of polyphenols present in the water-insoluble cocoa fraction. Mol. Nutr. Food Res. 2011, 55, S44–S55. [Google Scholar] [CrossRef] [PubMed]
- Izzo, L.; Rodríguez-Carrasco, Y.; Pacifico, S.; Castaldo, L.; Narváez, A.; Ritieni, A. Colon bioaccessibility under in vitro gastrointestinal digestion of a red cabbage extract chemically profiled through UHPLC-Q-Orbitrap HRMS. Antioxidants 2020, 9, 955. [Google Scholar] [CrossRef] [PubMed]
- Amrani-Allalou, H.; Boulekbache-Makhlouf, L.; Izzo, L.; Arkoub-Djermoune, L.; Freidja, M.L.; Mouhoubi, K.; Madani, K.; Tenore, G.C. Phenolic compounds from an Algerian medicinal plant (Pallenis spinosa): Simulated gastrointestinal digestion, characterization, and biological and enzymatic activities. Food Funct. 2021, 12, 1291–1304. [Google Scholar] [CrossRef]
Analytes | RT (min) | Chemical Formula | Adduct Ion | Theoretical Mass (m/z) | Measured Mass (m/z) | Accuracy (Δ ppm) | LOD (mg/kg) | LOQ (mg/kg) |
---|---|---|---|---|---|---|---|---|
Quinic acid | 0.47 | C7H12O6 | [M − H]− | 191.05531 | 191.05611 | 4.18727 | 0.026 | 0.078 |
Protocatechuic acid | 2.31 | C7H6O4 | [M − H]− | 153.01930 | 153.01857 | −4.77064 | 0.013 | 0.039 |
Chlorogenic Acid | 3.00 | C16H18O9 | [M − H]− | 353.08780 | 353.08798 | 0.50979 | 0.013 | 0.039 |
Epicatechin | 3.17 | C15H14O7 | [M − H]− | 289.07176 | 289.07202 | 0.89943 | 0.013 | 0.039 |
Caffeic acid | 3.23 | C9H8O4 | [M − H]− | 179.03498 | 179.03455 | −2.40177 | 0.013 | 0.039 |
Catechin | 3.34 | C15H14O6 | [M − H]− | 289.07175 | 289.07205 | 1.03780 | 0.026 | 0.078 |
p-Coumaric acid | 3.46 | C9H8O3 | [M − H]− | 163.04001 | 163.03937 | −3.92542 | 0.013 | 0.039 |
Vitexin | 3.48 | C21H20O10 | [M − H]− | 431.09837 | 431.09711 | −2.92277 | 0.013 | 0.039 |
Apigenin-7-O-glucoside | 3.49 | C15H10O5 | [M − H]− | 269.04555 | 269.04526 | −1.07788 | 0.026 | 0.078 |
Ferulic acid | 3.55 | C10H10O4 | [M − H]− | 193.05063 | 193.05016 | −2.43459 | 0.026 | 0.078 |
Naringin | 3.56 | C27H32O14 | [M − H]− | 579.17193 | 579.17212 | 0.32805 | 0.013 | 0.039 |
Quercetin-3-galactoside | 3.58 | C21H20O12 | [M − H]− | 463.08820 | 463.08817 | −0.06478 | 0.039 | 0.117 |
Rutin | 3.59 | C27H30O16 | [M − H]− | 609.14611 | 609.14673 | 1.01782 | 0.013 | 0.039 |
Diosmin | 3.64 | C28H31O15 | [M − H]− | 607.16684 | 607.16534 | −2.47049 | 0.013 | 0.039 |
Kaempferol-3-glucoside | 3.68 | C21H20O11 | [M − H]− | 447.09195 | 447.09329 | 2.99715 | 0.013 | 0.039 |
Isorhamnetin-3-rutinoside | 3.72 | C28H32O16 | [M − H]− | 623.16176 | 623.16174 | −0.03209 | 0.026 | 0.078 |
Myricetin | 3.73 | C14H10O8 | [M − H]− | 317.03029 | 317.02924 | −3.31199 | 0.013 | 0.039 |
Daidzein | 3.77 | C15100O4 | [M − H]− | 253.05063 | 253.05035 | −1.10650 | 0.013 | 0.039 |
Quercetin | 3.88 | C15H10O7 | [M − H]− | 301.03538 | 301.03508 | −0.99656 | 0.013 | 0.039 |
Naringenin | 3.91 | C15H12O5 | [M − H]− | 271.06120 | 271.06110 | −0.36892 | 0.013 | 0.039 |
Luteolin | 3.98 | C15H10O6 | [M − H]− | 285.04046 | 285.04086 | 1.40331 | 0.026 | 0.078 |
Kaempferol | 4.01 | C15H10O6 | [M − H]− | 285.04046 | 285.04086 | 1.40331 | 0.013 | 0.039 |
Genistein | 4.05 | C15H10O5 | [M − H]− | 269.04554 | 269.04562 | 0.29735 | 0.013 | 0.039 |
Apigenin | 4.08 | C15H10O5 | [M − H]− | 269.04555 | 269.04556 | 0.03717 | 0.039 | 0.117 |
Analytes | Average (mg/kg) | ±SD |
---|---|---|
Rutin | 514.62 | 4.17 |
Isorhamnetin-3-rutinoside | 318.59 | 2.55 |
p-Coumaric acid | 63.69 | 0.21 |
Quercetin-3-galactoside | 51.25 | 0.18 |
Kaempferol-3-glucoside | 39.61 | 0.19 |
Myricetin | 16.37 | 0.16 |
Quercetin | 14.02 | 0.06 |
Kaempferol | 6.75 | 0.09 |
Apigenin | 1.18 | 0.03 |
Naringin | <LOQ |
Samples | TPC mg GAE/100 g ± SD | |
---|---|---|
Not Digested | 534.2 ± 18.3 | |
NAcR | AcR | |
Digestion Stage | ||
Oral stage | n.d | n.d |
Gastric stage | 64.6 ± 3.2 | n.d |
Duodenal stage | 162.5 ± 7.1 | 189.2 ± 8.5 |
Pronase E | 212.7 ± 9.6 | 263.5 ± 16.5 |
Viscozyme L | 132 ± 9.2 | 163.9 ± 6.3 |
Total colonic stage | 344.7 ± 9.4 | 477.4 ± 11.6 |
Not Digested | DPPH mmol Trolox/kg ± SD | ABTS mmol Trolox/kg ± SD | ||
---|---|---|---|---|
12.6 ± 0.3 | 15.9 ± 0.3 | |||
AcR | NAcR | AcR | NAcR | |
Digestion stage | ||||
Oral stage | n.d | n.d | n.d | n.d |
Gastric stage | n.d | 1.4 ± 0.2 | n.d | 1.9 ± 0.2 |
Duodenal stage | 2.6 ± 0.2 | 1.8 ± 0.2 | 3.7 ± 0.3 | 2.8 ± 0.1 |
Pronase E stage | 3.6 ± 0.2 | 2.3 ± 0.1 | 4.2 ± 0.1 | 3.6 ± 0.2 |
Viscozyme L stage | 1.5 ± 0.2 | 1.5 ± 0.1 | 2.1 ± 0.2 | 1.8 ± 0.1 |
Total colonic stage | 5.1 ± 0.2 | 3.8 ± 0.1 | 6.3 ± 0.2 | 5.4 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castaldo, L.; Lombardi, S.; Izzo, L.; Ritieni, A. Exploring the Chemical Composition of Female Zucchini Flowers for Their Possible Use as Nutraceutical Ingredient. Antioxidants 2023, 12, 2108. https://doi.org/10.3390/antiox12122108
Castaldo L, Lombardi S, Izzo L, Ritieni A. Exploring the Chemical Composition of Female Zucchini Flowers for Their Possible Use as Nutraceutical Ingredient. Antioxidants. 2023; 12(12):2108. https://doi.org/10.3390/antiox12122108
Chicago/Turabian StyleCastaldo, Luigi, Sonia Lombardi, Luana Izzo, and Alberto Ritieni. 2023. "Exploring the Chemical Composition of Female Zucchini Flowers for Their Possible Use as Nutraceutical Ingredient" Antioxidants 12, no. 12: 2108. https://doi.org/10.3390/antiox12122108
APA StyleCastaldo, L., Lombardi, S., Izzo, L., & Ritieni, A. (2023). Exploring the Chemical Composition of Female Zucchini Flowers for Their Possible Use as Nutraceutical Ingredient. Antioxidants, 12(12), 2108. https://doi.org/10.3390/antiox12122108